KR100338123B1 - Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer - Google Patents

Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer Download PDF

Info

Publication number
KR100338123B1
KR100338123B1 KR1020000016665A KR20000016665A KR100338123B1 KR 100338123 B1 KR100338123 B1 KR 100338123B1 KR 1020000016665 A KR1020000016665 A KR 1020000016665A KR 20000016665 A KR20000016665 A KR 20000016665A KR 100338123 B1 KR100338123 B1 KR 100338123B1
Authority
KR
South Korea
Prior art keywords
copper
soil
solution
capacity
spectrophotometer
Prior art date
Application number
KR1020000016665A
Other languages
Korean (ko)
Other versions
KR20010094432A (en
Inventor
해 남 현
강동일
오상실
고광섭
장공만
한명의
정희성
Original Assignee
현해남
주식회사 소일테크
강동일
오상실
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현해남, 주식회사 소일테크, 강동일, 오상실 filed Critical 현해남
Priority to KR1020000016665A priority Critical patent/KR100338123B1/en
Priority to JP2000185385A priority patent/JP3343240B2/en
Priority to PCT/KR2001/000512 priority patent/WO2001077661A1/en
Priority to AU2001246938A priority patent/AU2001246938A1/en
Publication of KR20010094432A publication Critical patent/KR20010094432A/en
Application granted granted Critical
Publication of KR100338123B1 publication Critical patent/KR100338123B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명은 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법에 관한 것으로, 시약을 다량 사용하여 수질오염을 유발시키고 복잡한 분석과정을 거치는 종래의 방법에 비하여, 증류수에 용해시 자연적으로 청색을 나타내는 일정 농도의 구리용액을 토양의 음전하에 흡착시킨 후 미흡착된 구리의 농도를 분광광도계로 측정함으로써 단시간 내에 토양의 양이온치환용량을 간편하고 정확하고 신속하게 측정할 수 있으며, 경제적으로도 상당한 원가 절감 효과가 있다.The present invention relates to a method for measuring the soil cation substitution capacity using copper adsorption and spectrophotometer, and when dissolved in distilled water naturally compared to the conventional method of causing a water pollution and a complex analysis process using a large amount of reagents By adsorbing a copper solution with a certain concentration of blue to the negative charge of the soil, the concentration of unadsorbed copper is measured by spectrophotometer, so that the cation substitution capacity of the soil can be measured easily, accurately and quickly within a short time. There is a significant cost savings.

Description

구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법{Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer}Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer

본 발명은 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법에 관한 것으로, 보다 상세하게는 본 발명은 증류수에 용해시 청색을 나타내는 구리용액을 토양에 첨가하여 진탕시킨 후, 구리가 토양표면에 흡착되는 양만큼 청색의 색도가 정량적으로 감소하는 정도를 분광광도계로 측정함으로써 종래의 방법에 비하여 환경오염을 유발시키는 시약을 사용하지 않으면서 단시간 내에 간편하게 토양의 양이온치환용량을 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring the soil cation substitution capacity using copper adsorption and spectrophotometer. More specifically, the present invention relates to a copper solution which is blue when dissolved in distilled water. Method of measuring cation substitution capacity of soil easily in a short time without using reagents that cause environmental pollution by measuring spectrophotometer quantitatively decrease of blue chromaticity by the amount adsorbed on soil surface It is about.

토양의 양이온치환용량은 토양 음전하의 총량을 나타내는 것으로, 비료성분으로 토양에 첨가되는 암모늄성질소(NH4 +), 칼륨(K+), 칼슘(Ca2+), 마그네슘(Mg2+) 등의 양이온 성분이 토양에 흡착될 수 있는 용량을 의미한다. 비료로 첨가한 성분은 토양의 음전하에 전기적인 인력에 의하여 흡착되었다가 작물에게 이용될 수 있는 장소로 이동되며, 양이온치환용량이 증가할수록 토양에 비료성분을 많이 흡착시킬 수 있다. 양이온치환용량은 비료 사용량을 결정하는 중요한 기준으로 작용하기 때문에 여러 연구자들에 의해 그 측정방법이 제안되었다.The cation substitution capacity of soil is the total amount of negative charge of soil, and it is ammonium nitrogen (NH 4 + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), etc. Refers to the capacity of the cationic component of the adsorbed soil. Components added as fertilizer are adsorbed by electrical attraction under the negative charge of the soil and then moved to the place where the crops can be used. As the cation substitution capacity increases, more fertilizer components can be adsorbed to the soil. Since the cation substitution capacity serves as an important criterion for determining the amount of fertilizer used, the method has been proposed by various researchers.

국제 표준방법으로 사용되는 암모늄아세테이트법(ammonium acetate method)은 여러 연구자들에 의해 제시되고 개선되었다. 이 방법은 암모늄아세테이트 용액을 토양에 첨가하여 토양의 음전하를 암모늄 이온으로 포화시키고, 과잉으로 첨가된 암모늄아세테이트 용액은 에칠알콜 또는 이소프로필알콜(isopropyl alcohol)로 세척하여 제거한 후, 토양에 흡착된 암모늄 이온을 산성화된 염화나트륨(NaCl)으로 침출시켜 발생한 암모늄의 양을 정량하여 토양의 음전하 총량인 양이온치환용량을 측정하는 것이다.The ammonium acetate method, used as an international standard method, has been proposed and improved by several researchers. In this method, ammonium acetate solution is added to the soil to saturate the negative charge of the soil with ammonium ions, and the excess ammonium acetate solution is removed by washing with ethanol or isopropyl alcohol, and then ammonium adsorbed on the soil. The amount of ammonium produced by leaching ions with acidified sodium chloride (NaCl) is used to determine the amount of cation substitution, the total amount of negative charge in the soil.

이러한 암모늄아세테이트법은 포화과정에 사용되는 암모늄아세테이트 용액, 세척과정에 사용되는 80% (v/v) 에칠알콜 또는 이소프로필알콜, 침출과정에 사용되는 염화나트륨, 암모늄 이온의 정량과정에 사용되는 붕산용액(boric acid solution), 황산(H2SO4) 또는 염산(HCl), 브로모크레졸그린(bromocresol green) 등의 많은 시약이 소모되고 이 시약들은 대부분 수질을 오염시킬 수 있다. 또한, 침출과정을 진행시키기 위해 유리기구로 제작된 고가의 양이온치환용량 측정장치와 암모늄 이온을 정량하기 위한 증류장치가 별도로 필요하며, 분석과정이 복잡하고 시간이 많이 소요된다는 단점이 있어서 필요한 시기에 토양의 양이온치환용량을 측정하는데 불편하고 적절하지 못하다.This ammonium acetate solution is used for the determination of ammonium acetate solution used for saturation process, 80% (v / v) ethyl alcohol or isopropyl alcohol used for washing process, sodium chloride used for leaching process, and boric acid solution used for the determination of ammonium ion. Many reagents, such as boric acid solution, sulfuric acid (H 2 SO 4 ) or hydrochloric acid (HCl) and bromocresol green, are consumed and most of them can contaminate water quality. In addition, an expensive cation exchange capacity measuring device made of glassware and a distillation device for quantitating ammonium ions are required separately to advance the leaching process, and the analysis process is complicated and time consuming. It is inconvenient and inadequate to measure the cation substitution capacity of soil.

Polemio와 Rhoades(1977)은 암모늄아세테이트법에서 수질오염성분인 암모늄 이온이 과량으로 사용되기 때문에 암모늄아세테이트(CH3COONH4) 대신에 나트륨아세테이트(CH3COONa)를 사용하는 방법을 개발하였다. 여러 연구자에 의해 개선된 이 방법은 나트륨아세테이트(NaOAc·3H2O), 염화나트륨과 에탄올을 혼합한 용액을 토양에첨가하여 나트륨을 토양 음전하에 흡착시켜 포화시키고, 질산마그네슘(MgNO3)을 침출용액으로 첨가하여 침출되어 나오는 나트륨을 측정하는 방법이다. 그러나, 상기 방법은 포화과정과 침출과정을 수차례 반복해야 하고 초음파분해기, 원심분리기 등의 실험기구가 필요하며, 나트륨과 염소를 분석하는데 별도의 기기가 필요할 뿐 아니라 시간이 많이 소요되고 조작이 복잡하다. 또한, 수질을 오염시킬 수 있는 아세테이트(CH3COOH)와 질산(NO3)이 폐시약으로 발생하는 단점이 있다.Polemio and Rhoades (1977) developed a method of using sodium acetate (CH 3 COONa) instead of ammonium acetate (CH 3 COONH 4 ) because the ammonium acetate method used excessive amounts of ammonium ions as water pollution components. This method, improved by several researchers, added sodium acetate (NaOAc.3H 2 O), a solution of sodium chloride and ethanol to the soil, adsorbed sodium to the soil with negative charge, saturated, and magnesium nitrate (MgNO 3 ). It is a method of measuring the sodium leaching out by adding it. However, the method needs to repeat the saturation process and leaching process several times, and requires a laboratory apparatus such as a sonicator and a centrifuge, and requires a separate device for analyzing sodium and chlorine as well as time-consuming and complicated operation. Do. In addition, acetate (CH 3 COOH) and nitric acid (NO 3 ) that may contaminate the water quality has the disadvantage that occurs as a waste reagent.

또한, Gillman(1979)은 염화바륨(BaCl2) 용액을 첨가하여 토양 음전하에 포화시키고 황산마그네슘(MgSO4)을첨가하여 음전하에 흡착된 바륨을 마그네슘으로 치환하면서 침출시킴으로써 감소된 마그네슘의 양을 측정하여 토양의 양이온치환용량을 측정하는 방법을 제시하였고, 많은 연구자들에 의해 발전되었다. 그러나, 상기 방법은 분석조작이 복잡하고 수질오염성 시약을 다량 사용하기 때문에 필요한 시기에 토양의 양이온치환용량을 간편하고 신속하게 분석하는 데 적절하지 못하다.Gillman (1979) also measured the amount of magnesium that was reduced by adding barium chloride (BaCl 2 ) solution to saturate the soil negative charge and add magnesium sulfate (MgSO 4 ) to leach the negatively charged barium with magnesium to leach it. This paper suggests a method to measure the cation substitution capacity of soil and has been developed by many researchers. However, this method is not suitable for the simple and rapid analysis of cation substitution capacity of soil at the required time because the analysis operation is complicated and a large amount of water pollutant reagent is used.

이상과 같이 기존에 제시된 토양의 양이온치환용량을 측정하는 방법은 공통적으로 수질을 오염시킬 수 있는 시약을 다량 사용하여 토양 음전하에 암모늄 이온이나 나트륨 이온 등을 흡착시키는 포화과정, 알콜로 과잉의 시약을 제거하는 세척과정, 포화된 암모늄이나 나트륨 등을 침출하는 과정, 침출된 성분을 측정하는 과정이 반드시 필요하다. 이러한 과정은 복잡하고 여러 분석기구가 필요하여 분석시간이 많이 소요되고, 시약이 많이 소요되어 비경제적이며, 필요한 시기에 신속하게 분석하지 못하다는 공통적인 단점이 있다.As mentioned above, the conventional method for measuring the cation substitution capacity of the soil is a saturation process of adsorbing ammonium ions or sodium ions on the soil negative charge using a large amount of reagents that may contaminate water quality, and excess reagents with alcohol. The process of washing to remove, leaching saturated ammonium or sodium, and measuring leaching components are essential. This process is complicated and requires a number of analysis tools, which requires a lot of analysis time, a lot of reagents, which is inexpensive, and has a common disadvantage of not being able to analyze quickly when needed.

따라서, 본 발명의 목적은 종래의 포화과정, 세척과정, 침출과정, 정량과정 등의 복잡한 실험과정을 단축시키고 시약의 사용량을 현저하게 줄임으로써 경제적이며 신속하고 간편하게 토양의 양이온치환용량을 측정하는 방법을 제공함에 있다.Therefore, an object of the present invention is to measure the cation substitution capacity of soil economically, quickly and simply by shortening the complicated experiment process such as the conventional saturation process, washing process, leaching process, quantification process and significantly reducing the amount of reagent. In providing.

본 발명의 상기 목적은 청색을 띠는 구리화합물인 황산구리(CuSO4·5H2O), 초산구리[Cu(COO)2·H2O], 염화구리(CuCl2·2H2O), 질산구리[Cu(NO3)2], 염화구리(I) (CuCl), 구리아세틸아세토네이트[Cu(C5H7O2)] 등을 증류수에 용해시켜 구리용액을 제조하여 토양에 첨가하고 진탕시켜 구리이온을 토양의 음전하에 흡착시킨 후, 치환반응에 따라 청색의 흡광도가 감소하는 것을 분광광도계로 측정하여 정량한 양이온치환용량과 종래 표준방법인 암모늄아세테이트법으로 정량한 양이온치환용량과 비교함으로써 달성하였다.The above object of the present invention is a copper compound of blue color (CuSO 4 · 5H 2 O), copper acetate [Cu (COO) 2 · H 2 O], copper chloride (CuCl 2 · 2H 2 O), copper nitrate [Cu (NO 3 ) 2 ], copper chloride (I) (CuCl), copper acetylacetonate [Cu (C 5 H 7 O 2 )], etc. were dissolved in distilled water to prepare a copper solution, added to the soil and shaken. This is achieved by adsorbing copper ions to the negative charge of the soil and then comparing the cation substitution capacity measured by spectrophotometer with the decrease in blue absorbance according to the substitution reaction and the cation substitution capacity quantified by the ammonium acetate method. It was.

이하, 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention will be described.

도 1은 토양표면의 음전하와 양이온 성분의 당량적인 흡착을 나타낸다.1 shows the equivalent adsorption of negative charges and cationic components on the soil surface.

도 2는 토양에 흡착된 양이온과 구리이온의 치환반응을 나타낸다.Figure 2 shows the substitution reaction of cations and copper ions adsorbed on the soil.

도 3은 진탕시간에 따른 미흡착된 구리의 흡광도 변화를 나타낸다.3 shows the change in absorbance of unabsorbed copper with shaking time.

도 4는 파장에 따른 구리용액의 흡광도를 나타낸다.Figure 4 shows the absorbance of the copper solution according to the wavelength.

도 5는 분광광도계로 720 nm에서 측정한 흡광도와 구리용액 농도와의 관계를 나타낸 표준곡선이다.5 is a standard curve showing the relationship between absorbance and copper solution concentration measured at 720 nm with a spectrophotometer.

도 6은 분광광도계로 812 nm에서 측정한 흡광도와 구리용액 농도와의 관계를 나타낸 표준곡선이다.FIG. 6 is a standard curve showing the relationship between absorbance and copper solution concentration measured at 812 nm with a spectrophotometer. FIG.

도 7은 본 발명방법과 종래방법으로 3반복 측정하여 평균함량을 비교한 그래프를 나타낸다.Figure 7 shows a graph comparing the average content of three repeated measurements of the present invention and the conventional method.

도 8은 본 발명방법과 종래방법으로 3반복 측정하여 반복간 변이계수를 비교한 그래프를 나타낸다.8 shows a graph comparing the coefficient of variation between repetitions by measuring three iterations according to the present invention and the conventional method.

도 9는 본 발명방법과 종래방법으로 3반복 측정하여 반복간 표준편차를 비교한 그래프를 나타낸다.9 shows a graph comparing the standard deviation between repetitions by measuring three iterations according to the present invention and the conventional method.

본 발명은 구리화합물을 증류수에 용해시켜 0.02∼2 N의 구리용액을 제조하는 단계; 삼각 플라스크에 토양시료를 넣고 상기 구리용액을 첨가하여 구리이온을 토양 음전하에 흡착시키는 단계; 구리용액과 토양과의 혼합액을 여과 또는 원심분리하여 여과액의 흡광도를 측정하는 단계; 농도를 알고 있는 구리용액의 흡광도를분광광도계로 측정하여 표준곡선을 작성하는 단계; 시료의 흡광도를 표준곡선식에 대입하여 토양의 양이온치환용량을 계산하는 단계 및; 본 발명의 방법으로 정량한 양이온치환용량과 종래의 암모늄아세테이트법으로 정량한 양이온치환용량을 비교하는 단계로 구성되어 있다.The present invention comprises the steps of dissolving a copper compound in distilled water to prepare a copper solution of 0.02 ~ 2 N; Placing a soil sample in an Erlenmeyer flask and adsorbing copper ions to the soil negative charge by adding the copper solution; Measuring the absorbance of the filtrate by filtration or centrifugation of the mixed solution of the copper solution and the soil; Preparing a standard curve by measuring the absorbance of the copper solution having a known concentration with a spectrophotometer; Calculating the cation substitution capacity of the soil by substituting the absorbance of the sample into a standard curve; Comparing the cation substitution capacity quantified by the method of the present invention and the cation substitution capacity quantified by the conventional ammonium acetate method.

본 발명에서 구리용액을 토양에 첨가하여 구리 이온을 토양의 음전하에 흡착시키는 반응은 토양이 가지고 있는 양이온 치환반응의 원리를 이용한 것이다. 도 1에 나타낸 바와 같이, 토양 표면에는 비료로 첨가되는 성분 또는 토양이 풍화되면서 생성되는 양이온이 당량대 당량으로 토양 표면의 음전하와 반응하여 흡착되어 있으며, 양이온치환용량은 토양의 음전하 총량을 의미하고 이는 음전하에 흡착된 양이온의 총량과도 같다. 도 2에 나타낸 바와 같이, 황산구리용액을 첨가하기 전의 토양표면은 다른 양이온이 흡착되어 있으므로 황산구리용액은 짙은 청색을 나타내게 되지만, 토양에 황산구리용액을 첨가하고 진탕시키게 되면 당량대 당량비로 토양에 흡착되어 있던 양이온은 치환되어 용액 중으로 유출되는 반면에 용액 중의 구리이온은 토양의 음전하와 흡착하기 때문에 용액의 색도는 점차적으로 엷은 청색을 나타낸다.In the present invention, the reaction of adsorbing copper ions to the negative charge of the soil by adding a copper solution to the soil is based on the principle of the cation substitution reaction of the soil. As shown in Figure 1, the surface of the soil is a component added as a fertilizer or the cation produced while the soil is weathered is adsorbed by reacting with the negative charge of the soil surface in equivalent weight equivalent, the cation substitution capacity means the total amount of negative charge of the soil This is equivalent to the total amount of cations adsorbed on the negative charge. As shown in Fig. 2, the surface of the soil before the addition of copper sulfate solution is adsorbed by other cations, so the copper sulfate solution becomes dark blue. However, when copper sulfate solution is added to the soil and shaken, it is adsorbed on the soil in an equivalence-equivalent ratio. The cations displace and flow out into the solution, whereas the copper ions in the solution adsorb with the negative charge of the soil, so the chromaticity of the solution gradually becomes pale blue.

이하, 본 발명의 구체적인 구성을 단계별 설명 및 실시예를 들어 상세하게 설명하고자 하지만, 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific configuration of the present invention will be described in detail with reference to step-by-step description and embodiments, but the scope of the present invention is not limited to these embodiments.

제1단계 : 흡착반응용 구리용액의 제조First step: preparation of copper solution for adsorption reaction

흡착반응용 구리용액은 구리화합물을 사용하여 0.02∼2 N의 농도가 되도록제조한다. 초산구리는 1.9965∼199.65 g을, 황산구리는 4.9978∼499.78 g을, 염화구리는 1.705∼170.5 g을, 질산구리는 1.876∼187.6 g을 증류수에 용해시켜 1 L가 되도록 하여 0.02∼2 N의 흡착반응용 구리용액을 제조한다. 흡착반응용 구리용액은 구리의 농도를 맞추기 위한 것이므로 상기의 구리화합물 대신에 염화구리(I), 구리아세틸아세토네이트를 사용하여도 무방하며, 수화물 또는 무수물인 경우에는 이를 감안하여 일반적으로 이용하는 농도 계산법에 준하여 제조한다. 구리용액의 농도는 토양의 양이온치환용량의 크기, 취하는 토양시료의 양에 따라 다르므로 0.02∼2 N 범위에서 제조한다. 최적의 구리용액의 농도는 0.2 N이다.The copper solution for the adsorption reaction is prepared using a copper compound so as to have a concentration of 0.02 to 2 N. Copper acetate is 1.9965 to 199.65 g, copper sulfate is 4.9978 to 499.78 g, copper chloride is 1.705 to 170.5 g, and copper nitrate is dissolved in distilled water to make 1 L. Prepare a copper solution. Since copper solution for adsorption reaction is to adjust the concentration of copper, copper chloride (I) and copper acetylacetonate may be used instead of the above copper compound, and in the case of hydrate or anhydride, the concentration calculation method generally used in this regard Manufacture according to The concentration of the copper solution depends on the size of the cation substitution capacity of the soil and the amount of soil sample to be taken. The optimum concentration of copper solution is 0.2 N.

제2단계 : 토양 음전하에 구리 흡착과정Step 2: adsorption of copper to soil negative charge

토양 0.1∼20 g을 삼각플라스크와 같은 유리기구에 넣고 상기 제 1단계에서 제조한 구리용액 2∼250 mL를 첨가한 후, 진탕기를 사용하여 1∼60분간 진탕시킴으로써 용액 중의 구리를 토양의 음전하에 포화시킨다. 취하는 토양의 양과 구리 첨가량은 토양의 양이온치환용량의 크기에 따라 임의로 조절할 수 있으며, 양이온치환용량이 큰 토양일수록 토양의 양을 적게 하고 구리용액의 농도 또는 첨가량을 증가시킨다. 일반적인 토양의 경우 토양 5 g당 0.2 N 구리용액 25 mL를 첨가하는 것이 적절하다. 진탕과정은 용액중의 구리가 토양 음전하에 포화되고 흡착되어 있는 양이온들이 탈착되도록 반응시키는 것으로, 토양의 성질에 따라 예비실험을 실시하여 진탕시간을 정할 수 있으며, 일반적인 토양의 경우 5분간 진탕한다.Place 0.1-20 g of soil in a glass apparatus such as a Erlenmeyer flask, add 2 to 250 mL of the copper solution prepared in the first step, and shake the copper in the solution for 1 to 60 minutes using a shaker. Saturate. The amount of soil taken and the amount of copper added can be arbitrarily adjusted according to the size of the cation substitution capacity of the soil. The larger the cation substitution capacity, the smaller the amount of soil and the higher the concentration or addition of copper solution. For normal soils, it is appropriate to add 25 mL of 0.2 N copper solution per 5 g of soil. Shaking process is the reaction of copper in the solution to saturate the adsorption of cations that are saturated and adsorbed to the soil negative charge, can be determined by the preliminary experiment according to the nature of the soil, shake for 5 minutes in the general soil.

제3단계 : 용액 중 구리의 정량Step 3: Determination of Copper in Solution

용액 중의 구리의 농도는 분광광도계로 흡광도를 측정하여 정량하며, 증류수에 용해시 청색을 나타내는 구리용액은 600∼1,100 nm 범위에서 흡광하므로 임의 파장에서 흡광도를 측정하여 구리의 농도를 정량한다.The concentration of copper in the solution is quantified by measuring the absorbance with a spectrophotometer. Since the copper solution, which is blue when dissolved in distilled water, absorbs in the range of 600-1,100 nm, the concentration of copper is quantified by measuring the absorbance at an arbitrary wavelength.

제4단계 : 표준곡선의 작성Step 4: prepare a standard curve

토양에 구리용액을 포화시키고 미흡착된 구리의 농도를 측정하기 위하여 먼저 구리 표준용액을 농도별로 제조하여 흡광도를 측정한 후, 구리용액의 농도와 흡광도와의 상관관계를 나타내는 표준곡선을 작성한다. 표준곡선을 작성하기 위한 흡광도 측정 파장은 600∼1,100 nm에서 임의로 선택할 수 있다.In order to saturate the copper solution in the soil and measure the concentration of unadsorbed copper, first prepare a copper standard solution for each concentration and measure the absorbance. Then, prepare a standard curve showing the correlation between the concentration of the copper solution and the absorbance. The absorbance measurement wavelength for creating a standard curve can be arbitrarily selected from 600 to 1,100 nm.

제5단계 : 토양 양이온치환용량의 계산Step 5: Calculate Soil Cation Replacement Capacity

토양의 양이온치환용량은 하기 식 [1]을 이용하여 토양에 첨가한 구리용액의 농도와 미흡착된 농도와의 차로부터 계산한다.The cation substitution capacity of the soil is calculated from the difference between the concentration of copper solution added to the soil and the unadsorbed concentration using the following formula [1].

토양 양이온치환용량(meq 또는 cmol+/kg) =Soil cation substitution capacity (meq or cmol + / kg) =

{(첨가한 구리용액의 농도(meq) - 흡착후 남은 구리용액의 농도(meq)} ×{(Concentration of added copper solution (meq)-concentration of copper solution remaining after adsorption (meq)} ×

첨가한 구리용액의 양(mL)/토양의 무게(g) x 1/10 ---------------- [1]Amount of copper solution added (mL) / weight of soil (g) x 1/10 ---------------- [1]

여기서 1/10은 양이온치환용량의 단위를 meq/100 g 또는 cmol+/kg으로 나타내기 위한 단위환산 계수이다.Where 1/10 is a unit conversion factor for expressing units of cation substitution capacity in meq / 100 g or cmol + / kg.

제6단계 : 종래의 방법과 분석 정밀도의 비교Step 6: Compare the Analytical Precision with Conventional Methods

본 발명 방법에 따라 상기 제 5단계에서 계산한 양이온치환용량과 종래의 표준방법인 암모늄아세테이트법으로 정량한 양이온치환용량과의 상관관계, 반복간 변이계수, 반복간 표준편차를 그래프로 작성하여 비교한다.According to the present invention, the correlation between the cation substitution capacity calculated in the fifth step and the cation substitution capacity quantified by the conventional ammonium acetate method, the variation coefficient between repetitions, and the standard deviation between repetitions are plotted and compared. do.

이하, 본 발명의 구체적인 구성을 실시예를 들어 설명한다.Hereinafter, the specific structure of this invention is given and mentioned an Example.

실시예 1 : 표준곡선의 작성Example 1 Preparation of Standard Curves

구리의 흡착에 미치는 진탕시간의 영향을 조사한 결과 도 3에 나타낸 바와 같이, 진탕시간이 길어질수록 구리의 흡착반응이 잘 일어났으며, 진탕시간이 짧을수록 완전한 흡착반응이 일어나지 않았다. 진탕시간이 짧으면 양이온치환용량이 낮게 측정될 수 있으므로 5분 이상 진탕하였다. 도 4에 나타낸 바와 같이, 구리용액의 흡수파장은 600∼1,100 nm 범위에서 분포하였으며, 최대흡수파장은 812 nm이었다.As a result of investigating the effect of shaking time on the adsorption of copper, as shown in FIG. 3, the longer the shaking time, the better the copper adsorption reaction, and the shorter the shaking time, the complete adsorption reaction did not occur. If the shaking time is short, the cation substitution capacity may be measured low, and the shaking time was more than 5 minutes. As shown in FIG. 4, the absorption wavelength of the copper solution was distributed in the range of 600-1,100 nm, and the maximum absorption wavelength was 812 nm.

표준곡선은 구리 표준용액의 농도를 0∼1,200 밀리당량 (milli equivalent, meq)의 범위에서 변화시키며, 대표적인 파장으로 선택한 720 nm에서 흡광도를 측정하여 작성하였다. 도 5는 720 nm에서 측정한 구리 표준용액의 표준곡선으로, 흡광도와 구리용액의 농도 사이에는 높은 상관관계 (r=0.9994)가 존재하였다. 따라서, 표준곡선의 식을 이용하여 흡광도 값으로부터 구리용액의 농도를 환산하였다. 도 6은 최대흡수파장인 812 nm에서 측정한 표준곡선으로, 720 nm에서와 같이 상관계수 (r=0.9996)가 매우 높았다.The standard curve was prepared by varying the concentration of the copper standard solution in the range of 0-1,200 milli equivalents (meq) and measuring the absorbance at 720 nm selected as the representative wavelength. 5 is a standard curve of the copper standard solution measured at 720 nm, and there was a high correlation (r = 0.9994) between the absorbance and the concentration of the copper solution. Therefore, the concentration of the copper solution was converted from the absorbance value using the formula of the standard curve. 6 is a standard curve measured at 812 nm, the maximum absorption wavelength, and the correlation coefficient (r = 0.9996) is very high as at 720 nm.

실시예 2 : 토양시료 양이온치환용량의 정량Example 2 Determination of Cation Replacement Capacity of Soil Sample

풍건시킨 토양 5 g을 삼각플라스크에 넣고 0.2 N 구리용액 25 mL를 첨가하여 5분간 진탕시키고 여과한 후, 분광광도계로 여과액의 흡광도를 측정한 다음 표준곡선식에 대입하여 여과액 중의 구리 농도를 정량하였으며, 이를 상기 제 5단계의 식 [1]에 대입하여 양이온치환용량을 계산하였다. 본 발명 방법과 종래 표준방법인 암모늄아세테이트법으로 3반복 측정한 토양 시료 33점의 양이온치환용량을 표 1에 비교하여 나타내었다.5 g of air-dried soil was added to a Erlenmeyer flask, shaken for 5 minutes by adding 25 mL of 0.2 N copper solution, filtered, and measured the absorbance of the filtrate with a spectrophotometer. This was substituted into Equation [1] of the fifth step to calculate the cation substitution capacity. The cation substitution capacity of 33 soil samples measured three times by the method of the present invention and the conventional standard ammonium acetate method is shown in Table 1.

실시예 3 : 본 발명의 방법과 종래 방법의 분석 정밀도 비교Example 3 Comparison of Analytical Accuracy of Methods of the Present Invention and Conventional Methods

검증시료로 사용한 토양은 양이온치환용량의 범위가 6.7∼30.5 cmol+/kg인 다양한 33개 토양으로 개간지, 논, 밭, 시설재배지 토양에서 채취하여 사용하였다. 도 7은 본 발명의 방법으로 측정한 양이온치환용량과 종래의 방법으로 3반복 측정한 양이온치환용량의 평균함량을 비교한 것으로, 두 방법 사이에 1:1의 높은 상관관계 (r=0.977)가 존재하여 두 방법간에 차이가 없음을 확인하였다.Soils used as test samples were 33 soils with cation substitution capacity ranging from 6.7 to 30.5 cmol + / kg and were collected from cleared land, paddy fields, fields and plantation soils. 7 is a comparison of the average content of the cation substitution capacity measured by the method of the present invention and the cation substitution capacity measured by three repeated methods according to the conventional method, and there is a high correlation (r = 0.977) of 1: 1 between the two methods. It was confirmed that there was no difference between the two methods.

본 발명 방법과 종래 암모늄아세테이트법으로 각각 3반복 정량한 양이온치환용량의 비교Comparison of cation substitution capacity of three repetitive quantifications according to the present invention method and conventional ammonium acetate method 시료번호Sample Number 본 발명의 방법Method of the invention 종래 암모늄아세테이트법Conventional ammonium acetate method 1반복1 repetition 2반복2 repetitions 3반복3 repetitions 평균Average 1반복1 repetition 2반복2 repetitions 3반복3 repetitions 평균Average 1One 5.305.30 5.205.20 5.405.40 5.305.30 6.906.90 6.506.50 6.706.70 6.76.7 22 6.206.20 6.306.30 6.186.18 6.236.23 7.607.60 7.507.50 7.307.30 7.57.5 33 28.3028.30 27.6027.60 28.9028.90 28.2728.27 26.5026.50 27.2027.20 26.8026.80 26.826.8 44 8.608.60 8.508.50 8.708.70 8.608.60 8.208.20 8.508.50 8.908.90 8.58.5 55 19.3019.30 19.1019.10 18.9018.90 19.1019.10 18.6018.60 17.9017.90 18.2018.20 18.218.2 66 20.3020.30 20.6020.60 20.1020.10 20.3320.33 21.2021.20 20.6020.60 21.0021.00 20.920.9 77 29.8029.80 29.4029.40 30.0030.00 29.7329.73 29.6029.60 28.9028.90 29.3029.30 29.329.3 88 25.6025.60 25.6025.60 26.0026.00 25.7325.73 24.6024.60 25.3025.30 24.8024.80 24.924.9 99 24.3024.30 24.1024.10 23.8023.80 24.0724.07 23.6023.60 22.6022.60 23.0023.00 23.123.1 1010 12.5012.50 12.0012.00 13.0013.00 12.5012.50 11.8011.80 12.6012.60 11.5011.50 12.012.0 1111 6.906.90 7.207.20 7.107.10 7.077.07 8.908.90 8.108.10 8.508.50 8.58.5 1212 20.3020.30 20.4020.40 20.9020.90 20.5320.53 21.2021.20 20.5020.50 20.8020.80 20.820.8 1313 22.5022.50 22.5022.50 21.6021.60 22.2022.20 23.6023.60 23.4023.40 23.9023.90 23.623.6 1414 28.1028.10 29.0029.00 28.5028.50 28.5328.53 26.2026.20 25.9025.90 26.0026.00 26.026.0 1515 27.3027.30 27.9027.90 27.1027.10 27.4327.43 25.9025.90 26.1026.10 25.7025.70 25.925.9 1616 8.808.80 8.708.70 8.508.50 8.678.67 9.509.50 10.6010.60 9.809.80 10.010.0 1717 9.609.60 9.509.50 9.109.10 9.409.40 11.2011.20 11.6011.60 11.9011.90 11.611.6 1818 11.3011.30 11.4011.40 10.9010.90 11.2011.20 13.2013.20 13.5013.50 13.9013.90 13.513.5 1919 23.6023.60 23.8023.80 22.9022.90 23.4323.43 26.9026.90 25.8025.80 26.2026.20 26.326.3 2020 15.6015.60 15.9015.90 15.4015.40 15.6315.63 15.7015.70 14.9014.90 15.0015.00 15.215.2 2121 20.0020.00 20.5020.50 21.1021.10 20.5320.53 21.3021.30 21.5021.50 21.0021.00 21.321.3 2222 18.8018.80 18.4018.40 18.9018.90 18.7018.70 18.8018.80 18.2018.20 19.0019.00 18.718.7 2323 26.3026.30 26.4026.40 26.1026.10 26.2726.27 27.5027.50 27.3027.30 27.9027.90 27.627.6 2424 6.706.70 6.706.70 6.106.10 6.506.50 8.208.20 8.608.60 8.008.00 8.38.3 2525 7.807.80 7.907.90 7.207.20 7.637.63 9.809.80 9.209.20 9.609.60 9.59.5 2626 9.209.20 9.609.60 9.309.30 9.379.37 11.1011.10 10.9010.90 11.4011.40 11.111.1 2727 25.9025.90 26.5026.50 26.1026.10 26.1726.17 26.5026.50 26.8026.80 26.0026.00 26.426.4 2828 30.0030.00 30.5030.50 31.1031.10 30.5330.53 29.8029.80 30.6030.60 31.1031.10 30.530.5 2929 26.2026.20 26.8026.80 26.9026.90 26.6326.63 26.6026.60 26.8026.80 27.0027.00 26.826.8 3030 15.2015.20 15.3015.30 15.8015.80 15.4315.43 18.2018.20 19.2019.20 19.1019.10 18.818.8 3131 13.3013.30 13.6013.60 13.9013.90 13.6013.60 15.2015.20 15.6015.60 16.2016.20 15.715.7 3232 15.2015.20 15.2015.20 16.1016.10 15.5015.50 18.4018.40 18.6018.60 19.1019.10 18.718.7 3333 8.208.20 8.608.60 8.908.90 8.578.57 10.2010.20 10.9010.90 10.5010.50 10.510.5

도 8은 본 발명의 방법과 종래의 방법으로 3반복 측정한 양이온치환용량의 변이계수를 나타낸 것으로, 두 방법의 변이계수는 모두 5% 이하로서 두 방법 모두 정밀하였다. 도 9는 본 발명의 방법과 종래의 방법으로 3반복 측정한 양이온치환용량의 표준편차를 나타낸 것으로, 두 방법의 표준편차는 모두 1 cmol+/kg 이하로서 두 방법간 차이가 없음을 확인하였다. 따라서, 본 발명의 방법은 종래 방법에 비하여 현저히 적은 시약과 간편한 조작으로 신속하게 토양의 양이온치환용량을 측정할 수 있으면서 종래 방법과 동일한 분석 정확도를 얻을 수 있음을 확인하였다.Figure 8 shows the coefficient of variation of the cation substitution capacity measured in three iterations by the method of the present invention and the conventional method, the variation coefficient of both methods is 5% or less, both methods were accurate. Figure 9 shows the standard deviation of the cation substitution capacity measured in three iterations by the method of the present invention and the conventional method, it was confirmed that the standard deviation of both methods is 1 cmol + / kg or less, there is no difference between the two methods. Therefore, it was confirmed that the method of the present invention can obtain the same analytical accuracy as the conventional method while being able to quickly measure the cation substitution capacity of the soil with significantly less reagent and simple operation than the conventional method.

이상, 상기 단계별 설명 및 실시예를 들어 상세하게 설명한 바와 같이, 본 발명은 구리용액을 토양에 흡착시켜 토양 음전하의 총량인 양이온치환용량을 정량함으로써 수질을 오염시킬 수 있는 고가의 시약을 다량 사용하고 분석조작이 매우 복잡하여 분석시간이 많이 소요되는 종래의 방법에 비하여 저렴한 구리용액만을 사용하고 분석조작이 간편하고 신속하면서도 종래의 방법과 동일한 결과를 얻을 수 있는 뛰어난 효과가 있으며, 조작이 간편하고 저가인 분광광도계를 사용하여 흡광도를 측정함으로써 단시간내에 간단한 조작으로 토양내 양이온치환용량을 측정할 수 있어 경제적으로도 상당한 원가 절감 효과가 있으므로 비료의 정확한 사용량을 파악하기 위한 토양분석산업상 매우 유용한 발명인 것이다.As described above in detail with reference to the step-by-step description and examples, the present invention uses a large amount of expensive reagents that can contaminate water quality by adsorbing copper solution to the soil and quantifying the cation substitution capacity, which is the total amount of negative soil charge. Compared with the conventional method, which is very complicated and requires a lot of analysis time, it uses only inexpensive copper solution. By measuring the absorbance using a phosphorus spectrophotometer, it is possible to measure the cation substitution capacity in the soil by a simple operation in a short time, and it is a very useful invention in the soil analysis industry to grasp the exact usage of fertilizer because it has a significant cost saving effect. .

Claims (4)

구리화합물을 증류수에 용해시켜 구리용액을 제조하는 단계; 삼각 플라스크에 토양시료를 넣고 상기 구리용액을 첨가하여 구리이온을 토양 음전하에 흡착시키는 단계; 구리용액과 토양과의 혼합액을 여과 또는 원심분리하여 여과액의 흡광도를 측정하는 단계; 농도를 알고 있는 구리용액의 흡광도를 분광광도계로 측정하여 표준곡선을 작성하는 단계; 시료의 흡광도를 표준곡선식에 대입하여 토양의 양이온치환용량을 계산하는 단계 및; 본 발명의 방법으로 정량한 양이온치환용량과 종래의 암모늄아세테이트법으로 정량한 양이온치환용량을 비교하는 단계를 포함함을 특징으로 하는 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법.Preparing a copper solution by dissolving the copper compound in distilled water; Placing a soil sample in an Erlenmeyer flask and adsorbing copper ions to the soil negative charge by adding the copper solution; Measuring the absorbance of the filtrate by filtration or centrifugation of the mixed solution of the copper solution and the soil; Preparing a standard curve by measuring the absorbance of the copper solution having a known concentration, using a spectrophotometer; Calculating the cation substitution capacity of the soil by substituting the absorbance of the sample into a standard curve; A method for measuring the attribution of a soil cation exchange capacity using a spectrophotometer and adsorption of copper, characterized in that it comprises the step of comparing the cation substitution capacity quantified by the method of the present invention and the cation substitution capacity quantified by the conventional ammonium acetate method. 제 1항에 있어서, 상기 구리용액은 초산구리, 황산구리, 염화구리(II), 인산구리, 구리아세틸아세토네이트, 질산구리, 산화구리으로 구성된 군으로부터 선택되어 제조됨을 특징으로 하는 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법.The copper adsorption and spectroscopy of claim 1, wherein the copper solution is selected from the group consisting of copper acetate, copper sulfate, copper chloride (II), copper phosphate, copper acetylacetonate, copper nitrate, and copper oxide. Property Measurement Method of Soil Cation Replacement Capacity Using Photometer. 제 1항에 있어서, 상기 구리용액을 0.02∼2 N의 농도로 제조하고 토양 0.1∼20.0 g에 첨가하여 진탕시킴으로써 구리이온을 토양의 음전하에 포화상태로 흡착시킴을 특징으로 하는 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법.2. The adsorption and spectroscopy of copper according to claim 1, wherein the copper solution is prepared at a concentration of 0.02 to 2 N and added to 0.1 to 20.0 g of soil, followed by shaking to adsorb copper ions in a saturated state to the negative charge of the soil. Property Measurement Method of Soil Cation Replacement Capacity Using Photometer. 제 1항에 있어서, 상기 여과액의 흡광도를 분광광도계를 사용하여 600∼1100 nm의 파장에서 측정한 후, 표준곡선을 작성하여 상기 흡광도를 구리용액의 농도로 환산한 다음 하기 식에 대입하여 토양의 양이온치환용량을 계산함을 특징으로 하는 구리의 흡착과 분광광도계를 이용한 토양 양이온치환용량의 속성측정방법.The method according to claim 1, wherein the absorbance of the filtrate is measured at a wavelength of 600 to 1100 nm by using a spectrophotometer, and then a standard curve is prepared to convert the absorbance to a concentration of copper solution and substituting the following equation into the soil. A method for measuring the property of soil cation exchange capacity using copper adsorption and spectrophotometer, characterized in that to calculate the cation exchange capacity of. 토양 양이온치환용량(meq 또는 cmol+/kg) =Soil cation substitution capacity (meq or cmol + / kg) = {(첨가한 구리용액의 농도(meq) - 흡착후 남은 구리용액의 농도(meq)} ×{(Concentration of added copper solution (meq)-concentration of copper solution remaining after adsorption (meq)} × 첨가한 구리용액의 양(mL)/토양의 무게(g) x 1/10Amount of copper solution added (mL) / soil weight (g) x 1/10 여기서, 1/10은 양이온치환용량의 단위를 meq/100 g 또는 cmol+/kg으로 나타내기 위한 단위환산 계수이다.Here, 1/10 is a unit conversion coefficient for expressing the unit of cation substitution capacity as meq / 100g or cmol + / kg.
KR1020000016665A 2000-03-30 2000-03-30 Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer KR100338123B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020000016665A KR100338123B1 (en) 2000-03-30 2000-03-30 Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer
JP2000185385A JP3343240B2 (en) 2000-03-30 2000-06-20 Rapid measurement method of soil cation exchange capacity using copper adsorption and spectrophotometer
PCT/KR2001/000512 WO2001077661A1 (en) 2000-03-30 2001-03-29 Spectrophotometric determination method of soil cation exchange capacity using adsorption of copper ion by soil
AU2001246938A AU2001246938A1 (en) 2000-03-30 2001-03-29 Spectrophotometric determination method of soil cation exchange capacity using adsorption of copper ion by soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000016665A KR100338123B1 (en) 2000-03-30 2000-03-30 Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer

Publications (2)

Publication Number Publication Date
KR20010094432A KR20010094432A (en) 2001-11-01
KR100338123B1 true KR100338123B1 (en) 2002-05-24

Family

ID=19660382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000016665A KR100338123B1 (en) 2000-03-30 2000-03-30 Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer

Country Status (4)

Country Link
JP (1) JP3343240B2 (en)
KR (1) KR100338123B1 (en)
AU (1) AU2001246938A1 (en)
WO (1) WO2001077661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068989A (en) * 2002-02-19 2003-08-25 주식회사 핸손테크놀로지 Method of analyzing clay content in soils by spectrophotometry

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734593B2 (en) * 2010-07-21 2015-06-17 群馬県 Method for measuring cation exchange capacity in soil and soil analyzer
CN102590470B (en) * 2012-01-17 2014-09-10 南京大学 Method for determining dissolving state and adsorption state of Pb (II) in mineral soil
CN102590471B (en) * 2012-01-17 2014-09-17 南京大学 Method for determining dissolving state and adsorption state of Cd (II) in mineral soil
CN104569286A (en) * 2014-12-31 2015-04-29 青岛谱尼测试有限公司 Detection method for cation exchange capacity in culture medium
CN116296732A (en) * 2023-04-12 2023-06-23 中国科学院生态环境研究中心 Method and system for measuring cation exchange capacity of soil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258165A (en) * 1985-05-13 1986-11-15 Fujiwara Seisakusho:Kk Measuring instrument for cation exchange capacity
US5038040A (en) * 1989-09-22 1991-08-06 Agmed Inc. Soil test apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495292A (en) * 1982-09-16 1985-01-22 Conoco Inc. Determination of expandable clay minerals at well sites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258165A (en) * 1985-05-13 1986-11-15 Fujiwara Seisakusho:Kk Measuring instrument for cation exchange capacity
US5038040A (en) * 1989-09-22 1991-08-06 Agmed Inc. Soil test apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068989A (en) * 2002-02-19 2003-08-25 주식회사 핸손테크놀로지 Method of analyzing clay content in soils by spectrophotometry

Also Published As

Publication number Publication date
JP2001324499A (en) 2001-11-22
AU2001246938A1 (en) 2001-10-23
KR20010094432A (en) 2001-11-01
WO2001077661A1 (en) 2001-10-18
JP3343240B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
High et al. Determining copper ions in water using electrochemiluminescence
Švancara et al. Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode
KR100338123B1 (en) Rapid measuring method of soil cation exchangeable capacity using copper adsorption and spectrophotometer
US6020204A (en) Rapid and accurate colorimetric determination of nickel and cobalt in protein solutions
Mohamed et al. Catalytic spectrophotometric determination of vanadium in seawaters based on the bromate oxidative coupling reaction of metol and 2, 3, 4-trihydroxybenzoic acid
Llavero et al. Improved trihydroxyindole method for the simultaneous stopped-flow spectrofluorimetric determination of epinephrine and norepinephrine in urine
Safavi et al. Catalytic determination of traces of silver (I) using the oxidation of Janus green with peroxodisulfate
CN108760707B (en) Application of probe reagent
KR100338124B1 (en) Method of measuring the amount of nitrate in soil by adding activated carbon
RU2263899C1 (en) Method of quantitatively determining iron in phosphoric acids obtained via sulfuric acid-assisted decomposition of phosphate feedstock followed by tributyl phosphate-assisted purification thereof
Mathew et al. Flotation-spectrophotometric method for the determination of mercury using iodide and brilliant green
Pancras et al. Differential pulse polarographic determination of zinc and manganese in commercial sodium salts and water samples after preconcentration of their 2-(2-pyridylazo)-5-diethylaminophenol chelates using ammonium tetraphenylborate-naphthalene adsorbent
Chan et al. Application of Nafion-coated mercury film electrodes to the microdetermination of formaldehyde by differential-pulse voltammetry
CN114018845B (en) Method for measuring nitrate ions in high-speed rail and copper matrix samples
Ohta et al. Direct determination of manganese in biological materials using electrothermal atomization atomic absorption spectrometry with a molybdenum tube atomizer
US20230341363A1 (en) Method for determining the acidity of an acidic aqueous solution
RU2027717C1 (en) Bis-[n -(1-oxyl- 2,2,6,6- tetramethylpiperidyl -4)-n-ethyldithiocarbamato -s,s'] -copper (ii) as a reagent for mercury (ii) assay
Safavi et al. Kinetic spectrophotometric determination of traces of sulfide in nonionic micellar medium
Sabarudin et al. Slope comparison method (SCM) for the determination of trace amounts of silicate in ultrapurified water
KR100346641B1 (en) Method for measuring the amount of exchangeable potassium ion in soil using spectrophotometer
KR100373109B1 (en) Extraction method of soil exchangeable K with salt solution and analytical method of the K in the solution
Ragheb et al. A novel highly sensitive catalytic determination of selenium using a digital camera
CN115201303A (en) Method for combined measurement of fluorine, chlorine and bromine in industrial wastewater
SU1622804A1 (en) Method of quantitative x-ray fluorescent analysis
KR20010100706A (en) Method for measuring the amount of exchangeable magnesium ion in soil using spectrophotometer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110331

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee