KR100337447B1 - Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives - Google Patents

Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives Download PDF

Info

Publication number
KR100337447B1
KR100337447B1 KR1019990035800A KR19990035800A KR100337447B1 KR 100337447 B1 KR100337447 B1 KR 100337447B1 KR 1019990035800 A KR1019990035800 A KR 1019990035800A KR 19990035800 A KR19990035800 A KR 19990035800A KR 100337447 B1 KR100337447 B1 KR 100337447B1
Authority
KR
South Korea
Prior art keywords
propanediol
cobalt
guanidine
reaction
hydroformylation reaction
Prior art date
Application number
KR1019990035800A
Other languages
Korean (ko)
Other versions
KR20010019416A (en
Inventor
윤두원
유연섭
Original Assignee
정몽혁
현대석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정몽혁, 현대석유화학 주식회사 filed Critical 정몽혁
Priority to KR1019990035800A priority Critical patent/KR100337447B1/en
Publication of KR20010019416A publication Critical patent/KR20010019416A/en
Application granted granted Critical
Publication of KR100337447B1 publication Critical patent/KR100337447B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 산화에틸렌을 용매 중에서 코발트 촉매의 존재하에 합성가스를 사용하여 하이드로포밀레이션 반응시킴으로서 3-하이드록시프로피온알데하이드를 제조한 후, 이를 수소화시키는 1,3-프로판디올의 제조방법에 관한 것으로, 상기 하이드로포밀레이션 반응의 촉진제로써 하기 화학식 1의 다치환된 구아니딘 화합물을 사용하는 것을 특징으로 하는 1,3-프로판디올의 제조방법에 관한 것이다.The present invention relates to a method for producing 1,3-propanediol by producing 3-hydroxypropionaldehyde by subjecting ethylene oxide to a hydroformylation reaction using a synthesis gas in the presence of a cobalt catalyst in a solvent, followed by hydrogenation thereof. The present invention relates to a method for preparing 1,3-propanediol, which comprises using a polysubstituted guanidine compound represented by Formula 1 as an accelerator of the hydroformylation reaction.

화학식 1Formula 1

(단, 상기 식에서,(Wherein,

R1, R2, R3, R4, R5는 청구항 1에서 정의한 바와 같은 의미이다.)R 1 , R 2 , R 3 , R 4 , R 5 have the same meaning as defined in claim 1).

Description

코발트 촉매 하에서 다치환된 구아니딘 화합물을 촉진제로 사용하는 1,3-프로판디올의 제조방법{COBALT-CATALIZED PROCESS FOR PREPARING 1,3-PROPANEDIOL USING A PROMOTOR OF GUANIDINE DERIVATIVES}Method for preparing 1,3-propanediol using polysubstituted guanidine compound under cobalt catalyst {COBALT-CATALIZED PROCESS FOR PREPARING 1,3-PROPANEDIOL USING A PROMOTOR OF GUANIDINE DERIVATIVES}

본 발명은 산화에틸렌을 하이드로포밀레이션 반응시켜 3-하이드록시프로피온알데하이드를 제조한 후, 이로부터 1,3-프로판디올을 제조하는 방법에 관한 것으로, 구체적으로는 산화에틸렌을 합성가스(H2/CO)하에서 코발트 촉매를 사용하여 하이드로포밀레이션 반응시키고, 이 하이드로포밀레이션 반응 생성물을 수소화 반응시켜 1,3-프로판디올을 제조하는 방법에 관한 것이다.The present invention relates to a method of preparing 3-hydroxypropionaldehyde by hydroformylation reaction of ethylene oxide, and then preparing 1,3-propanediol therefrom. Specifically, the present invention relates to ethylene oxide as a synthesis gas (H 2 / Hydroformylation reaction using a cobalt catalyst under CO) and hydrogenation of this hydroformylation reaction product to produce 1,3-propanediol.

1,3-프로판디올은 섬유 및 필름용 폴리에스테르의 중요한 합성원료이다. 하이드로포밀레이션 반응촉매로는 주기율표 상의 8족 금속원소를 촉매로 사용하는데, 일반적으로는 로듐(Rh) 또는 코발트(Co) 촉매를 사용한다. 그러나, 로듐 촉매는 매우 고가로, 촉매의 회수 공정에 따른 비용이 추가되므로, 값싼 코발트 촉매를 사용하는 것이 경제적으로 유리하다. 단독 코발트 촉매를 사용하거나 포스핀 화합물을 리간드로 하는 코발트 촉매를 사용하여 반응시키는 것이 일반적이다.1,3-propanediol is an important synthetic raw material of polyester for fibers and films. The hydroformylation reaction catalyst uses a Group 8 metal element on the periodic table as a catalyst. Generally, a rhodium (Rh) or cobalt (Co) catalyst is used. However, rhodium catalysts are very expensive and the cost of the catalyst recovery process adds cost, so it is economically advantageous to use cheap cobalt catalysts. It is common to react using a single cobalt catalyst or a cobalt catalyst having a phosphine compound as a ligand.

미합중국 특허 제3,687,981호에는 단독 코발트 촉매를 사용하여 액상 반응혼합물에서 산화에틸렌을 하이드로포밀레이션하는 기술이 보고되어 있는데, 반응 생성물은 3-하이드록시프로피온알데하이드의 환상 헤미아세탈 이량체인 2-(2-히드록시에틸)-4-히드록시-1,3-디옥산으로서, 상기 이량체는 수소화 반응에 의해 1,3-프로판디올로 전환된다.U.S. Patent No. 3,687,981 discloses a technique for hydroformylating ethylene oxide in a liquid reaction mixture using a single cobalt catalyst, wherein the reaction product is 2- (2-hydride, a cyclic hemiacetal dimer of 3-hydroxypropionaldehyde. As hydroxyethyl) -4-hydroxy-1,3-dioxane, the dimer is converted to 1,3-propanediol by hydrogenation.

미합중국 특허 제3,456,017호와 제3,463,819호에서는 포스핀-리간드 코발트 촉매하에서 3-하이드록시프로피온알데하이드를 소량 얻고 있으나, 촉매가 과량 사용되어야 하는 단점이 있다. 국제특허출원 공개 WO94/18149호에서는 소량의 변형된 포스핀-리간드 코발트 촉매가 3-하이드록시프로피온알데하이드 합성에 있어 비교적 높은 촉매활성을 나타내었으나 아세트알데하이드가 부산물로 생성되는 문제가 있다. 일반적으로, 포스핀 리간드를 갖는 코발트 촉매를 사용하면 하이드로포밀레이션 반응이 더 효과적이지만, 고가의 리간드를 사용함에 따라 비용상승 및 촉매회수 과정의 복잡성이라는 문제점이 발생한다. 따라서, 상업화 공정에서는 포스핀화합물을 리간드로 포함하지 않으면서도 고수율과 높은 선택도를 갖는 코발트 촉매가 요구된다. 그러나, 리간드가 없는 코발트 촉매를 사용하면, 산화에틸렌에 대한 하이드로포밀레이션 반응속도가 느리므로, 반응속도를 향상시키기 위해서는 특별한 촉진제의 사용이 필수적이다.In U.S. Patent Nos. 3,456,017 and 3,463,819, a small amount of 3-hydroxypropionaldehyde is obtained under a phosphine-ligand cobalt catalyst, but there is a disadvantage in that an excessive amount of the catalyst must be used. In International Patent Application Publication No. WO94 / 18149, a small amount of modified phosphine-ligand cobalt catalyst shows relatively high catalytic activity in 3-hydroxypropionaldehyde synthesis, but there is a problem that acetaldehyde is produced as a by-product. Generally, the use of cobalt catalysts with phosphine ligands is more effective for hydroformylation reactions, but the use of expensive ligands raises the cost and complexity of the catalyst recovery process. Therefore, the commercialization process requires a cobalt catalyst having high yield and high selectivity without including a phosphine compound as a ligand. However, the use of a ligand-free cobalt catalyst slows the hydroformylation reaction to ethylene oxide, so the use of a special promoter is essential to improve the reaction rate.

문헌("New synthesis with carbon monoxide" edited by J.Falbe (1980) pp.131-132)에 의하면, 하이드로포밀레이션 반응에 여러가지 알콜, 에테르, 케톤 및 에스테르 화합물을 소량 첨가하면 반응이 촉진된다는 보고가 있다. 미합중국특허 제3,687,981호에서는 무기염이나 염산 같은 산이 촉진제로 사용될 수 있다고 보고되어 있다. 또한, 국제특허출원 WO 96/10550호에는 벤질트리메틸암모늄 메톡사이드와 같은 4급 암모늄염, 테트라(n-부틸)포스포늄 아세테이트와 같은 4급 포스포늄염이 촉진제로 보고되었으며, 국제특허출원 공개 WO 96/10552호에는 아세트산 나트륨과 같은 약산의 금속염, 히드로퀴논과 같은 히드록시 방향족 화합물, 피리딘과 같은 3차 아민, 트리페닐포스핀옥사이드와 같은 포스핀 옥사이드 화합물 등이 하이드로포밀레이션 반응을 촉진시키는 것으로 보고되어 있다.According to the document "New synthesis with carbon monoxide" edited by J.Falbe (1980) pp.131-132, it has been reported that the addition of small amounts of various alcohols, ethers, ketones and ester compounds to the hydroformylation reaction promotes the reaction. have. In US Pat. No. 3,687,981 it is reported that acids such as inorganic salts or hydrochloric acid can be used as promoters. In addition, in International Patent Application WO 96/10550, quaternary ammonium salts such as benzyltrimethylammonium methoxide and quaternary phosphonium salts such as tetra (n-butyl) phosphonium acetate have been reported as accelerators. / 10552 reports that metal salts of weak acids such as sodium acetate, hydroxy aromatic compounds such as hydroquinone, tertiary amines such as pyridine, phosphine oxide compounds such as triphenylphosphine oxide, and the like promote the hydroformylation reaction. have.

일반적으로 공정상에서 생성된 3-하이드록시프로피온알데하이드는 물로 추출하여 분리시키고, 코발트 촉매 및 촉진제는 유기층에 용해된 상태로 회수되어 재사용되어져야 하므로, 촉진제는 물에 불용성인 것이 요구된다.In general, the 3-hydroxypropionaldehyde produced in the process is extracted with water and separated, and the cobalt catalyst and promoter must be recovered and reused in a dissolved state in the organic layer, the promoter is required to be insoluble in water.

본 발명의 발명자들은 물에 불용성이면서도 촉진효과가 우수한 촉진제를 찾기위해 연구한 결과, 하이드로포밀레이션 반응에서 고가의 포스핀-리간드 코발트 촉매를 사용하지 않고 지금까지 보고된 적이 없는 새로운 구조의 물에 잘 녹지 않는 다치환된 구아니딘 화합물을 사용하여 3-하이드록시프로피온알데하이드를 제조한 후, 이로부터 1,3-프로판디올을 제조할 수 있음을 알아내어 본 발명을 완성하였다.The inventors of the present invention have studied to find a promoter that is insoluble in water and excellent in promoting effect, and thus, has not been reported so far in the hydroformylation reaction without using an expensive phosphine-ligand cobalt catalyst. The present invention was completed by finding that 3-hydroxypropionaldehyde can be prepared using insoluble polysubstituted guanidine compounds, and then 1,3-propanediol can be prepared therefrom.

따라서, 본 발명은 새로운 구조의 다치환 구아니딘 화합물을 촉진제로 사용하여, 선택적이고 빠른 속도로 3-하이드록시프로피온알데하이드를 제조하고, 이로부터 1,3-프로판디올을 제조하는 방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for preparing 3-hydroxypropionaldehyde at a selective and rapid rate using a polysubstituted guanidine compound having a novel structure as an accelerator, and from this, preparing 1,3-propanediol. It is done.

상기 목적을 달성하기 위하여 본 발명에 따르면, 산화에틸렌을 용매 중에서 코발트 촉매의 존재하에 합성가스를 사용하여 하이드로포밀레이션 반응시킴으로서 3-하이드록시프로피온알데하이드를 제조한 후, 이를 수소화시키는 1,3-프로판디올의 제조방법에 있어서, 상기 하이드로포밀레이션 반응 촉진제로서 하기 화학식 1의 다치환된 구아니딘 화합물을 사용하는 것을 특징으로 하는 1,3-프로판디올의 제조방법이 제공된다.In order to achieve the above object, according to the present invention, 1,3-propane to prepare 3-hydroxypropionaldehyde by hydroformylation reaction of ethylene oxide using a synthesis gas in the presence of a cobalt catalyst in a solvent, and then hydrogenated it In the method for preparing a diol, there is provided a method for preparing 1,3-propanediol, wherein the polysubstituted guanidine compound represented by the following Chemical Formula 1 is used as the hydroformylation reaction accelerator.

(단, 상기 식에서,(Wherein,

R1, R2, R3, R4, R5는 독립적으로 수소원자, 탄소수 1-25의 직쇄, 측쇄알킬, 페닐알킬 또는 페닐, 나프틸 그룹에서 선택되며, 이때 R1, R2중 하나의 알킬기와 R3, R4중 하나의 알킬기가 고리화된 지방족 탄화수소 고리구조가 될 수 있다.)R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from hydrogen atom, straight chain of 1-25 carbon atoms, branched alkyl, phenylalkyl or phenyl, naphthyl group, wherein one of R 1 , R 2 May be an aliphatic hydrocarbon ring structure in which an alkyl group of R 3 and R 4 is cyclized.)

본 발명에서는 리간드가 없는 코발트 촉매를 사용하고, 이에 의한 하이드로포밀레이션 반응을 촉진하기 위하여 상기와 같은 특이한 구조의 구아니딘 화합물을 사용한다.In the present invention, a ligand-free cobalt catalyst is used, and a guanidine compound having a specific structure as described above is used to promote the hydroformylation reaction.

본 발명의 코발트 촉매로는, 일반적으로 단독 코발트 촉매인 디코발트옥타카르보닐 또는 하이드리도코발트카르보닐과 같은 코발트카르보닐 화합물이 사용된다. 또는, 금속, 하이드록사이드, 옥사이드, 카보네이트, 설페이트, 아세틸아세토네이트, 지방산의 염, 수용성 코발트염 등을 포함하는 형태로 사용할 수도 있다. 이러한 경우에는 합성가스와 반응시켜 코발트카르보닐 화합물로 변환시켜 적용한다.As the cobalt catalyst of the present invention, a cobalt carbonyl compound such as dicobalt octacarbonyl or hydridocobaltcarbonyl, which is a single cobalt catalyst, is generally used. Alternatively, it may be used in the form of a metal, hydroxide, oxide, carbonate, sulfate, acetylacetonate, salt of fatty acid, water-soluble cobalt salt and the like. In this case, it is converted into a cobalt carbonyl compound by reaction with a syngas and applied.

코발트 촉매의 투입량은 반응조건에 따라 다르지만, 하이드로포밀레이션 반응혼합물 중량 기준으로 코발트 함량 0.01-1.0 중량%가 적당하다. 코발트 촉매 투입량이 0.01 중량%보다 적으면 반응속도가 지나치게 느려진다. 또한, 1.0 중량% 까지는 반응속도가 촉매 투입량에 비례하는 반면, 1.0 중량%를 초과하면 증가 속도가 완만해지며, 부생성물(아세트알데히드)의 생성율이 높아지게 된다. 특히 바람직한 촉매 투입량은 0.05-0.3 중량%이다.The input amount of the cobalt catalyst varies depending on the reaction conditions, but the cobalt content of 0.01-1.0 wt% is appropriate based on the weight of the hydroformylation reaction mixture. If the cobalt catalyst input is less than 0.01% by weight, the reaction rate becomes too slow. In addition, up to 1.0% by weight of the reaction rate is proportional to the catalyst input, while exceeding 1.0% by weight, the increase rate becomes slow, and the production rate of by-products (acetaldehyde) increases. Particularly preferred catalyst input is 0.05-0.3% by weight.

또한 본 발명에 따르면, 상기 하이드로포밀레이션 반응은, 구아니딘 화합물과 같은 촉진제의 존재하에서 진행된다.According to the present invention, the hydroformylation reaction proceeds in the presence of an accelerator such as a guanidine compound.

특히, 1,3-디페닐구아니딘, 1,3-디(o-톨릴)구아니딘, 1,3-디(1-나프틸)구아니딘, 1-메틸-1,3-디페닐구아니딘, 1,3-디메틸-1,3-디페닐구아니딘, 1,1,3,3-테트라메틸구아니딘, 1,1-디메틸구아니딘, 1,3-디(o-톨릴)-2-n-옥틸구아니딘, 1,3-디(o-톨릴)-2-벤질구아니딘, 1,1,3,3-테트라메틸-2-n-옥틸구아니딘, 1,1,3,3-테트라메틸-2-벤질구아니딘, 1,3-비스(2-펜에틸)구아니딘으로 이루어진 그룹에서 선택된 다치환 구아니딘 화합물을 사용하는 것이 바람직하다. 이들 촉진제는, 일반적으로 코발트 몰당 0.01-0.6몰 사용하며, 바람직하게는 코발트 몰당 0.05-0.4몰 사용한다. 0.01몰 미만이나 0.6몰을 초과하여 사용하는 경우에는 반응속도가 감소하고, 부반응으로 인해 선택도가 떨어진다.In particular, 1,3-diphenylguanidine, 1,3-di (o-tolyl) guanidine, 1,3-di (1-naphthyl) guanidine, 1-methyl-1,3-diphenylguanidine, 1,3 -Dimethyl-1,3-diphenylguanidine, 1,1,3,3-tetramethylguanidine, 1,1-dimethylguanidine, 1,3-di (o-tolyl) -2-n-octylguanidine, 1, 3-di (o-tolyl) -2-benzylguanidine, 1,1,3,3-tetramethyl-2-n-octylguanidine, 1,1,3,3-tetramethyl-2-benzylguanidine, 1, Preference is given to using polysubstituted guanidine compounds selected from the group consisting of 3-bis (2-phenethyl) guanidine. These accelerators are generally used in amounts of 0.01-0.6 moles per mole of cobalt, preferably 0.05-0.4 moles per mole of cobalt. In case of using less than 0.01 mole or more than 0.6 mole, the reaction rate decreases and selectivity is lowered due to side reaction.

본 발명에서와 같은 촉진제를 사용함으로써 리간드가 없는 코발트 촉매를 사용해도 반응속도가 크게 감소하지 않는다. 따라서, 포스핀-리간드 등의 고가의 리간드 사용 및 촉매회수에 따른 비용이 들지 않아, 1,3-프로판디올의 제조시에 비용을 크게 절감할 수 있다.By using the promoter as in the present invention, even using a ligand-free cobalt catalyst does not significantly reduce the reaction rate. Therefore, there is no cost associated with the use of expensive ligands such as phosphine-ligand and the recovery of the catalyst, thereby greatly reducing the cost of producing 1,3-propanediol.

본 발명에 사용가능한 용매로는 불활성 에테르, 방향족 화합물 등이 있으며, 구체적으로 예를 들면, 에테르 화합물로는 메틸-t-부틸에테르, 디에틸에테르, 페닐이소부틸에텔, 테트라글라임, 아니솔, 4-클로로아니솔, 디페닐에테르, 비스(2-클로로에틸)에테르 등이 가능하고, 방향족 화합물로는 톨루엔, 클로로벤, 1,2-디클로로벤젠, 1,3,5-트리클로로벤젠, 자일렌 등이 가능하다. 그외 클로로포름, 1,2-디클로로에탄, 아세토페논 등도 가능하다.Solvents usable in the present invention include inert ethers, aromatic compounds, and the like. Specifically, for example, the ether compounds include methyl-t-butyl ether, diethyl ether, phenylisobutyl ether, tetraglyme, anisole, 4-chloroanisole, diphenyl ether, bis (2-chloroethyl) ether, and the like, and aromatic compounds include toluene, chlorobene, 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, xyl Len etc. are possible. In addition, chloroform, 1,2-dichloroethane, acetophenone and the like are also possible.

또한, 상기 하이드로포밀레이션 반응에서는 혼합물 내에 적절한 양의 물을 포함시키는 것이 중요하다. 과량의 물은 3-하이드록시프로피온알데하이드의 선택도를 저하시키고 용매와의 상분리를 야기시킨다. 물은 소량을 첨가하면 코발트카르보닐 촉매의 활성종의 형성을 촉진시킨다. 적절한 물의 농도는 사용한 용매에 따라 다르나, 예를 들면 메틸-t-부틸 에테르를 용매로 사용하는 경우 하이드로포밀레이션 반응혼합물을 기준으로 1-2.5 중량%가 적당하다. 물이 1중량% 미만이면 반응속도가 지나치게 완만히 증가하고, 1.0-1.5 중량%까지는 빠르게 증가하며, 2.5 중량% 이후에는 변화가 별로 없다.In addition, it is important to include an appropriate amount of water in the mixture in the hydroformylation reaction. Excess water lowers the selectivity of 3-hydroxypropionaldehyde and causes phase separation from the solvent. The addition of a small amount of water promotes the formation of the active species of the cobaltcarbonyl catalyst. The suitable concentration of water depends on the solvent used, but when using methyl-t-butyl ether as solvent, for example, 1-2.5% by weight based on the hydroformylation reaction mixture is suitable. If the water is less than 1% by weight, the reaction rate increases excessively slowly, rapidly increases up to 1.0-1.5% by weight, and little changes after 2.5% by weight.

원료로 사용되는 산화에틸렌은 하이드로포밀레이션 반응혼합물을 기준으로,10중량% 내외가 되도록 사용하는 것이 바람직하다.Ethylene oxide used as a raw material is preferably used to be about 10% by weight based on the hydroformylation reaction mixture.

합성가스로는 CO/H2가스 등을 사용할 수 있으며, CO/H2가스를 사용하는 경우에는 수소와 일산화탄소는 몰비로 1:2에서 8:1의 혼합비(수소 1몰에 대하여 일산화탄소 0.125 내지 2몰의 비율), 바람직하게는 몰비로 1:1에서 5:1의 혼합비(수소 1몰에 대하여 일산화탄소 0.2 내지 1몰의 비율)를 유지한다. 합성 가스에서 CO 함량이 증가하면 초기 촉매 활성화 속도가 느리고, H2함량이 너무 높으면 수소화 반응이 다량 진행되어, 하이드로포밀레이션 반응속도는 증가하지만 선택도가 감소한다. 합성 가스의 투입량은 반응속도에 거의 영향을 주지 않으므로, 반응조건에 따라 임의로 조절한다. 예를 들어, 합성가스의 압력을 500-2500psig로 조절할 수 있다.As the synthesis gas, CO / H 2 gas may be used, and when CO / H 2 gas is used, hydrogen and carbon monoxide may be mixed in a molar ratio of 1: 2 to 8: 1 (0.125 to 2 mol of carbon monoxide per mol of hydrogen). Ratio, preferably in a molar ratio of 1: 1 to 5: 1 (a ratio of 0.2 to 1 mol of carbon monoxide to 1 mol of hydrogen). Increasing the CO content in the synthesis gas slows the initial catalyst activation rate, and in the case where the H 2 content is too high, the hydrogenation reaction proceeds in large amounts, thereby increasing the hydroformylation reaction rate but decreasing the selectivity. Since the input amount of the synthesis gas hardly affects the reaction rate, it is arbitrarily adjusted according to the reaction conditions. For example, the pressure of the syngas can be adjusted to 500-2500 psig.

본 발명의 하이드로포밀레이션 반응은 일반적으로 110℃ 이내의 온도에서 진행시키는 데, 바람직하게는 60-100℃, 더욱 바람직하게는 80-90℃가 적당하다. 60℃ 미만의 온도에서는 반응이 거의 진행되지 않으며, 110℃를 초과하면 반응속도는 증가하나 부생성물이 다량 생성된다. 반응압력은 500-5000psig에서 가능하나 경제적인 이유로 1000-3500psig가 바람직하다. 압력이 높을수록 3-하이드록시프로피온알데하이드에 대한 선택도 및 수율이 향상된다.The hydroformylation reaction of the present invention generally proceeds at a temperature within 110 ° C, preferably 60-100 ° C, more preferably 80-90 ° C. At temperatures below 60 ° C., the reaction hardly proceeds. If the temperature exceeds 110 ° C., the reaction rate increases, but a large amount of by-products are produced. Reaction pressures are possible at 500-5000 psig, but for economic reasons 1000-3500 psig is preferred. The higher the pressure, the better the selectivity and yield for 3-hydroxypropionaldehyde.

일반적으로 3-하이드록시프로피온알데하이드의 선택도 및 수율을 높이기 위해서는 100℃ 이내의 낮은 반응온도와 상대적으로 1시간 이내의 짧은 반응시간이 바람직하다. 실제반응에서는 산화에틸렌의 전환율 기준으로 3-하이드록시프로피온알데하이드의 수율을 75% 이상 높이는 것이 가능하다.Generally, in order to increase the selectivity and yield of 3-hydroxypropionaldehyde, a low reaction temperature of less than 100 ° C. and a short reaction time of less than 1 hour are preferable. In the actual reaction, it is possible to increase the yield of 3-hydroxypropionaldehyde by 75% or more based on the conversion rate of ethylene oxide.

하이드로포밀레이션 반응속도는 25h-1이상 높이는 것이 가능한데, 반응속도는 TOF(Turnover frequency)로 표시한다. 이것은 단위시간당 코발트 몰당 생성물(3-하이드록시프로피온알데하이드)의 몰수로 표현된다. 상기 TOF 값은 대부분의 산화에틸렌이 생성물로 전환되기 전에 측정된다. 반응은 산화에틸렌의 농도와 무관하며 코발트의 농도에 비례한다.It is possible to increase the hydroformulation reaction rate by 25 h −1 or more, and the reaction rate is expressed as a turnover frequency (TOF). This is expressed in moles of product (3-hydroxypropionaldehyde) per mole of cobalt per unit time. The TOF value is measured before most of the ethylene oxide is converted to the product. The reaction is independent of the concentration of ethylene oxide and is proportional to the concentration of cobalt.

하이드로포밀레이션 반응 생성물은, 적절한 수소화촉매를 사용하여 수소하에 반응시켜, 1,3-프로판디올을 얻는다. 촉매는 일반적으로 니켈 촉매(단독 또는 담지촉매)를 사용한다. 수소화반응은 수용액상에서 온도 50-120℃, 수소압력 200-2000 psig에서 진행시킨다.The hydroformylation reaction product is reacted under hydrogen using an appropriate hydrogenation catalyst to obtain 1,3-propanediol. The catalyst generally uses a nickel catalyst (alone or supported catalyst). The hydrogenation reaction proceeds in an aqueous solution at a temperature of 50-120 ° C. and a hydrogen pressure of 200-2000 psig.

이하, 본 발명의 구체적인 실시예는 다음과 같다. 이들 실시예는 단순히 본 발명을 예시하기 위한 것으로, 본 발명이 이에 제한되지는 않는다.Hereinafter, specific embodiments of the present invention are as follows. These examples are merely to illustrate the invention, but the invention is not limited thereto.

실시예 1-12Example 1-12

125ml의 회분식 고압반응기에 0.68g의 증류수, 0.05g의 톨루엔(내부 표준 물질), 50.0g의 메틸-t-부틸에테르(MTBE)와 촉진제로서 1,3-디페닐구아니딘, 1,3-디(o-톨릴)구아니딘, 1,3-디(1-나프틸)구아니딘, 1-메틸-1,3-디페닐구아니딘, 1,3-디메틸-1,3-디페닐구아니딘, 1,1,3,3-테트라메틸구아니딘, 1,1-디메틸구아니딘, 1,3-디(o-톨릴)-2-n-옥틸구아니딘, 1,3-디(o-톨릴)-2-벤질구아니딘, 1,1,3,3-테트라메틸-2-n-옥틸구아니딘, 1,1,3,3-테트라메틸-2-벤질구아니딘 또는 1,3-비스(2-펜에틸)구아니딘(각각 코발트 몰당 0.2몰량 사용)을 넣은 후, 질소분위기에서 0.290g의 디코발트옥타카르보닐을 넣었다. 반응기안의 질소를 100psig의합성가스(1:1 CO/H2)로 치환한 후, 반응기를 80℃로 가열한 다음 1200psig의 합성가스로 채웠다. 반응물을 80℃의 온도에서 교반하며서 1시간 동안 가열하여 촉매를 활성화시킨 후, 3.3g의 산화에틸렌을 작은 고압 실린더를 이용하여 1500psig의 합성가스(1:1 CO/H2)로 반응기 내로 밀어 넣었다. 반응이 진행되면서 반응기 내의 압력이 감소하여 1440psig가 되면 추가로 합성가스를 넣어 주어 1500psig로 압력을 유지시켰다. 1 시간 동안 반응시킨 후, 반응기 내부의 압력을 300psig로 낮추고, 반응기를 얼음물로 냉각시켰다. 반응물은 톨루엔을 표준물질로 기체 크로마토그래피(모세관 칼럼, FID 검출기 이용)를 사용하여 생성물의 함량을 분석하여 TOF 값을 계산하였다.In 125 ml batch autoclave, 0.68 g of distilled water, 0.05 g of toluene (internal standard), 50.0 g of methyl-t-butylether (MTBE) and 1,3-diphenylguanidine, 1,3-di (as promoters) o-tolyl) guanidine, 1,3-di (1-naphthyl) guanidine, 1-methyl-1,3-diphenylguanidine, 1,3-dimethyl-1,3-diphenylguanidine, 1,1,3 , 3-tetramethylguanidine, 1,1-dimethylguanidine, 1,3-di (o-tolyl) -2-n-octylguanidine, 1,3-di (o-tolyl) -2-benzylguanidine, 1, 1,3,3-tetramethyl-2-n-octylguanidine, 1,1,3,3-tetramethyl-2-benzylguanidine or 1,3-bis (2-phenethyl) guanidine (0.2 molar amount per mole of cobalt, respectively) After use, 0.290 g of dicobalt octacarbonyl was added in a nitrogen atmosphere. After nitrogen in the reactor was replaced with 100 psig of syngas (1: 1 CO / H 2 ), the reactor was heated to 80 ° C. and then charged with 1200 psig of syngas. The reaction was heated for 1 hour with stirring at a temperature of 80 ° C. to activate the catalyst, and then 3.3 g of ethylene oxide was pushed into the reactor with 1500 psig of syngas (1: 1 CO / H 2 ) using a small high pressure cylinder. . As the reaction proceeds, the pressure in the reactor decreases to 1440 psig, whereby additional synthesis gas is added to maintain the pressure at 1500 psig. After reacting for 1 hour, the pressure inside the reactor was lowered to 300 psig and the reactor was cooled with ice water. The reaction was calculated by analyzing the content of the product by using gas chromatography (capillary column, FID detector) with toluene as a standard to calculate the TOF value.

비교예 1Comparative Example 1

촉진제를 사용하지 않은 것을 제외하고는 실시예 1-12와 동일하게 실험하였다.The experiment was the same as in Example 1-12 except that no accelerator was used.

비교예 2-6Comparative Example 2-6

실시예 1-12의 촉진제 대신, 아세트산 나트륨, 벤질트리메틸암모늄 메톡시드, 피리딘, 테트라부틸암모늄 아세테이트, 또는 N,N-디메틸 운데실아민을 각각 코발트 몰당 0.2 몰씩 첨가하는 것을 제외하고는 실시예 1-12와 동일한 방법으로 실험하였다.Instead of the promoters of Examples 1-12, Example 1- except that sodium acetate, benzyltrimethylammonium methoxide, pyridine, tetrabutylammonium acetate, or N, N-dimethyl undecylamine are each added by 0.2 mole per mole of cobalt. Experiment was carried out in the same manner as in 12.

실시예 13-17Example 13-17

125ml의 회분식 고압반응기에 0.68g의 증류수, 0.5g의톨루엔(내부표준물질), 50.0g의 메틸-t-부틸에테르(MTBE)와 촉진제로 1,3-디페닐구아니딘, 1,3-디(1-나프틸)구아니딘, 1,3-디(o-톨릴)구아니딘, 1-메틸-1,3-디페닐구아니딘, 또는 1,3-디메틸-1,3-디페닐구아니딘(각각 코발트 몰당 0.2몰량 사용)을 넣은 후, 질소 분위기에서 0.29g의 디코발트옥타카르보닐을 넣었다. 반응기 안의 질소를 100psig의 수소로 치환한 다음, 반응기를 80℃로 가열한 후, 240psig의 수소가스로 채우고, 바로 1200psig의 합성가스(1:1 CO/H2)를 채웠다. 반응물을 80℃의 온도에서 교반하면서 1시간 동안 가열하여 촉매를 활성화시킨 다음, 3.3g의 산화에틸렌을 작은 고압실린더를 이용하여 1500psig의 합성가스(1:1.5 CO/H2)로 반응기 내로 밀어 넣었다. 반응이 진행하여 1440psig로 압력이 떨어지면 1500psig의 합성가스(1:1 CO/H2)를 추가로 채워 반응기의 압력을 1500psig로 일정하게 유지시키며 40분 동안 반응시켰다. 반응 후 반응물의 처리 및 분석은 실시예 1-12와 동일하게 수행하였다.125 ml batch autoclave, 0.68 g distilled water, 0.5 g toluene (internal standard), 50.0 g methyl-t-butylether (MTBE) and 1,3-diphenylguanidine, 1,3-di ( 1-naphthyl) guanidine, 1,3-di (o-tolyl) guanidine, 1-methyl-1,3-diphenylguanidine, or 1,3-dimethyl-1,3-diphenylguanidine (0.2 per mole of cobalt, respectively) Molar amount) and then 0.29 g of dicobalt octacarbonyl was added in a nitrogen atmosphere. The nitrogen in the reactor was replaced with 100 psig of hydrogen, then the reactor was heated to 80 ° C., then charged with 240 psig of hydrogen gas and immediately charged with 1200 psig of syngas (1: 1 CO / H 2 ). The reaction was heated for 1 hour with stirring at a temperature of 80 ° C. to activate the catalyst, and then 3.3 g of ethylene oxide was pushed into the reactor with 1500 psig of syngas (1: 1.5 CO / H 2 ) using a small high pressure cylinder. . When the reaction proceeded and the pressure dropped to 1440psig, 1500psig of synthetic gas (1: 1 CO / H 2 ) was further charged to maintain the reactor pressure at 1500psig for 40 minutes. Treatment and analysis of the reactants after the reaction were performed in the same manner as in Example 1-12.

비교예 7Comparative Example 7

촉진제를 사용하지 않은 것을 제외하고는 실시예 13-17과 동일하게 실험하였다.The experiment was the same as in Example 13-17 except that no accelerator was used.

비교예 8-10Comparative Example 8-10

실시예 13-17의 촉진제 대신, 아세트산 나트륨, 피리딘, 또는 테트라-n-부틸암모늄 아세테이트를 각각 코발트 몰당 0.2 몰씩 첨가하는 것을 제외하고는 실시예 13-17과 동일한 방법으로 실험하였다.Instead of the promoters of Examples 13-17, the experiments were performed in the same manner as in Examples 13-17, except that 0.2 mole of cobalt mole was added in each of sodium acetate, pyridine, or tetra-n-butylammonium acetate.

실시예 18, 19 및 비교예 11Examples 18, 19 and Comparative Example 11

코발트 몰당 0.01, 0.05, 0.8몰의 1,3-디(o-톨릴)구아니딘을 촉진제로 첨가하는 것을 제외하고는 실시예 1-12와 동일한 방법으로 실험하였다.The experiment was carried out in the same manner as in Example 1-12, except that 0.01, 0.05, and 0.8 mol of 1,3-di (o-tolyl) guanidine per mole of cobalt was added as an accelerator.

상기 실시예 및 비교예에서의 반응 속도를 하기 표 1, 2, 3에 나타내었다.The reaction rates in the Examples and Comparative Examples are shown in Tables 1, 2, and 3 below.

구분division 촉진제의 종류Type of accelerator 선택도 (몰 %)Selectivity (mol%) 반응속도TOF(h-1)Reaction rate TOF (h -1 ) 3-HPA3-HPA PDOPDO AAAA 실시예 1Example 1 1,3-디페닐구아니딘1,3-diphenylguanidine 6767 -- 3333 1313 실시예 2Example 2 1,3-디(1-나프틸)구아니딘1,3-di (1-naphthyl) guanidine 6565 -- 3535 1313 실시예 3Example 3 1,3-디(o-톨릴)구아니딘1,3-di (o-tolyl) guanidine 6565 -- 3535 1313 실시예 4Example 4 1-메틸-1,3-디페닐구아니딘1-methyl-1,3-diphenylguanidine 6161 -- 3939 1212 실시예 5Example 5 1,3-디메틸-1,3-디페닐구아니딘1,3-dimethyl-1,3-diphenylguanidine 6868 -- 3232 1313 실시예 6Example 6 1,1,3,3-테트라메틸구아니딘1,1,3,3-tetramethylguanidine 6969 3131 1313 실시예 7Example 7 1,1-디메틸구아니딘1,1-dimethylguanidine 6767 3333 1111 실시예 8Example 8 1,3-디(o-톨릴)-2-n-옥틸구아니딘1,3-di (o-tolyl) -2-n-octylguanidine 7070 -- 3030 1515 실시예 9Example 9 1,3-디(o-톨릴)-2-벤질구아니딘1,3-di (o-tolyl) -2-benzylguanidine 6565 -- 3535 1414 실시예 10Example 10 1,1,3,3-테트라메틸-2-n-옥틸구아니딘1,1,3,3-tetramethyl-2-n-octylguanidine 6767 -- 3333 1313 실시예 11Example 11 1,1,3,3-테트라메틸-2-벤질구아니딘1,1,3,3-tetramethyl-2-benzylguanidine 6969 -- 3131 1212 실시예 12Example 12 1,3-비스(2-펜에틸)구아니딘1,3-bis (2-phenethyl) guanidine 6868 -- 3232 1313 비교예 1Comparative Example 1 -- 6464 -- 3636 9.39.3 비교예 2Comparative Example 2 아세트산 나트륨Sodium acetate 6666 3434 12.512.5 비교예 3Comparative Example 3 테트라-n-부틸암모늄메톡시드Tetra-n-butylammonium methoxide 6666 -- 3434 10.510.5 비교예 4Comparative Example 4 피리딘Pyridine 6767 -- 3333 1313 비교예 5Comparative Example 5 테트라-n-부틸암모늄 아세테이트Tetra-n-butylammonium acetate 6565 -- 3535 11.511.5 비교예 6Comparative Example 6 N,N-디메틸운데실아민N, N-dimethylundecylamine 6161 -- 3939 1111 주 1) 3-HPA는 3-하이드록시프로피온알데하이드주 2) PDO는 1,3-프로판디올로 극미량 존재주 3) AA는 아세트알데하이드Note 1) 3-HPA is 3-hydroxypropionaldehyde Note 2) PDO is 1,3-propanediol and trace amount is present 3) AA is acetaldehyde

상기 표에서, 구아니딘 화합물 중, 특히 1,3-디(o-톨릴)-2-n-옥틸구아니딘을 첨가제로 사용시 반응속도와 선택도가 아세트산 나트륨과 피리딘 대비 매우 우수하였으며, 1,3-디페닐 구아니딘, 1,3-디(1-나프틸)구아니딘, 1,3-디(o-톨릴)구아니딘, 1,3-디메틸-1,3-디페닐구아니딘 등의 화합물은 첨가제로 사용시 반응속도나 선택도가 아세트산 나트륨과 피리딘 대비 큰 차이가 나지 않았으나, 아세트산 나트륨이나 피리딘은 물에 잘 녹으므로 상업공정(생성물을 물로 추출하는 공정)에 적용하는 데에는 문제가 있다. 즉, 공정에서는 용매로 물에 잘 녹지 않는 유기용매를 사용하는데, 반응 후 반응물은 물로 추출되어 생성물인 3-HPA를 물층으로 분리하고, 첨가제 및 촉매는 유기 용매에 용해되어 재사용하는 것이 경제적으로 유리하다. 그러나, 물에 수용성인 아세트산 나트륨이나 피리딘을 첨가제로 사용하면 재사용시 일부가 물에 용해되어 유실되므로, 부족분을 계속적으로 보충해주어야 하는 문제가 있다.In the above table, among the guanidine compounds, especially when 1,3-di (o-tolyl) -2-n-octylguanidine was used as an additive, the reaction rate and selectivity were very excellent compared to sodium acetate and pyridine. Compounds such as phenyl guanidine, 1,3-di (1-naphthyl) guanidine, 1,3-di (o-tolyl) guanidine, 1,3-dimethyl-1,3-diphenylguanidine, etc. Although the selectivity was not significantly different from sodium acetate and pyridine, sodium acetate or pyridine is well soluble in water, and thus there is a problem in the commercial process (product extraction with water). In other words, in the process, an organic solvent that is insoluble in water is used as a solvent, and after the reaction, the reactant is extracted with water to separate 3-HPA, which is a product, into a water layer, and additives and a catalyst are dissolved in an organic solvent and economically advantageous. Do. However, when water-soluble sodium acetate or pyridine is used as an additive, some of the water is dissolved and lost during reuse, so there is a problem that the supplement must be continuously compensated for.

따라서, 물에 잘 녹지 않으면서도 아세트산 나트륨이나 피리딘을 사용했을 때의 활성을 줄 수 있는 첨가제 개발이 중요한데, 본 발명에 따른 구아니딘 화합물은 대부분 물에 잘 녹지 않으므로 촉매 및 촉진제의 재활용이 용이하고, 물에 잘 녹지 않는 테트라-n-부틸암모늄 아세테이트와 N,N-디메틸운데실아민과 비교해 볼 때 반응속도가 더 빠르고 선택도는 동등 내지 그 이상이며, 또한 상기 화합물 대비 가격이 저가이고 입수가 용이한 장점을 가진다.Therefore, it is important to develop an additive that can give activity when using sodium acetate or pyridine without dissolving well in water. Since the guanidine compound according to the present invention is mostly insoluble in water, it is easy to recycle catalysts and promoters, and Compared with tetra-n-butylammonium acetate and N, N-dimethylundecylamine, which are insoluble in water, the reaction rate is faster and the selectivity is equal to or higher than that of the compound. Has an advantage.

구분division 촉진제의 종류Type of accelerator 선택도 (몰 %)Selectivity (mol%) 반응속도TOF(h-1)Reaction rate TOF (h -1 ) 3-HPA3-HPA PDOPDO AAAA 실시예 13Example 13 1,3-디페닐구아니딘1,3-diphenylguanidine 6969 -- 3131 2727 실시예 14Example 14 1,3-디(1-나프틸)구아니딘1,3-di (1-naphthyl) guanidine 6868 -- 3232 2828 실시예 15Example 15 1,3-디(o-톨릴)구아니딘1,3-di (o-tolyl) guanidine 6868 -- 3232 2626 실시예 16Example 16 1-메틸-1,3-디페닐구아니딘1-methyl-1,3-diphenylguanidine 6969 -- 3131 2929 실시예 17Example 17 1,3-디페닐-1,3-디메틸구아니딘1,3-diphenyl-1,3-dimethylguanidine 6969 -- 3131 2929 비교예 7Comparative Example 7 -- 6868 -- 3232 1919 비교예 8Comparative Example 8 아세트산 나트륨Sodium acetate 7171 2929 2525 비교예 9Comparative Example 9 피리딘Pyridine 6868 -- 3232 2626 비교예 10Comparative Example 10 테트라-n-부틸암모늄아세테이트Tetra-n-butylammonium acetate 6666 -- 3434 2525 주 1) 3-HPA는 3-하이드록시프로피온알데하이드주 2) PDO는 1,3-프로판디올로 극미량 존재주 3) AA는 아세트알데하이드Note 1) 3-HPA is 3-hydroxypropionaldehyde Note 2) PDO is 1,3-propanediol and trace amount is present 3) AA is acetaldehyde

수소와 일산화탄소의 혼합물인 합성가스를 사용시, 수소가 많을수록 반응속도는 증가하는데, 상기 표 2에서 수소/일산화탄소가 1.5/1에서 실험한 결과를 보면, 표 1의 결과와 유사하게 구아니딘 화합물이 전반적으로 높은 반응속도를 주었으며, 선택도는 동등 내지 그 이상이었다.When using a synthesis gas that is a mixture of hydrogen and carbon monoxide, the reaction rate is increased as more hydrogen, the results of the experiment of hydrogen / carbon monoxide at 1.5 / 1 in Table 2, the guanidine compound is similar to the results in Table 1 It gave a high reaction rate and selectivity was equal to or higher.

구분division 촉진제/코발트 몰비Accelerator / Cobalt Molar Ratio 선택도 (몰 %)Selectivity (mol%) 반응속도TOF(h-1)Reaction rate TOF (h -1 ) 3-HPA3-HPA PDOPDO AAAA 비교예 1Comparative Example 1 00 6464 -- 3636 9.39.3 실시예 18Example 18 0.010.01 6060 -- 4040 1212 실시예 19Example 19 0.050.05 5959 -- 4141 1212 실시예 3Example 3 0.20.2 6565 3535 1313 비교예 11Comparative Example 11 0.80.8 6363 -- 3737 8.78.7

본 발명에서는, 고가의 포스핀-리간드 코발트 촉매를 사용하지 않고 지금까지 보고된 적이 없는 새로운 구조의 다치환된 구아니딘 화합물을 리간드가 없는 코발트 촉매에 의한 하이드로포밀레이션 반응의 촉진제로 사용함으로써, 선택적이고 특히, 빠른 반응 속도 및 용이한 촉매회수에 의해 경제적으로 3-하이드록시프로피온알데하이드를 제조할 수 있으며, 이로부터 1,3-프로판디올을 얻을 수 있다.In the present invention, by using a polysubstituted guanidine compound of a novel structure which has not been reported so far without using an expensive phosphine-ligand cobalt catalyst as an accelerator of a hydroformylation reaction by a ligand-free cobalt catalyst, In particular, it is possible to economically produce 3-hydroxypropionaldehyde by fast reaction rate and easy catalyst recovery, from which 1,3-propanediol can be obtained.

Claims (7)

산화에틸렌을 용매 중에서 코발트 촉매의 존재하에 합성가스를 사용하여 하이드로포밀레이션 반응시킴으로서 3-하이드록시프로피온알데하이드를 제조한 후, 이를 수소화시키는 1,3-프로판디올의 제조방법에 있어서,In the process for producing 1,3-propanediol by producing hydroxypropionaldehyde by subjecting ethylene oxide to a hydroformylation reaction using a synthesis gas in the presence of a cobalt catalyst in a solvent, and then hydrogenating it 상기 하이드로포밀레이션 반응의 촉진제로써 하기 화학식 1의 다치환된 구아니딘 화합물을 사용하는 것을 특징으로 하는 1,3-프로판디올의 제조방법.Method for producing 1,3-propanediol, characterized in that to use the polysubstituted guanidine compound of the formula (1) as an accelerator of the hydroformylation reaction. 화학식 1Formula 1 (단, 상기 식에서,(Wherein, R1, R2, R3, R4, R5는 독립적으로 수소원자, 탄소수 1-25의 직쇄, 측쇄알킬, 페닐알킬 또는 페닐, 나프틸 그룹에서 선택되며, 이때 R1, R2중 하나의 알킬기와 R3, R4중 하나의 알킬기가 고리화된 지방족 탄화수소 고리구조가 될 수 있다.)R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from hydrogen atom, straight chain of 1-25 carbon atoms, branched alkyl, phenylalkyl or phenyl, naphthyl group, wherein one of R 1 , R 2 May be an aliphatic hydrocarbon ring structure in which an alkyl group of R 3 and R 4 is cyclized.) 제 1 항에 있어서,The method of claim 1, 상기 구아니딘 화합물이, 1,3-디페닐구아니딘, 1,3-디(o-톨릴)구아니딘, 1,3-디(1-나프틸)구아니딘, 1-메틸-1,3-디페닐구아니딘, 1,3-디메틸-1,3-디페닐구아니딘, 1,1,3,3-테트라메틸구아니딘, 1,1-디메틸구아니딘, 1,3-디(o-톨릴)-2-n-옥틸구아니딘, 1,3-디(o-톨릴)-2-벤질구아니딘, 1,1,3,3-테트라메틸-2-n-옥틸구아니딘, 1,1,3,3-테트라메틸-2-벤질구아니딘, 1,3-비스(2-펜에틸)구아니딘으로 이루어진 그룹에서 선택된 것임을 특징으로 하는 1,3-프로판디올의 제조방법.The guanidine compound is 1,3-diphenylguanidine, 1,3-di (o-tolyl) guanidine, 1,3-di (1-naphthyl) guanidine, 1-methyl-1,3-diphenylguanidine, 1,3-dimethyl-1,3-diphenylguanidine, 1,1,3,3-tetramethylguanidine, 1,1-dimethylguanidine, 1,3-di (o-tolyl) -2-n-octylguanidine , 1,3-di (o-tolyl) -2-benzylguanidine, 1,1,3,3-tetramethyl-2-n-octylguanidine, 1,1,3,3-tetramethyl-2-benzylguanidine , 1,3-bis (2-phenethyl) guanidine, characterized in that selected from the group consisting of 1,3-propanediol. 제 1 항에 있어서,The method of claim 1, 상기 구아니딘 화합물을 코발트 몰당 0.01-0.6몰 사용하는 것을 특징으로 하는 1,3-프로판디올의 제조방법.A method for producing 1,3-propanediol, wherein the guanidine compound is used in an amount of 0.01-0.6 mol per mole of cobalt. 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 하이드로포밀레이션 반응에 사용되는 코발트 촉매는, 리간드가 없는 코발트이고, 사용량은 반응 혼합물을 기준으로 0.01-1.0 중량%인 것을 특징으로 하는 1,3-프로판디올의 제조방법.The cobalt catalyst used in the hydroformylation reaction is a cobalt without a ligand, the amount of the 1,3-propanediol production method characterized in that the amount is 0.01-1.0% by weight based on the reaction mixture. 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 하이드로포밀레이션 반응에, 반응 혼합물 기준으로 1.0-2.5 중량%의 물이 더 사용되는 것을 특징으로 하는 1,3-프로판디올의 제조방법.In the hydroformylation reaction, the production method of 1,3-propanediol, characterized in that more than 1.0-2.5% by weight of water based on the reaction mixture. 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 하이드로포밀레이션 반응에 사용되는 합성가스는, 수소와 일산화탄소가 수소 1몰에 대하여 일산화탄소 0.125 내지 2몰의 비율로 혼합되어 있는 것임을 특징으로 하는 1,3-프로판디올의 제조방법.Synthesis gas used in the hydroformylation reaction is a method for producing 1,3-propanediol, characterized in that hydrogen and carbon monoxide is mixed in a ratio of 0.125 to 2 mol of carbon monoxide with respect to 1 mol of hydrogen. 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 하이드로포밀레이션 반응을 60-110℃의 온도, 500-3000psig의 압력에서 실시하는 것을 특징으로 하는 1,3-프로판디올의 제조방법.Method for producing 1,3-propanediol, characterized in that the hydroformylation reaction is carried out at a temperature of 60-110 ℃, 500-3000psig.
KR1019990035800A 1999-08-27 1999-08-27 Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives KR100337447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990035800A KR100337447B1 (en) 1999-08-27 1999-08-27 Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990035800A KR100337447B1 (en) 1999-08-27 1999-08-27 Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives

Publications (2)

Publication Number Publication Date
KR20010019416A KR20010019416A (en) 2001-03-15
KR100337447B1 true KR100337447B1 (en) 2002-05-23

Family

ID=19608900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990035800A KR100337447B1 (en) 1999-08-27 1999-08-27 Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives

Country Status (1)

Country Link
KR (1) KR100337447B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074974A (en) * 2002-03-15 2003-09-22 김정상 Plant extract from Adenophora triphylla and composition containing the same with anti-obesity activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171898A (en) * 1990-11-30 1992-12-15 Degussa Aktiengesellschaft Method for the production of 1,3-propandiol
KR930002292A (en) * 1991-07-24 1993-02-22 아이리인 티이 브라운 1,3-propanediol production method
WO1997016250A1 (en) * 1995-10-31 1997-05-09 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-propanediol
WO1997033851A1 (en) * 1996-03-11 1997-09-18 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-propanediol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171898A (en) * 1990-11-30 1992-12-15 Degussa Aktiengesellschaft Method for the production of 1,3-propandiol
KR930002292A (en) * 1991-07-24 1993-02-22 아이리인 티이 브라운 1,3-propanediol production method
WO1997016250A1 (en) * 1995-10-31 1997-05-09 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-propanediol
WO1997033851A1 (en) * 1996-03-11 1997-09-18 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-propanediol

Also Published As

Publication number Publication date
KR20010019416A (en) 2001-03-15

Similar Documents

Publication Publication Date Title
US3456017A (en) Glycol production
US4321414A (en) Catalytic hydrogenation of glycolaldehyde to produce ethylene glycol
US3511880A (en) Hydrocarbonylation process
US4317946A (en) Process for producing ethylene glycol via catalytic hydrogenation of glycolaldehyde
KR100361109B1 (en) Process for producing 1,3-alkanediol and 3-hydroxyaldehyde
NZ229240A (en) Process for preparing 1,3-glycols
US5463145A (en) Process for preparing 1,3-propanediol
US5723389A (en) Process for preparing alkanediols
US5689016A (en) Cobalt-catalyzed process for preparing alkanediols using a rhodium promoter
CA2048132C (en) Process for making 1,3-diols from epoxides
US20050154239A1 (en) Methods for preparing 1,3 butylene glycol
JP3844781B2 (en) Process for producing 1,3-propanediol
US5731478A (en) Process for preparing alkanediols
US20050222452A1 (en) Process for preparing dioxy-functionalized propane compounds
KR100337447B1 (en) Cobalt-catalized process for preparing 1,3-propanediol using a promotor of guanidine derivatives
KR840000276B1 (en) Preparation of aldehyde ethers
JP2650061B2 (en) Method for producing alkanediol
US9174905B2 (en) Process for telomerization of butadiene using a mono-orthoalkoxy substituted catalyst
KR100393706B1 (en) Method for preparing 1,3-alkanediol and 3-hydroxyaldehyde
JPS5843936A (en) Manufacture of glycol aldehyde
US6180838B1 (en) Process for preparing alkanediols
CN111018688B (en) Method for preparing 3-hydroxypropionaldehyde and method for preparing 1,3-propylene glycol
US4511743A (en) Process for homologating alcohols through the intermediate production of ketals with cobalt carbonyl complexes as catalysts
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
NZ204570A (en) Preparation of glycol aldehyde and ethylene glycol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120424

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee