KR100328870B1 - Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same - Google Patents

Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same Download PDF

Info

Publication number
KR100328870B1
KR100328870B1 KR1019990029500A KR19990029500A KR100328870B1 KR 100328870 B1 KR100328870 B1 KR 100328870B1 KR 1019990029500 A KR1019990029500 A KR 1019990029500A KR 19990029500 A KR19990029500 A KR 19990029500A KR 100328870 B1 KR100328870 B1 KR 100328870B1
Authority
KR
South Korea
Prior art keywords
group
styrene
ethylene
titanium
dichloride
Prior art date
Application number
KR1019990029500A
Other languages
Korean (ko)
Other versions
KR20010010543A (en
Inventor
윤성철
장학전
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to KR1019990029500A priority Critical patent/KR100328870B1/en
Publication of KR20010010543A publication Critical patent/KR20010010543A/en
Application granted granted Critical
Publication of KR100328870B1 publication Critical patent/KR100328870B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61916Component covered by group C08F4/60 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Abstract

본 발명의 메탈로센 촉매는 스티렌-아크릴로니트릴(SAN) 공중합체에 포함되어 있는 시안화기(cyanide group)와 전이금속 화합물이 결합하여 연결된 착물(complex) 구조를 가지며, 하기 화학식으로 표시된다:The metallocene catalyst of the present invention has a complex structure in which a cyanide group and a transition metal compound included in a styrene-acrylonitrile (SAN) copolymer are bonded to each other, and are represented by the following chemical formula:

상기에서 Z1, Z2및 Z3는 각각 M1Ln, M1Ln-1, 및 M1Ln-2으로 표시되고 (여기서 M1은 4족, 5족, 6족, 7족, 또는 8족의 전이금속이며, L은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이고, 그리고 n은 1 내지 4의 정수임); M2는 1족 또는 2족의 금속이고; X는 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이며; n은 1 내지 4의 정수이고; 그리고 R1은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이다.In the above, Z 1 , Z 2 and Z 3 are represented by M 1 L n , M 1 L n-1 , and M 1 L n-2 , where M 1 is Group 4, 5, 6, and 7 Or a transition metal of group 8, L is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen, or a combination thereof, and n is 1 to 4 Is an integer of; M 2 is a metal of Group 1 or 2; X is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof; n is an integer from 1 to 4; And R 1 is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof.

Description

에틸렌/스티렌 공중합용 메탈로센 촉매 및 그의 제조방법{Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same}Metallocene catalyst for ethylene / styrene copolymerization and its preparation method {Metallocene Catalysts for Ethylene / Styrene Co-polymerization and Method of preparing Same}

발명의 분야Field of invention

본 발명은 에틸렌/스티렌 공중합체를 제조하기 위한 메탈로센 촉매 및 그의 제조방법에 관한 것이며, 상기 특정의 메탈로센 촉매를 이용한 신디오탁틱 폴리스티렌 구조를 갖는 에틸렌/스티렌 공중합체에 관한 것이다. 보다 구체적으로 본 발명은 스티렌과 아크릴로니트릴의 불규칙 공중합체인 SAN[poly(styrene-co- acrylonitrile)]을 알칼리 알킬 화합물로 처리하고, 이에 금속 화합물과 전이금속 화합물을 반응시킴으로써 제조되는 메탈로센 촉매 및 그 제조방법에 관한 것이며, 또한 상기 촉매를 이용하여 스티렌 함량의 조절이 가능한 신디오탁틱 폴리스티렌 블록을 포함하는 에틸렌/스티렌 공중합체에 관한 것이다.The present invention relates to a metallocene catalyst for producing an ethylene / styrene copolymer and a method for producing the same, and to an ethylene / styrene copolymer having a syndiotactic polystyrene structure using the specific metallocene catalyst. More specifically, the present invention is a metallocene catalyst prepared by treating SAN (poly (styrene-co-acrylonitrile)], an irregular copolymer of styrene and acrylonitrile, with an alkali alkyl compound and reacting the metal compound with a transition metal compound. And to a method for producing the same, and also to an ethylene / styrene copolymer including a syndiotactic polystyrene block capable of controlling styrene content using the catalyst.

발명의 배경 및 종래기술Background of the Invention and Prior Art

에틸렌과 방향족 비닐 화합물(스티렌 유도체)과의 공중합체를 제조하기 위한 연구는 비균일계 지글러-나타 촉매를 이용하여 최초로 수행되었다(Polymer Bulletin vol. 20, pp237-241). 그러나 일반적인 비균일계 지글러-나타 촉매계는 활성 및 스티렌 반응성(1 mol% 이하의 스티렌)이 낮고, 저분자량의 공중합체를 생성하므로 이용이 극히 제한적이었다. 전이금속과 유기알루미늄화합물을 이용한 균일계 지글러-나타 촉매도 제조방법이 공지되어 있으나, 소량의 에틸렌/스티렌 공중합체가 생성될 뿐이다.The study for preparing copolymers of ethylene and aromatic vinyl compounds (styrene derivatives) was first carried out using a non-uniform Ziegler-Natta catalyst (Polymer Bulletin vol. 20, pp237-241). However, typical non-homogeneous Ziegler-Natta catalyst systems have limited activity and styrene reactivity (less than 1 mol% styrene) and produce low molecular weight copolymers, making them extremely limited. Homogeneous Ziegler-Natta catalysts using transition metals and organoaluminum compounds are also known in the art, but only a small amount of ethylene / styrene copolymer is produced.

비스시클로펜타디에닐 메탈로센 촉매는 이러한 공중합 반응에서 매우 낮은 활성을 보이며, 레지오스페시피시티(regiospecificity) 또한 매우 낮다. 이는 단일중합체의 혼합물과 공중합체와의 활성점이 상이하기 때문에 발생한다.Biscyclopentadienyl metallocene catalysts exhibit very low activity in this copolymerization reaction and also have very low regiospecificity. This occurs because the active point of the mixture of the homopolymer and the copolymer is different.

또한 균일계 티타노센과 지르코노센 촉매를 이용하여 에틸렌/스티렌 공중합체를 얻으려는 많은 노력이 이루어졌으나 대부분의 경우 단일중합체 및 소량의 스티렌에 공중합된 중합체와의 혼합물로 생성됨을 알 수 있었다.In addition, many efforts have been made to obtain ethylene / styrene copolymers using homogeneous titanocene and zirconocene catalysts, but in most cases, it was found to be produced as a mixture with a homopolymer and a polymer copolymerized in a small amount of styrene.

한편, 다우(Dow)사는 일본특허공개 평3-163088호, 평7-53618호 및 유럽특허공개 제416815 A2호에 INSITETMTechnology CGC(Constrained Geometry Catalyst)를 이용한 유사 랜덤(pseudo random) 구조를 갖는 에틸렌/스티렌 공중합체의 합성을 개시하고 있다. 상기 유사 랜덤 구조는 일반적인 스티렌 사슬인 머리-꼬리(head-to-tail) 결합 사슬을 의미한다. 상기 공중합체에는 37 mol%의 스티렌이 포함되어있다.Meanwhile, Dow has a pseudo random structure using INSITE TM Technology Constrained Geometry Catalyst (CGC) in Japanese Patent Laid-Open Nos. 3-163088, 7-53618, and European Patent No. 416815 A2. The synthesis of ethylene / styrene copolymers is disclosed. The pseudo-random structure means a head-to-tail bond chain which is a general styrene chain. The copolymer contains 37 mol% of styrene.

그리고, Xu는 "Macromolecules"(1998, vol 31, p2395)에서 완벽한 교대배열(alternating)을 갖는 에틸렌/스티렌 공중합체의 합성을 보고하였으며,13C NMR을 이용하여 50 mol%의 스티렌이 공중합되어 있음을 구조분석하였다. 하지만, 이 경우 공중합되어 있는 스티렌의 농도가 증가하더라도 주쇄내에 스티렌-스티렌의 시퀀스를 관찰할 수 없었으며, 50 mol% 이상의 스티렌이 공중합되기는 어렵다고 보고하고 있다. 또한, 이들 공중합체내의 페닐기들은 입체규칙성이 없어 일정 농도 이상에서는 비결정성 수지의 물성을 나타내었다.Xu reported the synthesis of ethylene / styrene copolymers with perfect alternating in "Macromolecules" (1998, vol 31, p2395), where 50 mol% of styrene was copolymerized using 13 C NMR. The structure was analyzed. However, in this case, even if the concentration of copolymerized styrene was increased, the sequence of styrene-styrene could not be observed in the main chain, and more than 50 mol% of styrene was reported to be difficult to copolymerize. In addition, the phenyl groups in these copolymers have no stereoregularity and exhibited physical properties of the amorphous resin at a predetermined concentration or higher.

상기와 같이, 지글러-나타 촉매 및 메탈로센 촉매를 이용한 에틸렌/스티렌 공중합 반응에서는 단일중합체와 공중합체와의 혼합물을 생성하거나 또는 입체규칙성이 없는 공중합체를 생성하게 되고, 특히 공중합체 내의 스티렌 함량이 50 mol% 이하로 제한되어 있다.As described above, the ethylene / styrene copolymerization reaction using the Ziegler-Natta catalyst and the metallocene catalyst generates a mixture of homopolymers and copolymers or produces a copolymer having no stereoregularity, in particular styrene in the copolymer. The content is limited to 50 mol% or less.

이에 본 발명자들은 종래의 무정형 랜덤 공중합체와는 달리 입체규칙성을 가지며, 특히 신디오탁틱 폴리스티렌 블록을 포함하는 에틸렌/스티렌 공중합체를 제조하기 위한 메탈로센 촉매 및 상기 촉매를 이용한 에틸렌/스티렌 공중합체를 개발하기에 이른 것이다.Accordingly, the present inventors have stereoregularity unlike conventional amorphous random copolymers, and in particular, a metallocene catalyst for producing an ethylene / styrene copolymer including a syndiotactic polystyrene block and an ethylene / styrene air using the catalyst It is about to develop a coalition.

본 발명의 목적은 입체규칙성을 갖는 에틸렌/스티렌 공중합체를 제조하기 위한 높은 활성의 신규의 메탈로센 촉매를 제공하기 위한 것이다.It is an object of the present invention to provide a novel high activity metallocene catalyst for producing ethylene / styrene copolymers having stereoregularity.

본 발명의 다른 목적은 신디오탁틱 폴리스티렌 블록을 포함하며 입체규칙성을 갖는 에틸렌/스티렌 공중합체를 제조할 수 있는 촉매를 제공하기 위한 것이다.Another object of the present invention is to provide a catalyst comprising syndiotactic polystyrene blocks and capable of producing ethylene / styrene copolymers having stereoregularity.

본 발명의 또 다른 목적은 높은 스티렌 함량의 영역에서도 결정성 구조를 가지며, 녹는점이 높고 내열성 및 기계적 성질이 우수한 에틸렌/스티렌 공중합체를 제공하기 위한 것이다.Still another object of the present invention is to provide an ethylene / styrene copolymer having a crystalline structure even in a region of high styrene content, having a high melting point and excellent heat resistance and mechanical properties.

본 발명의 상기의 목적 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

이하 본 발명의 내용을 하기에 상세히 설명한다.Hereinafter, the content of the present invention will be described in detail.

본 발명의 메탈로센 촉매는 스티렌-아크릴로니트릴(SAN) 공중합체에 포함되어 있는 시안화기(cyanide group)와 4족, 5족, 6족, 7족 또는 8족의 전이금속 화합물이 결합하여 연결된 착물(complex) 구조 및 시안화기와 1A 또는 2A족의 금속화합물의 반응물과 4족, 5족, 6족, 7족 또는 8족의 전이금속 화합물이 결합하여 연결된 착물(complex) 구조를 가지며, 하기 화학식(1), (2) 또는 (3)으로 표시된다:In the metallocene catalyst of the present invention, a cyanide group included in a styrene-acrylonitrile (SAN) copolymer and a transition metal compound of Group 4, 5, 6, 7 or 8 Connected complex structure and reactant of the cyanide group and the metal compound of Group 1A or 2A and transition metal compound of Group 4, Group 5, Group 6, Group 7 or Group 8 combined to have a complex structure, It is represented by the formula (1), (2) or (3):

상기식(1), (2), 및 (3)에서 Z1, Z2및 Z3는 각각 M1Ln, M1Ln-1, M1Ln-2으로 표시되고 (여기서 M1은 4족(Ti, Zr, Hf), 5족(V, Nb, Ta), 6족(Cr, Mo, W), 7족(Mn, Tc, Re) 또는 8족(Re, Ru, Os, Rh, Ir, Ni, Pd, Pt)의 전이금속이며, L은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이고, 그리고 n은 1 내지 4의 정수임); M2는 주기율표 상의 1A족(Li, Na, K, Rb, Cs, Fr) 또는 2A족(Be, Mg, Ca, Sr, Ba, Ra)이고; X는 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이며; n은 1 내지 4의 정수이고; 그리고 R1은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이다.In formulas (1), (2), and (3), Z 1 , Z 2, and Z 3 are each represented by M 1 L n , M 1 L n-1 , M 1 L n-2 , where M 1 Group 4 (Ti, Zr, Hf), Group 5 (V, Nb, Ta), Group 6 (Cr, Mo, W), Group 7 (Mn, Tc, Re) or Group 8 (Re, Ru, Os, Rh, Ir, Ni, Pd, Pt) is a transition metal, L is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen, or a combination thereof, And n is an integer from 1 to 4; M 2 is Group 1A (Li, Na, K, Rb, Cs, Fr) or Group 2A (Be, Mg, Ca, Sr, Ba, Ra) on the periodic table; X is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof; n is an integer from 1 to 4; And R 1 is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof.

상기 화학식(1)은 전이금속 화합물과 SAN의 시안화기와의 비배위 결합을 통해 생성되며, 화학식(2)은 SAN의 시안화기와 알칼리 알킬 화합물과의 몰비를 조절함으로써 얻을 수 있고, 그리고 화학식(3)의 촉매는 SAN의 시안화기를 모두 이미노기(imino group)로 변화시킨 후 전이금속 화합물과 반응시킴으로써 얻어진다.Formula (1) is produced through a non-coordinated bond between a transition metal compound and a cyanide group of a SAN, and Formula (2) can be obtained by controlling the molar ratio of a cyanide group and an alkali alkyl compound of a SAN, and formula (3) The catalyst of is obtained by changing all cyanide groups in the SAN into imino groups and then reacting with the transition metal compound.

주기율표 4족의 전이금속 화합물로는 사염화티타늄(TiCl4), 사염화지르코늄(ZrCl4), 사염화하프늄(HfCl4), 사플루오로티타늄(TiF4), 사플루오로지르코늄(ZrF4), 사플루오로하프늄(HfF4) 등이 있다.The transition metal compounds of the Group 4 of the periodic table include titanium tetrachloride (TiCl 4 ), zirconium tetrachloride (ZrCl 4 ), hafnium tetrachloride (HfCl 4 ), titanium tetrafluoro (TiF 4 ), tetrafluorozirconium (ZrF 4 ), and tetrafluoro Lohafnium (HfF 4 ), and the like.

상기 전이금속 화합물의 대표적인 예는 다음과 같다:Representative examples of such transition metal compounds are as follows:

티타늄(Ⅲ) 클로라이드, 티타늄(Ⅳ) 클로라이드, 티타늄(Ⅲ) 메톡사이드, 티타늄(Ⅲ) 에톡사이드, 티타늄(Ⅲ) 이소프로폭사이드, 티타늄(Ⅲ) 프로폭사이드, 티타늄(Ⅲ) 부톡사이드, 티타늄(Ⅳ) 메톡사이드, 티타늄(Ⅳ) 에톡사이드, 티타늄(Ⅳ) 이소프로폭사이드, 티타늄(Ⅳ) 프로폭사이드, 티타늄(Ⅳ) 부톡사이드, 펜타메틸시클로펜타디에닐티타늄 트리클로라이드, 펜타메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 펜타메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2,4-트리메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2,4-트리메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2,4-트리메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2-디메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2-디메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2-디메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 메틸시클로펜타디에닐티타늄 트리클로라이드, 메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 시클로펜타디에닐티타늄 트리클로라이드, 사이크로펜타디에닐메톡시티타늄 디클로라이드, 시클로펜타디에닐디메톡시티타늄 모노클로라이드, 펜타메틸시클로펜타디에닐메틸티타늄 디클로라이드, 펜타메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2,4-트리메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2,4-트리메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2-디메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2-디메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 메틸시클로펜타디에닐메틸티타늄 디클로라이드, 메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 시클로펜타디에닐메틸티타늄 디클로라이드, 및 시클로펜타디에닐디메틸티타늄 모노클로라이드.Titanium (III) chloride, titanium (IV) chloride, titanium (III) methoxide, titanium (III) ethoxide, titanium (III) isopropoxide, titanium (III) propoxide, titanium (III) butoxide, Titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) isopropoxide, titanium (IV) propoxide, titanium (IV) butoxide, pentamethylcyclopentadienyl titanium trichloride, pentamethyl Cyclopentadienylmethoxytitanium dichloride, pentamethylcyclopentadienyldimethoxytitanium monochloride, 1,2,3,4-tetramethylcyclopentadienyltitanium trichloride, 1,2,3,4-tetramethylcyclo Pentadienylmethoxytitanium dichloride, 1,2,3,4-tetramethylcyclopentadienyldimethoxytitanium monochloride, 1,2,4-trimethylcyclopentadienyltitanium trichloride, 1,2,4-trimethyl Cyclopenta Enylmethoxytitanium dichloride, 1,2,4-trimethylcyclopentadienyldimethoxytitanium monochloride, 1,2-dimethylcyclopentadienyltitanium trichloride, 1,2-dimethylcyclopentadienylmethoxytitanium dichloride , 1,2-dimethylcyclopentadienyldimethoxytitanium monochloride, methylcyclopentadienyltitanium trichloride, methylcyclopentadienylmethoxytitanium dichloride, methylcyclopentadienyldimethoxytitanium monochloride, cyclopentadienyl Titanium trichloride, cyclopentadienylmethoxytitanium dichloride, cyclopentadienyldimethoxytitanium monochloride, pentamethylcyclopentadienylmethyltitanium dichloride, pentamethylcyclopentadienyldimethyltitanium monochloride, 1,2, 3,4-tetramethylcyclopentadienylmethyltitanium dichloride, 1,2,3, 4-tetramethylcyclopentadienyldimethyltitanium monochloride, 1,2,4-trimethylcyclopentadienylmethyltitanium dichloride, 1,2,4-trimethylcyclopentadienyldimethyltitanium monochloride, 1,2-dimethyl Cyclopentadienylmethyltitanium dichloride, 1,2-dimethylcyclopentadienyldimethyltitanium monochloride, methylcyclopentadienylmethyltitanium dichloride, methylcyclopentadienyldimethyltitanium monochloride, cyclopentadienylmethyltitanium dichloride Chloride, and cyclopentadienyldimethyltitanium monochloride.

본 발명에서 사용되는 스티렌-아크릴로니트릴(SAN) 공중합체는 그 고분자 주쇄의 분자량이 1,000 내지 1,000,000의 범위이며, 바람직하게는 10,000 내지 300,000의 범위이다. 또한 아크릴로니트릴의 함량은 1∼99 중량%의 범위이며, 바람직하게는 5∼50 중량%의 범위이다.The styrene-acrylonitrile (SAN) copolymer used in the present invention has a molecular weight of the polymer main chain in the range of 1,000 to 1,000,000, preferably in the range of 10,000 to 300,000. The content of acrylonitrile is in the range of 1 to 99% by weight, preferably in the range of 5 to 50% by weight.

본 발명의 메탈로센 촉매는 다음과 같이 제조된다:The metallocene catalyst of the present invention is prepared as follows:

스티렌-아크릴로니트릴(SAN)을 유기용매에 용해시키고 그 용액에 주기율표 4족, 5족, 6족, 7족 또는 8족의 전이금속 화합물을 직접 반응시키거나, 또는 SAN을 유기용매에 용해시키고 그 용액을 1A족 또는 2A족의 금속 화합물과 반응시킨 후에 상기의 전이금속 화합물과 반응시키고; 상기 반응을 통해 형성된 고체층과 액체층을 분리하고; 상기 분리된 고체층(촉매)만을 다시 유기용매로 세척한 후, 그 세척된 촉매를 진공 건조함으로써 메탈로센 촉매가 얻어진다.Styrene-acrylonitrile (SAN) is dissolved in an organic solvent and the solution is directly reacted with a transition metal compound of Group 4, 5, 6, 7 or 8 of the periodic table, or SAN is dissolved in an organic solvent. The solution is reacted with a metal compound of Group 1A or 2A and then with the transition metal compound described above; Separating the solid layer and the liquid layer formed through the reaction; After washing only the separated solid layer (catalyst) again with an organic solvent, a metallocene catalyst is obtained by vacuum drying the washed catalyst.

상기 제조공정에서 이용되는 유기용매는 지방족 탄화수소, 방향족 탄화수소 또는 이들의 할로겐화 탄화수소이다. 즉, SAN을 유기용매에 용해시킬 때 사용될 수 있는 유기용매의 대표적인 예로는 톨루엔 및 디클로로메탄이 있으며, 상기 SAN과 전이금속 화합물을 반응시켜서 형성되는 고체층 및 액체층으로부터, 액체층을 분리하고 고체층을 다시 유기용매로써 세척할 경우 사용되는 대표적인 유기용매는 헥산, 톨루엔 등의 탄화수소 용매이다.The organic solvent used in the manufacturing process is an aliphatic hydrocarbon, an aromatic hydrocarbon or a halogenated hydrocarbon thereof. That is, representative examples of organic solvents that can be used when dissolving SAN in an organic solvent include toluene and dichloromethane, and a liquid layer is separated from a solid layer and a liquid layer formed by reacting the SAN with a transition metal compound. Representative organic solvents used when the layers are washed again with organic solvents are hydrocarbon solvents such as hexane and toluene.

유기용매에 용해되는 SAN과 전이금속 화합물과의 반응은 하기 반응식(1)으로나타내어진다:The reaction of the SAN and the transition metal compound dissolved in the organic solvent is represented by the following reaction formula (1):

상기 반응식(1)에서, M1, M2, L 및 n은 각각 상기 화학식(1), (2), 및 (3)에서 정의한 바와 같으며, p와 q는 스티렌과 아크릴로니트릴 단량체의 상대적 반응성에 따른 통계적 분포를 나타내는 정수이고, 그리고 m은 1 내지 2의 정수이다.In Reaction Scheme (1), M 1 , M 2 , L and n are as defined in Formulas (1), (2), and (3), respectively, and p and q are relative to styrene and acrylonitrile monomers. Is an integer representing the statistical distribution according to reactivity, and m is an integer from 1 to 2.

상기 반응식(1)에서, SAN 공중합체를 M1Ln으로 표시되는 전이금속 화합물과 반응시켜 상기 화학식(1)으로 나타내어지는 본 발명의 메탈로센 촉매를 얻을 수 있다. 또한 SAN 공중합체를 R1M2Lm으로 표시되는 알칼리 알킬 화합물로 우선 처리한후, M1Ln으로 표시되는 전이금속 화합물과 반응시키면 상기 화학식(2) 또는 (3)으로 나타내어지는 본 발명의 메탈로센 촉매를 얻을 수 있다.In the above scheme (1), the SAN copolymer can be reacted with the transition metal compound represented by M 1 L n to obtain the metallocene catalyst of the present invention represented by the formula (1). In addition, the present invention is represented by the formula (2) or (3) when the SAN copolymer is first treated with an alkali alkyl compound represented by R 1 M 2 L m and then reacted with a transition metal compound represented by M 1 L n . The metallocene catalyst of can be obtained.

본 발명에 의해 제조된 메탈로센 촉매는 통상적으로 탈수된 지지체에 담지시킴으로써 올레핀을 중합하기 위한 촉매로 사용된다. 상기 지지체의 예로는 실리카, 알루미나, MgR1R2(여기서 R1및 R2는 알킬기, 아릴기, 알콕시, 아미도기 또는 할로겐임), 제올라이트, 인산알루미늄, 지르코니아 등이 있다.The metallocene catalyst prepared by the present invention is usually used as a catalyst for polymerizing olefins by being supported on a dehydrated support. Examples of the support include silica, alumina, MgR 1 R 2 (where R 1 and R 2 are alkyl groups, aryl groups, alkoxy, amido groups or halogens), zeolites, aluminum phosphates, zirconia and the like.

본 발명의 메탈로센 촉매를 담지시키는 방법으로는 상기 촉매를 지지체에 직접 담지시키는 방법 및 지지체를 알루미늄이나 비알루미늄 화합물 또는 유기금속화합물의 조촉매로 담지체의 표면을 처리한 후 상기 촉매를 담지시키는 방법이 있다.As a method of supporting the metallocene catalyst of the present invention, a method of directly supporting the catalyst on a support and a support on the support body after treating the surface of the support with a promoter of aluminum, a non-aluminum compound, or an organometallic compound are supported. There is a way to.

조촉매는 이 기술분야에서 이미 공지된 것으로서, 유기금속화합물을 사용하거나, 또는 비배위 루이스 산(non-coordinated Lewis acid)과 알킬알루미늄과의 혼합물을 사용한다. 유기금속화합물로는 알킬알루미늄옥산 또는 유기알루미늄화합물이 있다. 상기 알킬알루미늄옥산의 대표적인 예로는 메틸알루미늄옥산(methyl aluminiumoxane ; MAO) 및 개질된 메틸알루미늄옥산(modified methylaluminium oxane ; MMAO)이 있고, 상기 알킬알루미늄옥산으로는 하기 화학식(4)으로 표시되는 단위를 가지고 있는 알루미늄옥산이 있으며, 이들은 하기 화학식(5)와 (6)으로 표시되는 사슬상과 환상의 알루미늄옥산이 있다:Cocatalysts are already known in the art, using organometallic compounds, or mixtures of non-coordinated Lewis acids with alkylaluminum. The organometallic compound is an alkyl aluminum oxane or an organoaluminum compound. Representative examples of the alkyl aluminum oxane include methyl aluminum oxane (MAO) and modified methyl aluminum oxane (MAMAO), and the alkyl aluminum oxane has a unit represented by the following formula (4) And aluminum oxanes, which are chain and cyclic aluminum oxanes represented by the following formulas (5) and (6):

상기식(4), (5) 및 (6)에서 R2은 C1∼6의 알킬기이고, 그리고 r은 0 내지 100의 정수이다.In the formula (4), (5) and (6) R 2 is an alkyl group of C 1~6, and r is an integer from 0 to 100.

본 발명에서 알킬알루미늄옥산의 성분 중 알루미늄과 메탈로센 촉매 성분 중의 전이금속과의 비, 즉 알루미늄 : 전이금속(예: 티탄, 지르코늄, 하프늄)의 몰비로서 1 : 1 내지 1×106: 1이며, 더욱 바람직하게는 10 : 1 내지 1×104: 1의 범위가 좋다.In the present invention, the ratio of the aluminum to the transition metal in the metallocene catalyst component, that is, the molar ratio of aluminum to the transition metal (for example, titanium, zirconium, and hafnium) in the alkylaluminum oxalate component is 1: 1 to 1 × 10 6 : 1 More preferably, the range of 10: 1 to 1x10 < 4 : 1 is good.

조촉매로 사용되는 비배위 루이스 산(non-coordinated Lewis acid)과 알킬알루미늄(alkylaluminium)의 혼합물 중 비배위 루이스산은 N,N'-디메틸아닐린테트라키스(펜타플루오로페닐)보레이트, 트리페닐 카베니움 테트라키스(펜타플루오로페닐)보레이트 등이 있으며, 알킬알루미늄으로는 트리메틸 알루미늄, 트리에틸 알루미늄, 디에틸알루미늄 클로라이드, 디메틸알루미늄 클로라이드, 트리이소부틸 알루미늄, 디이소부틸알루미늄 클로라이드, 트리(n-부틸)알루미늄, 트리(n-프로필)알루미늄, 트리이소프로필 알루미늄 등이 있다.In the mixture of non-coordinated Lewis acid and alkylaluminum used as a promoter, the non-coordinated Lewis acid is N, N'-dimethylanilinetetrakis (pentafluorophenyl) borate, triphenyl carbeni Um tetrakis (pentafluorophenyl) borate and the like, and the alkyl aluminum is trimethyl aluminum, triethyl aluminum, diethyl aluminum chloride, dimethyl aluminum chloride, triisobutyl aluminum, diisobutyl aluminum chloride, tri (n-butyl Aluminium, tri (n-propyl) aluminum, triisopropyl aluminum and the like.

본 발명의 메탈로센 촉매 및 조촉매로 이루어지는 촉매 시스템에서 비배위 루이스산 : 전이금속의 몰비는 0.1 : 1∼20 : 1의 범위가 바람직하며, 알킬알루미늄 : 촉매 성분중의 전이금속의 몰비는 1 : 1∼1000 : 1의 범위가 바람직하고, 1 : 1 ∼500 : 1의 범위가 더욱 바람직하다.In the catalyst system comprising the metallocene catalyst and the cocatalyst of the present invention, the molar ratio of non-coordinated Lewis acid: transition metal is preferably in the range of 0.1: 1 to 20: 1, and the molar ratio of alkylaluminum: transition metal in the catalyst component is The range of 1: 1 to 1000: 1 is preferable, and the range of 1: 1 to 500: 1 is more preferable.

본 발명의 촉매 시스템을 이용하여 스티렌계 또는 올레핀계를 중합하기 위한 중합온도는 0∼140℃가 바람직하고, 더 바람직하기로는 30∼100℃의 범위이다.The polymerization temperature for polymerizing styrene or olefins using the catalyst system of the present invention is preferably 0 to 140 ° C, more preferably in the range of 30 to 100 ° C.

본 발명의 촉매 시스템을 이용하여 중합하는 모노머는 스티렌 및 스티렌 유도체, 또는 불포화 올레핀이며, 상기 모노머를 단일중합되거나 또는 2종 이상의 상기 모노머가 공중합될 수 있다.The monomers polymerized using the catalyst system of the present invention are styrene and styrene derivatives, or unsaturated olefins, and the monomers may be homopolymerized or two or more of the monomers may be copolymerized.

본 발명의 촉매 시스템을 이용하여 중합되는 스티렌계 및 스티렌계 유도체의 구조는 하기 화학식(7) 및 (8)으로 표시될 수 있다:The structures of the styrene-based and styrene-based derivatives polymerized using the catalyst system of the present invention can be represented by the following formulas (7) and (8):

상기식(7)에서 J1은 수소원자; 할로겐원자; 또는 탄소원자, 산소원자, 실리콘원자, 인원자, 황원자, 세레니움 또는 주석원자를 적어도 1개 이상 포함하는 치환기를 나타내고, m은 2에서 3일 때에는 각각 독립적으로 다른 치환기를 가질 수 있다.In formula (7) J 1 is a hydrogen atom; Halogen atom; Or a substituent including at least one carbon atom, oxygen atom, silicon atom, phosphorus atom, sulfur atom, serenium or tin atom, and when m is 2 to 3, each may independently have a different substituent.

상기식(8)에서 J1은 상기식(7)에서 정의한 것과 같고, J2는 불포화 결합을 적어도 1개 이상 가지는 C2∼10으로 구성된 치환기이며, m은 1에서 3까지의 정수이고, n은 1 또는 2이며, 그리고 m이 2 이상이고 n이 2인 때에는 각각 독립적으로 다른치환기를 가질 수 있다.In Formula (8), J 1 is the same as defined in Formula (7), J 2 is a substituent consisting of C 2 to 10 having at least one unsaturated bond, m is an integer from 1 to 3, n Is 1 or 2, and when m is 2 or more and n is 2, each may independently have a different substituent.

상기 화학식(7)을 갖는 화합물들의 상세한 예로서는 알킬스티렌, 할로겐화 스티렌, 할로겐치환 알킬스티렌, 알콕시스티렌, 비닐바이페닐, 비닐페닐나프탈렌, 비닐페닐안트라센, 비닐페닐피렌, 트리알킬실릴비닐바이페닐, 트리알킬스테니바이페닐, 알킬실릴스티렌, 카르복시메틸스티렌, 알킬에스테르스티렌, 비닐벤젠술폰산 에스테르, 비닐벤질디알콕시포스파이드 등이 있다.Specific examples of the compound having the formula (7) include alkyl styrene, halogenated styrene, halogen-substituted alkyl styrene, alkoxy styrene, vinyl biphenyl, vinylphenylnaphthalene, vinylphenylanthracene, vinylphenylpyrene, trialkylsilylvinylbiphenyl, trialkyl Stenibiphenyl, alkylsilyl styrene, carboxymethyl styrene, alkyl ester styrene, vinyl benzene sulfonic acid ester, vinyl benzyl dialkoxy phosphide and the like.

알킬스티렌으로는 스티렌, 메틸스티렌, 에틸스티렌, 부틸스티렌, 파라-메틸스티렌, 파라-t-부틸스티렌, 디메틸스티렌 등이 있고, 할로겐화스티렌으로는 클로로스티렌, 브로모스티렌, 플로오로스티렌 등이 있고, 할로겐치환 알킬스티렌으로는 클로로메틸스티렌, 브로모메틸스티렌, 플로오로메틸스티렌 등이 있고, 알콕시스티렌으로는 메톡시스티렌, 에톡시스티렌, 부톡시스티렌등이 있고, 비닐바이페닐으로는 4-비닐바이페닐, 3-비닐바이페닐, 2-비닐바이페닐 등이 있고, 비닐페닐나프탈렌으로는 1-(4-비닐바이페닐나프탈렌), 2-(4-비닐바이페닐나프탈렌), 1-(3-비닐바이페닐나프탈렌), 2-(3-비닐바이페닐나프탈렌), 1-(2-비닐바이페닐나프탈렌) 등이 있고, 비닐페닐안트라센으로는 1-(4-비닐페닐)안트라센, 2-(4-비닐페닐)안트라센, 9-(4-비닐페닐)안트라센, 1-(3-비닐페닐)안트라센, 9-(3-비닐페닐)안트라센, 1-(2-비닐페닐)안트라센 등이 있고, 비닐페닐피렌으로는 1-(4-비닐페닐)피렌, 2-(4-비닐페닐)피렌, 1-(3-비닐페닐)피렌, 2-(3-비닐페닐)피렌, 1-(2-비닐페닐)피렌, 2-(2-비닐페닐)피렌 등이 있고, 트리알킬실릴비닐바이페닐로는 4-비닐-4-트리메틸실릴바이페닐 등이 있고, 알킬실릴스티렌으로는 p-트리메틸실릴스티렌, m-트리메틸실릴스티렌, o-트리메틸실릴스티렌, p-트리에틸실릴스티렌, m-트리에틸실릴스티렌, o-트리에틸실릴스티렌 등이 있다.Alkyl styrene includes styrene, methyl styrene, ethyl styrene, butyl styrene, para-methyl styrene, para-t-butyl styrene and dimethyl styrene. Halogenated styrene includes chloro styrene, bromostyrene, and fluoro styrene. Examples of the halogen-substituted alkyl styrene include chloromethyl styrene, bromomethyl styrene and fluoromethyl styrene. Examples of the alkoxy styrene include methoxy styrene, ethoxy styrene and butoxy styrene. Vinyl biphenyl, 3-vinyl biphenyl, 2-vinyl biphenyl, and the like, and as vinyl phenyl naphthalene, 1- (4-vinyl biphenyl naphthalene), 2- (4-vinyl biphenyl naphthalene), 1- (3 -Vinylbiphenylnaphthalene), 2- (3-vinylbiphenylnaphthalene), 1- (2-vinylbiphenylnaphthalene), and the like, and examples of vinylphenylanthracene include 1- (4-vinylphenyl) anthracene and 2- ( 4-vinylphenyl) anthracene, 9- (4-vinylphenyl) anthracene, 1- (3-ratio Nylphenyl) anthracene, 9- (3-vinylphenyl) anthracene, 1- (2-vinylphenyl) anthracene, and the like. As vinylphenylpyrene, 1- (4-vinylphenyl) pyrene, 2- (4-vinylphenyl) ) Pyrene, 1- (3-vinylphenyl) pyrene, 2- (3-vinylphenyl) pyrene, 1- (2-vinylphenyl) pyrene, 2- (2-vinylphenyl) pyrene and the like, and trialkylsilylvinyl Examples of biphenyl include 4-vinyl-4-trimethylsilylbiphenyl, and alkyl silyl styrene includes p-trimethylsilyl styrene, m-trimethylsilyl styrene, o-trimethylsilyl styrene, p-triethyl silyl styrene, and m-. Triethylsilyl styrene, o-triethylsilyl styrene, and the like.

상기 화학식(8)을 갖는 화합물들의 상세한 예로서는 p-디비닐벤젠, m-디비닐벤젠 등과 같은 디비닐벤젠; 트리비닐벤젠; 및 p-아릴스티렌, m-아릴스티렌 등과 같은 아릴스티렌이 있다.Specific examples of the compounds having the formula (8) include divinylbenzene such as p-divinylbenzene, m-divinylbenzene and the like; Trivinylbenzene; And aryl styrene such as p-aryl styrene, m-aryl styrene and the like.

또한, 본 발명의 촉매를 이용하여 중합되는 불포화 올레핀의 구조는 아래의 화학식(9)으로 표현될 수 있다:In addition, the structure of the unsaturated olefin polymerized using the catalyst of the present invention can be represented by the following formula (9):

상기식에서 E1, E2, E3및 E4는 각각 독립적으로 수소원자; 할로겐원자; 탄소원자, 산소원자, 실리콘원자, 인원자, 황원자, 세레니움 또는 주석원자를 적어도 1개 이상 포함하는 치환기를 나타내며, E1, E2, E3및 E4는 각각 독립적으로 다른 치환기를 가질 수 있다.Wherein E 1 , E 2 , E 3 and E 4 are each independently a hydrogen atom; Halogen atom; Represents a substituent including at least one carbon atom, oxygen atom, silicon atom, phosphorus atom, sulfur atom, serenium or tin atom, and each of E 1 , E 2 , E 3 and E 4 independently have a different substituent Can be.

상기 화학식(9)의 예로는 α-올레핀, 시클릭 올레핀, 디엔, 비닐케톤, 아크롤레인, 아크릴로니트릴, 아크릴로아미드, 아크릴산, 비닐아세테이트 등이 있다.Examples of the formula (9) include α-olefin, cyclic olefin, diene, vinyl ketone, acrolein, acrylonitrile, acrylamide, acrylic acid, vinyl acetate and the like.

α-올레핀으로는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐 등이 있고, 시클릭 올레핀으로는 시클로부텐, 시클로펜텐, 시클로헥센, 3-메틸시로펜텐, 3-메틸시클로헥센, 노르보넨 등이 있고, 디엔으로는 1,3-부타디엔, 이소프렌, 1-에톡시-1,3-부타디엔, 클로로프렌 등이 있고, 비닐케톤으로는 메틸비닐케톤, 페닐비닐케톤, 에틸비닐케톤, n-프로필비닐케톤 등이 있고, 아크롤레인으로는 아크롤레인, 메타크롤레인 등이 있고, 아크릴로니트릴로는 비닐리덴시아나이드, 메톡시아크릴로니트릴, 페닐아크릴로니트릴 등이 있고, 아크릴로아미드로는 N-메틸 아크릴 아미드, N-에틸 아크릴 아미드, N-이소프로필 아크릴 아미드 등이 있고, 아크릴산 클로라이드 등이 있고, 비닐아세테이트로는 비닐아세테이트, 비닐티오아세테이트 등이 있다.α-olefins include ethylene, propylene, 1-butene, 1-hexene, 1-octene, and the like, and cyclic olefins include cyclobutene, cyclopentene, cyclohexene, 3-methylcyclopentene, 3-methylcyclohexene, Norbornene and the like, dienes include 1,3-butadiene, isoprene, 1-ethoxy-1,3-butadiene, and chloroprene; and vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, ethyl vinyl ketone, and n. -Propyl vinyl ketone, and the like, and acrolein include acrolein and methacrolein. Acrylonitrile includes vinylidene cyanide, methoxy acrylonitrile, phenyl acrylonitrile, and the like. -Methyl acrylamide, N-ethyl acrylamide, N-isopropyl acrylamide, and the like, acrylic acid chloride and the like, and vinyl acetate, vinyl acetate and the like.

본 발명의 에틸렌/스티렌 공중합체 제조시 사용되는 용매는 톨루엔, 헥산, 헵탄 등의 탄화수소 용매를 사용할 수 있으며, 용매를 전혀 사용하지 않는 괴상중합을 통해서도 공중합체를 얻을 수 있다. 중합촉매의 양은 용매 1L 당 10-7∼10-2몰이 사용되며, 바람직하기로는 10-5∼10-4몰이 사용된다. 스티렌 중합온도는 0∼100℃이고, 바람직하기로는 30∼90℃이다.The solvent used in the preparation of the ethylene / styrene copolymer of the present invention may be a hydrocarbon solvent such as toluene, hexane, heptane, and the copolymer may be obtained even through bulk polymerization without using any solvent. The amount of the polymerization catalyst is 10 -7 to 10 -2 mol per 1 L solvent, preferably 10 -5 to 10 -4 mol. Styrene polymerization temperature is 0-100 degreeC, Preferably it is 30-90 degreeC.

본 발명의 메탈로센 촉매는 하기의 실시예에 의하여, 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The metallocene catalyst of the present invention may be more clearly understood by the following examples, which are merely illustrative purposes of the present invention and are not intended to limit the scope of the present invention.

실시예 1∼4: 촉매합성Examples 1-4: Catalytic Synthesis

실시예 1: SAN-TiCl4 Example 1 SAN-TiCl 4

20%의 아크릴로니트릴(acrylonitrile)을 함유하고 있는 SAN[poly(styrene-co- acrylonitrile] 화합물(2g, 7.54mmol CN)을 유기용매(톨루엔, 100ml)에 녹이고, 낮은 온도하에서 사염화티탄(TiCl4)(10mmol) 화합물을 주입하면 즉시 오렌지색의 고체가 석출된다. 이 반응혼합물을 약 10시간 반응시킨 후, 액체상과 고체상을 분리시키고, 고체상만을 취하고, 유기용매[톨루엔(100ml×1)과 헥산(100ml×4)]로 씻어주고, 진공 건조하여 SAN-TiCl4촉매를 제조하였다. 이때 얻어진 폴리머-촉매는 10.1 wt%의 Ti를 함유하였다.SAN (poly (styrene-co-acrylonitrile) compound (2g, 7.54mmol CN) containing 20% acrylonitrile was dissolved in organic solvent (toluene, 100ml) and titanium tetrachloride (TiCl 4) (10 mmol) compound immediately precipitates an orange solid, and the reaction mixture is reacted for about 10 hours, then the liquid phase and the solid phase are separated, and the solid phase is taken. The organic solvent [toluene (100 ml × 1) and hexane ( 100 ml x 4)] and dried under vacuum to prepare a SAN-TiCl 4 catalyst, wherein the polymer-catalyst obtained contained 10.1 wt% Ti.

실시예 2: SAN-Mg-TiCl4 Example 2: SAN-Mg-TiCl 4

20%의 아크릴로니트릴을 함유하고 있는 SAN 화합물(2g, 7.54mmol CN)과 5g의 calcinated 실리카(1.45mmol OH/g silica)를 유기용매(톨루엔 100ml)에 녹이고, 낮은 온도하에서 부틸마그네슘 클로라이드(butylmagnesium chloride)(8mmol)를 주사기로 주입하고 10시간이상 반응시키면, 흰색의 고체가 석출된다. 이 반응 혼합물을 여과하고, 톨루엔(80ml×1)으로 씻어주고, 정제된 헥산(100ml)을 캐뉼라(cannular)로 주입한다. 여기에 사염화티탄(16mmol)을 주사기로 주입한 후 4시간 동안 상온에서 반응시킨다. 액체상과 고체상을 분리시키고, 고체상만을 취하고, 유기용매(핵산 100ml×5)로 씻어주고, 진공 건조하여 SAN-Mg-TiCl4촉매를 제조하였다. 이렇게 얻어진 폴리머-촉매는 3.3 wt%의 Ti과 2.6 wt%의 Mg를 함유하였다.SAN compounds containing 20% acrylonitrile (2 g, 7.54 mmol CN) and 5 g calcinated silica (1.45 mmol OH / g silica) were dissolved in an organic solvent (100 ml of toluene) and butylmagnesium chloride at low temperature. chloride) (8mmol) is injected into the syringe and allowed to react for 10 hours or more. A white solid precipitates out. The reaction mixture is filtered, washed with toluene (80 ml x 1) and purified hexane (100 ml) is injected into the cannular. Titanium tetrachloride (16 mmol) is injected into the syringe and reacted at room temperature for 4 hours. The liquid and solid phases were separated, and only the solid phase was taken up, washed with an organic solvent (100 ml × 5 of nucleic acid), and dried under vacuum to prepare a SAN-Mg-TiCl 4 catalyst. The polymer-catalyst thus obtained contained 3.3 wt% Ti and 2.6 wt% Mg.

실시예 3: SAN-Mg-Cp*TiCl3 Example 3: SAN-Mg-Cp * TiCl 3

20%의 아크릴로니트릴을 함유하고 있는 SAN 화합물(2g, 7.54mmol CN)을 유기용매(톨루엔 100ml)에 녹이고, 낮은 온도하에서 부틸마그네슘 클로라이드(butylmagnesium chloride)(8 mmol)을 주사기로 주입하고, 10시간 이상 반응시키면, 흰색의 고체가 석출된다. 이 반응혼합물을 여과하고, 톨루엔(80ml×1)으로 씻어주고, 정제된 헥산(100ml)을 캐뉼라(cannular)로 주입하였다. 여기에 펜타메틸시클로펜타디에닐티타늄 트리클로라이드(Cp*TiCl3, 1.6g, 5.5mmol)를 톨루엔(50ml)에 녹여 주입한 후 4시간 동안 상온에서 반응시켰다. 액체상과 고체상을 분리시키고, 고체상만을 취한 뒤, 유기용매[톨루엔(100ml×2)과 헥산(100ml×3)]로 씻어주고, 진공 건조하여 SAN-Mg-TiCl4촉매를 제조하였다. 이렇게 얻어진 폴리머-촉매는 2.2wt%의 Ti과 5.5wt%의 Mg을 함유하였다.SAN compound containing 20% acrylonitrile (2 g, 7.54 mmol CN) was dissolved in an organic solvent (100 ml of toluene), and butylmagnesium chloride (8 mmol) was injected into a syringe at a low temperature. When reacted for more than a time, a white solid precipitates. The reaction mixture was filtered, washed with toluene (80 ml x 1), and purified hexane (100 ml) was injected into a cannular. Herein, pentamethylcyclopentadienyltitanium trichloride (Cp * TiCl 3 , 1.6 g, 5.5 mmol) was dissolved in toluene (50 ml) and reacted at room temperature for 4 hours. The liquid and solid phases were separated, and only the solid phase was taken, washed with an organic solvent [toluene (100 ml × 2) and hexane (100 ml × 3)], and dried under vacuum to prepare a SAN-Mg-TiCl 4 catalyst. The polymer-catalyst thus obtained contained 2.2 wt% Ti and 5.5 wt% Mg.

실시예 4: SAN-Mg-Cp*Ti(OMe)3 Example 4 SAN-Mg-Cp * Ti (OMe) 3

펜타메틸시클로펜타디에닐티타늄 트리메톡사이드(Cp*Ti(OMe)3, 1.2g, 4.35 mmol)를 톨루엔(50ml)에 녹여 주입한 것을 제외하고는 실시예 3과 동일하게 실시하였다. 이렇게 얻어진 폴리머-촉매는 1.2 wt%의 Ti과 6.3 wt%의 Mg를 함유하였다.Pentamethylcyclopentadienyltitanium trimethoxide (Cp * Ti (OMe) 3 , 1.2 g, 4.35 mmol) was prepared in the same manner as in Example 3 except that the mixture was dissolved in toluene (50 ml). The polymer-catalyst thus obtained contained 1.2 wt% Ti and 6.3 wt% Mg.

비교실시예 1∼3: 촉매합성Comparative Examples 1 to 3: Catalyst Synthesis

비교실시예 1Comparative Example 1

질소 존재하에서 데칸 50ml에 무수 염화마그네슘 4.76g(0.05mmol)을 현탁시키고, 2-에틸헥실알콜 30ml(0.2mmol)을 주입하여 서서히 가열시켜 100℃에서 2시간 동안 반응시켜 균일한 용액을 제조하였다. 온도를 상온으로 내린 후 SiCl412ml(0.1mmol)을 천천히 적가하여 50℃에서 1시간 동안 반응시켜 담체를 생성시키고, 온도를 다시 상온으로 낮춘 후 TiCl430ml(0.27mmol)을 천천히 적가하고 80℃에서 2시간 동안 반응시켜 촉매를 제조하였다. 제조된 촉매를 정제된 헥산 100ml으로 유리 티타늄이 제거될 때까지 세척한 후 건조하여 보관하였다. 중합과정은 실시예 1에 기재된 내용과 동일하게 실시하였다. 얻어진 중합체는 150g이며, 활성은 8.3 kg-PE/mmol-Ti이었다. 그리고 중합체의 평균 입자크기는 350㎛, span은 1.5이고, 겉보기 밀도는 0.27g/ml이었다.Anhydrous magnesium chloride 4.76 g (0.05 mmol) was suspended in 50 ml of decane in the presence of nitrogen, 30 ml (0.2 mmol) of 2-ethylhexyl alcohol was added thereto, and the mixture was slowly heated to react at 100 ° C. for 2 hours to prepare a uniform solution. After the temperature was lowered to room temperature, 12 ml (0.1 mmol) of SiCl 4 was slowly added dropwise and reacted at 50 ° C. for 1 hour to form a carrier. After lowering the temperature to room temperature, 30 ml (0.27 mmol) of TiCl 4 was slowly added dropwise and 80 ° C. The catalyst was prepared by reacting for 2 hours at. The prepared catalyst was washed with 100 ml of purified hexane until free titanium was removed, and then dried and stored. The polymerization process was carried out in the same manner as described in Example 1. 150 g of the polymer was obtained and had an activity of 8.3 kg-PE / mmol-Ti. The average particle size of the polymer was 350 μm, the span was 1.5, and the apparent density was 0.27 g / ml.

비교실시예 2: 1,2,3,4,5-펜타메틸시클로펜타디에닐 티타늄트리클로라이드Comparative Example 2: 1,2,3,4,5-pentamethylcyclopentadienyl titanium trichloride

칼륨 126mmol(4.93g)을 플라스크에 무게를 재어 넣은 후, THF(Tetra hydrofuran 150ml)를 넣었다. 이후 반응 용기를 0℃로 낮춘 후, Cp*(1,2,3,4,5- pentamethylcyclopentadiene) 126mmol(17.17g)을 천천히 가한 후, 반응온도를 올려 환류(reflux)시켰다. 반응이 진행되면서 바닥에 녹지 않는 흰색의 고체가 가라앉았다. 고체가 가라앉기 시작한 후 약 1시간을 더 환류시킨 후 환류를 멈추고, 다시 온도를 0℃로 낮춘 후, 클로로트리메틸실란(trimethylsilane) 130mmol(14.12g)을 주사기를 이용하여 서서히 가하였다. 이후 2시간 교반 후 셀라이트(celite)를 통해 필터(filter)하여, 약간 노란색을 띠는 맑은 용액을 얻을 수 있고, 0.1torr 정도의 감압하에서 용매(THF)를 제거하여 Cp*(1,2,3,4,5-펜타메틸시클로펜타디엔)에 트리메틸실란(trimethylsilan)이 치환된 화합물을 90%의 수율로 얻었다. 이 화합물 88.9mmol(18.5g)을 톨루엔(50ml)과 혼합하고, 16.86g의 TiCl4(88.9mmol)을 톨루엔(200ml)용액에 섞어 천천히 가하였다. 이 붉은 용액을 2시간 동안 교반한 후 감압하에서 톨루엔을 제거하고, 펜탄이나 헥산으로 씻어주고 잘 말려서 원하는 전형적인 반쪽 메탈로센(half metallocene)의 일종인 1,2,3,4,5-펜타메틸시클로펜타디에닐 티타늄트리클로라이드(Cp*TiCl3)를 95%의 수율로 얻었다.126 mmol (4.93 g) of potassium was weighed into the flask, followed by 150 ml of THF (Tetra hydrofuran). After the reaction vessel was lowered to 0 ° C., 126 mmol (17.17 g) of Cp * (1,2,3,4,5-pentamethylcyclopentadiene) was slowly added, and the reaction temperature was raised to reflux. As the reaction progressed, a white solid insoluble in the bottom subsided. After refluxing, the reflux was stopped for a further 1 hour, the reflux was stopped, the temperature was lowered to 0 ° C., and 130 mmol (14.12 g) of chlorotrimethylsilane was slowly added using a syringe. After stirring for 2 hours through a celite (filter) to obtain a slightly yellow clear solution, to remove the solvent (THF) under a reduced pressure of about 0.1torr Cp * (1, 2, A compound in which trimethylsilan was substituted with 3,4,5-pentamethylcyclopentadiene) was obtained in a yield of 90%. 88.9 mmol (18.5 g) of this compound was mixed with toluene (50 ml), and 16.86 g of TiCl 4 (88.9 mmol) was added to the toluene (200 ml) solution and added slowly. After stirring this red solution for 2 hours, toluene was removed under reduced pressure, washed with pentane or hexane and dried well to obtain 1,2,3,4,5-pentamethyl, a kind of typical half metallocene. Cyclopentadienyl titanium trichloride (Cp * TiCl 3 ) was obtained in 95% yield.

비교실시예 3: 1,2,3,4,5-펜타메틸시클로펜타디에닐 티타늄트리메톡사이드Comparative Example 3: 1,2,3,4,5-pentamethylcyclopentadienyl titanium trimethoxide

비교실시예 2에서와 같이 합성한 화합물(Cp*TiCl3)20mmol(5.79g)을 플라스크에 넣고, THF(100ml)를 넣어 녹였다. 다른 플라스크에 건조된 MeOH 60 mmol(1.92g)을 넣고 THF(100ml)로 녹인 후, 반응용기의 온도를 -78℃로 낮추었다. 이 용기에 트리에틸아민(triethylamine) 61mmol(6.1g)을 주사기로 가한 후, 약 30분 동안 그 온도에서 교반한 후, Cp*TiCl3가 THF 100ml에 녹아 있는 용액을 메탄올과 트리에틸아민이 THF(100ml)에 녹아 있는 용액에 서서히 첨가하였다. 첨가가 끝나면 서서히 반응용기의 온도를 상온으로 올렸다. 이후 12시간 정도 상온에서 반응을 시킨 후, 감압하에서 THF를 제거하고, 헥산 100ml을 가하여 30분 동안 교반하고, 셀라이트를 통해 여과하여 노란색의 용액이 얻어진다. 이 노란색 용액의 용매를 진공으로 건조하여 79%의 수득률로 1,2,3,4,5-펜타메틸시클로펜타디에닐 티타늄트리메톡사이드(Cp*Ti(OMe)3)를 얻었다.20 mmol (5.79 g) of a compound (Cp * TiCl 3 ) synthesized as in Comparative Example 2 was placed in a flask, and THF (100 ml) was added thereto to dissolve. In another flask, 60 mmol (1.92 g) of dried MeOH was dissolved in THF (100 ml), and the temperature of the reaction vessel was lowered to -78 ° C. Triethylamine 61mmol (6.1g) was added to the vessel, stirred at that temperature for about 30 minutes, and Cp * TiCl 3 dissolved in 100 ml of THF was dissolved in methanol and triethylamine THF. (100 ml) was added slowly to the solution. After the addition, the temperature of the reaction vessel was gradually raised to room temperature. Thereafter, after reacting at room temperature for about 12 hours, THF was removed under reduced pressure, 100 ml of hexane was added thereto, stirred for 30 minutes, and filtered through celite to obtain a yellow solution. The solvent of this yellow solution was dried in vacuo to give 1,2,3,4,5-pentamethylcyclopentadienyl titaniumtrimethoxide (Cp * Ti (OMe) 3 ) at a yield of 79%.

실시예 5∼11 및 비교실시예 4∼6: 에틸렌/스티렌 공중합Examples 5-11 and Comparative Examples 4-6: Ethylene / Styrene Copolymerization

실시예 1∼4에서 제조된 신규의 메탈로센 촉매(촉매 1∼4)를 사용하여 에틸렌/스티렌 중합을 실시하였다.Ethylene / styrene polymerization was carried out using novel metallocene catalysts (catalysts 1-4) prepared in Examples 1-4.

스티렌 중합은 외부온도 조절장치, 자기교반기 및 단량체와 질소를 공급할 수 있는 밸브가 있는 1L 유리 반응기에서 행하였다. 진공하에서 유리반응기에 상압의 에틸렌을 주입한 후, 일정량의 정제된 스티렌(200mL)을 넣고 수분등의 불순물을 제거하기 위해 트리이소부틸 알루미늄을 처리하였다. 일정시간 경과 후, 조촉매인 MAO를 필요량 투입하고, 그 다음 필요량의 촉매를 주입하여 중합을 실시하였다. 일정시간 동안 중합 후 소량의 메탄올을 넣어 중합을 종결시키고, 얻은 혼합물을 수산화나트륨이 첨가된 다량의 메탄올에 부어 중합체를 얻고 물과 메탄올로 세척한 다음 수 시간 동안 진공 건조하였다. 이렇게 얻어진 중합체를 끓는 THF를 이용하여 녹여내면 공중합체들을 용해하여 얻을 수 있었다.Styrene polymerization was carried out in a 1 L glass reactor with an external thermostat, a magnetic stirrer and a valve capable of supplying monomers and nitrogen. After vacuum ethylene was injected into the glass reactor under vacuum, a predetermined amount of purified styrene (200 mL) was added thereto, and triisobutyl aluminum was treated to remove impurities such as moisture. After a certain time, the required amount of MAO as a promoter was added, and then a required amount of catalyst was injected to carry out polymerization. After the polymerization for a certain time, a small amount of methanol was added to terminate the polymerization, and the obtained mixture was poured into a large amount of methanol added with sodium hydroxide to obtain a polymer, washed with water and methanol, and then vacuum dried for several hours. The polymer thus obtained was dissolved in boiling THF to dissolve the copolymers.

기타 중합은 70℃, 1시간 중합조건 하에서 실시하였으며, 여러 가지 중합조건별 특성을 표 1에 나타내었다.Other polymerization was carried out under polymerization conditions at 70 ° C. for 1 hour, and the characteristics of various polymerization conditions are shown in Table 1.

구 분division 에틸렌(psig)Ethylene (psig) [MAO]/[Ti][MAO] / [Ti] [TiBA]/[Ti][TiBA] / [Ti] 수율(g)Yield (g) THF 용해분THF dissolved wt %wt% 스티렌함량(몰%)Styrene content (mol%) 녹는점(℃)Melting Point (℃) 평균분자량(×104)Average molecular weight (× 10 4 ) 분자량분포Molecular weight distribution 실시예 5Example 5 촉매1Catalyst 1 3030 700700 200200 14.314.3 10.810.8 5959 262262 20.920.9 2.532.53 실시예 6Example 6 3030 420420 200200 9.49.4 20.620.6 5353 260260 19.819.8 2.602.60 실시예 7Example 7 3030 140140 200200 2.882.88 4242 7272 267267 7.567.56 2.572.57 실시예 8Example 8 촉매2Catalyst 2 3030 400400 200200 35.535.5 1717 5555 94/242/26294/242/262 15.515.5 8.468.46 실시예 9Example 9 180180 700700 200200 10.810.8 5050 4.54.5 121121 29.229.2 4.514.51 실시예10Example 10 촉매3Catalyst 3 3030 400400 200200 3.53.5 7171 8282 -- 8.68.6 7.797.79 실시예11Example 11 촉매4Catalyst 4 3030 400400 200200 10.710.7 25.425.4 9797 -- 1.91.9 3.343.34 비교예 4Comparative Example 4 비교촉매1Comparative Catalyst 1 3030 700700 200200 7.87.8 <5<5 9797 -- 2.02.0 1.551.55 비교예 5Comparative Example 5 비교촉매2Comparative Catalyst 2 3030 700700 200200 5.35.3 00 -- -- -- -- 비교예 6Comparative Example 6 비교촉매3Comparative Catalyst 3 3030 700700 200200 7.27.2 00 -- -- -- --

13C NMR은 TMS(tetramethylsilane)을 표준으로 하여 트리클로로벤젠과 벤젠-d6의 혼합용매를 이용하여 측정하였다. 이러한 폴리머들은 상온에서 상기 용매에서의 용해도가 감소하므로, 고온(100℃)에서 측정하였다. 13 C NMR was measured using a mixed solvent of trichlorobenzene and benzene-d6 using TMS (tetramethylsilane) as a standard. These polymers were measured at high temperature (100 ° C.) because of their reduced solubility in the solvent at room temperature.

메틴(methine)과 메틸렌(methylene) 탄소에서 피크의 분포는 하기 표 2와 같다. 여기서, 기호 S는 메틸렌기(2차 탄소)를 의미하며, 기호 T는 메틴기(3차 탄소)를 의미한다. 또한, 기호 α, β, γ는 각각 인접 탄소, 하나 건넌 위치의 탄소, 둘 건넌 위치의 탄소와의 상호관계를 의미한다.The distribution of peaks in methine and methylene carbon is shown in Table 2 below. Here, the symbol S means methylene group (secondary carbon), and the symbol T means methine group (tertiary carbon). In addition, the symbols alpha, beta, and gamma respectively mean mutual relations with adjacent carbons, carbon at one crossing position, and carbon at two crossing positions.

일반적으로 에틸렌/스티렌 공중합체의 미세구조는13C NMR을 이용하여 결정하는 것으로 알려져 있으며 에틸렌/스티렌 공중합체의 화학이동(Chemicals Shift)은하기와 같다(Macromolecules vol. 13, p849).In general, the microstructure of the ethylene / styrene copolymer is known to be determined using 13 C NMR, and the chemical shift of the ethylene / styrene copolymer is as follows (Macromolecules vol. 13, p849).

δ ppm(TMS 표준)δ ppm (TMS standard) 탄소carbon SequenceSequence 비고Remarks 27.9727.97 SβδSβδ ESE, SEEn>1ESE, SEEn> 1 29.8929.89 Sγδ + SδδSγδ + Sδδ SEEn>1SEEn> 1 29.9929.99 SδδSδδ EEEEEE 37.3037.30 Sαγ + SαδSαγ + Sαδ SES+SEESES + SEE 41.8341.83 TββTββ SSSSSS 신디오탁틱Syndiotactic 44.0844.08 TβδTβδ SSESSE 신디오탁틱Syndiotactic 45.245.2 SααSαα SSSSSS 신디오탁틱Syndiotactic 145.79145.79 Ph-Ph- SSSSSS 신디오탁틱Syndiotactic 146.36146.36 ESEESE

상기 표 2에서 41.83, 44.08, 45.2 및 145.79 ppm의 피크들은 두 개 이상의 이웃한 스티렌 반복단위가 서로 신디오탁틱 입체구조를 가지고 있는 경우에 나타나며, 특히, SSS 시퀀스에서 기인하는 41.83, 45.2 및 145.72 ppm의 피크들은 호모 신디오탁틱 폴리스티렌에서도 보여주는 것들이다. 본 발명의 공중합체들은 끓는 THF에 용해된 부분에서 위의 신디오탁틱 폴리스티렌의 특성 피크를 보여주고, 이것을 바탕으로 에틸렌/스티렌 공중합체 내에 신디오탁틱 폴리스티렌 블록이 존재함을 알 수 있었다. 또한, 29.7 ppm과 37.3 ppm에서 보이는 피크는 각각 에틸렌-스티렌-에틸렌의 구조와 스티렌-에틸렌-스티렌의 구조에서 기인하는데, 본발명의 공중합체에서는 이 위치에서의 피크는 그 강도가 아주 작았다.In Table 2, the peaks of 41.83, 44.08, 45.2 and 145.79 ppm appear when two or more neighboring styrene repeat units have syndiotactic conformation with each other, in particular 41.83, 45.2 and 145.72 ppm resulting from the SSS sequence. Peaks are also shown in homo syndiotactic polystyrene. The copolymers of the present invention showed characteristic peaks of syndiotactic polystyrene in the portion dissolved in boiling THF, and it was found that syndiotactic polystyrene blocks exist in the ethylene / styrene copolymer. In addition, the peaks seen at 29.7 ppm and 37.3 ppm are attributable to the structure of ethylene-styrene-ethylene and the structure of styrene-ethylene-styrene, respectively. In the copolymer of the present invention, the peak at this position was very small.

에틸렌과 스티렌의 반응성비(rsre)와 에틸렌과 스티렌의 반복단위의 길이를 문헌에 개시된 방법들을 통해 구할 수 있었으며(미국특허 제5,543,484호), 그 결과는 하기 표 3과 같다. 반응성비(rsre)에서 rs는 스티렌의 반응성이고, re는 에틸렌의 반응성을 의미하며, 이들의 곱을 반응성비로 나타내었다.The reactivity ratio of ethylene and styrene (r s r e ) and the length of repeating units of ethylene and styrene were obtained by the methods disclosed in the literature (US Pat. No. 5,543,484), and the results are shown in Table 3 below. In the reactivity ratio (r s r e ), r s is the reactivity of styrene, r e is the reactivity of ethylene, and their product is expressed as the reactivity ratio.

구 분division [스티렌]/[에틸렌][Styrene] / [ethylene] rsre r s r e ns스티렌 반복단위평균수n s Number of styrene repeat units ne에틸렌 반복단위평균수n e ethylene repeat unit average number 촉매 1Catalyst 1 7.57.5 109109 33 2020 촉매 2Catalyst 2 7.57.5 31.931.9 1919 77 촉매 2Catalyst 2 22 59.259.2 88 2121 촉매 3Catalyst 3 7.57.5 2424 2020 5.55.5 비교촉매 1Comparative Catalyst 1 7.57.5 -- 폴리스티렌polystyrene 폴리에틸렌Polyethylene

위에서 구한 반응성비를 통해 폴리머-촉매들은 블록공중합체를 생성할 수 있으며, 신디오탁틱 폴리스티렌 블록의 길이도 단량체의 농도변화에 따라 쉽게 조절할 수 있음을 알 수 있다.It can be seen from the above-described reactivity ratio that the polymer-catalysts can produce block copolymers, and the length of the syndiotactic polystyrene block can be easily adjusted according to the concentration of the monomer.

또한, 실시예 2의 촉매 2를 사용하여 [스티렌]/[에틸렌]=7.5의 조건에서 중합한 공중합체의 경우, CFC(Cross Fractionation Chromatography)를 이용한 결과 0℃에서 1,2-디클로로벤젠 용매에 완벽하게 용출되는 단일공중합체임을 확인할 수 있었다. 그리고, 이 공중합체는 DSC(Differential Scanning Calorimeter)상에서, 신디오탁틱 폴리스티렌 블록에서 기인하는 것으로 보여지는 260℃ 부근에서 관찰되었다(2차 녹는점, 10℃/min).In addition, in the case of the copolymer polymerized under the conditions of [Styrene] / [ethylene] = 7.5 using the catalyst 2 of Example 2, the resultant was subjected to cross-fractionation chromatography (CFC) in 1,2-dichlorobenzene solvent at 0 ° C. It was confirmed that the homopolymer completely eluted. This copolymer was then observed on the Differential Scanning Calorimeter (DSC) at around 260 ° C., which appears to be due to syndiotactic polystyrene blocks (secondary melting point, 10 ° C./min).

본 발명은 신디오탁틱 폴리스티렌 블록을 포함하며 입체규칙성을 갖는 에틸렌/스티렌 공중합체를 제조하기 위한 촉매 및 그 제조방법을 제공하며, 상기 촉매를 이용함으로써 높은 스티렌 함량의 영역에서도 결정성 구조를 가지며, 녹는점이 높고 내열성 및 기계적 성질이 우수한 에틸렌/스티렌 공중합체를 제공하는 효과를 갖는다.The present invention provides a catalyst for producing an ethylene / styrene copolymer having stereoregularity, including a syndiotactic polystyrene block, and a method for preparing the same, wherein the catalyst has a crystalline structure even in a region of high styrene content. It has the effect of providing an ethylene / styrene copolymer having a high melting point and excellent heat resistance and mechanical properties.

본 발명의 단순한 변형 또는 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이해될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or variations of the present invention can be readily understood by those skilled in the art, and all such variations or modifications can be considered to be included within the scope of the present invention.

Claims (15)

스티렌-아크릴로니트릴(SAN) 공중합체를 유기용매에 용해시키고;Styrene-acrylonitrile (SAN) copolymer is dissolved in an organic solvent; 상기 용액을 1A족 또는 2A족의 금속 화합물과 반응시키고;Reacting the solution with a metal compound of group 1A or 2A; 상기 용액을 주기율표 4족, 5족, 6족, 7족 또는 8족의 전이금속 화합물과 반응시키고;Reacting the solution with a transition metal compound of Group 4, 5, 6, 7 or 8 of the Periodic Table; 상기 반응액을 고체층 및 액체층으로 분리하고;Separating the reaction solution into a solid layer and a liquid layer; 상기 분리된 고체층(촉매)을 다시 유기용매로 세척하고; 그리고Washing the separated solid layer (catalyst) again with an organic solvent; And 상기 세척된 촉매를 진공 건조시키는;Vacuum drying the washed catalyst; 단계로 이루어지는 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.Method for producing a metallocene catalyst for ethylene / styrene copolymer, characterized in that consisting of steps. 삭제delete 제1항에 있어서, 상기 SAN 공중합체를 유기용매에 용해시킨 용액을 지지체에담지시키는 단계를 더 포함하는 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.The method of claim 1, further comprising supporting a solution of the SAN copolymer dissolved in an organic solvent on a support. 제3항에 있어서, 상기 지지체는 실리카, 알루미나, MgR1R2(여기서 R1및 R2는 알킬기, 아릴기, 알콕시, 아미도기 또는 할로겐임), 제올라이트, 인산알루미늄 및 지르코니아로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.4. The support of claim 3 wherein the support is selected from the group consisting of silica, alumina, MgR 1 R 2 (where R 1 and R 2 are alkyl groups, aryl groups, alkoxy, amido groups or halogens), zeolites, aluminum phosphates and zirconia Method for producing a metallocene catalyst for ethylene / styrene copolymer, characterized in that. 제1항에 있어서, 상기 SAN 공중합체는 고분자 주쇄의 분자량이 1,000 내지 1,000,000의 범위이고, 아크릴로니트릴의 함량이 1∼99 중량%의 범위인 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.The metallocene catalyst for ethylene / styrene copolymerization of claim 1, wherein the SAN copolymer has a molecular weight of the polymer main chain in the range of 1,000 to 1,000,000 and an acrylonitrile content in the range of 1 to 99% by weight. Manufacturing method. 제1항에 있어서, 상기 전이금속 화합물은 티타늄(Ⅲ) 클로라이드, 티타늄(Ⅳ) 클로라이드, 티타늄(Ⅲ) 메톡사이드, 티타늄(Ⅲ) 에톡사이드, 티타늄(Ⅲ) 이소프로폭사이드, 티타늄(Ⅲ) 프로폭사이드, 티타늄(Ⅲ) 부톡사이드, 티타늄(Ⅳ) 메톡사이드, 티타늄(Ⅳ) 에톡사이드, 티타늄(Ⅳ) 이소프로폭사이드, 티타늄(Ⅳ) 프로폭사이드, 티타늄(Ⅳ) 부톡사이드, 펜타메틸시클로펜타디에닐티타늄 트리클로라이드, 펜타메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 펜타메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2,4-트리메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2,4-트리메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2,4-트리메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 1,2-디메틸시클로펜타디에닐티타늄 트리클로라이드, 1,2-디메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 1,2-디메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 메틸시클로펜타디에닐티타늄 트리클로라이드, 메틸시클로펜타디에닐메톡시티타늄 디클로라이드, 메틸시클로펜타디에닐디메톡시티타늄 모노클로라이드, 시클로펜타디에닐티타늄 트리클로라이드, 사이크로펜타디에닐메톡시티타늄 디클로라이드, 시클로펜타디에닐디메톡시티타늄 모노클로라이드, 펜타메틸시클로펜타디에닐메틸티타늄 디클로라이드, 펜타메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2,3,4-테트라메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2,4-트리메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2,4-트리메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 1,2-디메틸시클로펜타디에닐메틸티타늄 디클로라이드, 1,2-디메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 메틸시클로펜타디에닐메틸티타늄 디클로라이드, 메틸시클로펜타디에닐디메틸티타늄 모노클로라이드, 시클로펜타디에닐메틸티타늄 디클로라이드, 및 시클로펜타디에닐디메틸티타늄 모노클로라이드로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.The method of claim 1, wherein the transition metal compound is titanium (III) chloride, titanium (IV) chloride, titanium (III) methoxide, titanium (III) ethoxide, titanium (III) isopropoxide, titanium (III) Propoxide, titanium (III) butoxide, titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) isopropoxide, titanium (IV) propoxide, titanium (IV) butoxide, penta Methylcyclopentadienyl titanium trichloride, pentamethylcyclopentadienylmethoxytitanium dichloride, pentamethylcyclopentadienyldimethoxytitanium monochloride, 1,2,3,4-tetramethylcyclopentadienyltitanium trichloride, 1,2,3,4-tetramethylcyclopentadienylmethoxytitanium dichloride, 1,2,3,4-tetramethylcyclopentadienyldimethoxytitanium monochloride, 1,2,4-trimethylcyclopentadienyl titanium Rechloride, 1,2,4-trimethylcyclopentadienylmethoxytitanium dichloride, 1,2,4-trimethylcyclopentadienyldimethoxytitanium monochloride, 1,2-dimethylcyclopentadienyltitanium trichloride, 1 , 2-dimethylcyclopentadienylmethoxytitanium dichloride, 1,2-dimethylcyclopentadienyldimethoxytitanium monochloride, methylcyclopentadienyltitanium trichloride, methylcyclopentadienylmethoxytitanium dichloride, methylcyclopenta Dienyldimethoxytitanium monochloride, cyclopentadienyltitanium trichloride, cyclopentadienylmethoxytitanium dichloride, cyclopentadienyldimethoxytitanium monochloride, pentamethylcyclopentadienylmethyltitanium dichloride, pentamethylcyclo Pentadienyldimethyltitanium monochloride, 1,2,3,4-tetramethylcyclo Tadienylmethyltitanium dichloride, 1,2,3,4-tetramethylcyclopentadienyldimethyltitanium monochloride, 1,2,4-trimethylcyclopentadienylmethyltitanium dichloride, 1,2,4-trimethyl Cyclopentadienyldimethyltitanium monochloride, 1,2-dimethylcyclopentadienylmethyltitanium dichloride, 1,2-dimethylcyclopentadienyldimethyltitanium monochloride, methylcyclopentadienylmethyltitanium dichloride, methylcyclopenta A method for producing a metallocene catalyst for ethylene / styrene copolymerization, which is selected from the group consisting of dienyldimethyltitanium monochloride, cyclopentadienylmethyltitanium dichloride, and cyclopentadienyldimethyltitanium monochloride. 제1항에 있어서, 상기 유기용매는 지방족, 방향족 탄화수소 또는 이들의 할로겐화 탄화수소인 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매의 제조방법.The method of claim 1, wherein the organic solvent is an aliphatic, aromatic hydrocarbon or a halogenated hydrocarbon thereof. 제1항 내지 제7항의 어느 한 항에 의하여 제조되고, 하기 화학식(3)으로 표시되는 것을 특징으로 하는 에틸렌/스티렌 공중합용 메탈로센 촉매:A metallocene catalyst for ethylene / styrene copolymerization prepared by any one of claims 1 to 7 and represented by the following general formula (3): 화학식 3Formula 3 상기식(3)에서 Z3는 M1Ln-2으로 표시되고 (여기서 M1은 4족(Ti, Zr, Hf), 5족(V, Nb, Ta), 6족(Cr, Mo, W), 7족(Mn, Tc, Re) 또는 8족(Re, Ru, Os, Rh, Ir, Ni, Pd, Pt)의 전이금속이며, L은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이고, 그리고 n은 1 내지 4의 정수임); M2는 1족(Li, Na, K, Rb, Cs, Fr) 또는 2족(Be, Mg, Ca, Sr, Ba, Ra)의 금속이고; X는 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기이며; n은 1 내지 4의 정수이고; 그리고 R1은 수소, 알킬기, 아릴기, 실릴기, 알콕시기, 아릴옥시기, 실록시기, 아미도기, 할로겐 또는 이들의 조합으로 형성된 기임.In Formula (3), Z 3 is represented by M 1 L n-2 (wherein M 1 is Group 4 (Ti, Zr, Hf), Group 5 (V, Nb, Ta), Group 6 (Cr, Mo, W), Group 7 (Mn, Tc, Re) or Group 8 (Re, Ru, Os, Rh, Ir, Ni, Pd, Pt) transition metal, L is hydrogen, alkyl group, aryl group, silyl group, alkoxy A group formed of a group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof, and n is an integer of 1 to 4); M 2 is a metal of Group 1 (Li, Na, K, Rb, Cs, Fr) or Group 2 (Be, Mg, Ca, Sr, Ba, Ra); X is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof; n is an integer from 1 to 4; And R 1 is a group formed of hydrogen, an alkyl group, an aryl group, a silyl group, an alkoxy group, an aryloxy group, a siloxy group, an amido group, a halogen or a combination thereof. 제8항에 의한 메탈로센 촉매 및 조촉매로 구성되는 촉매 시스템을 이용하여 에틸렌과 스티렌을 중합하는 것을 특징으로 하는 에틸렌/스티렌 공중합체의 중합방법.A polymerization method of ethylene / styrene copolymers, which comprises polymerizing ethylene and styrene using a catalyst system comprising a metallocene catalyst and a promoter according to claim 8. 제9항에 있어서, 상기 조촉매는 유기금속화합물인 것을 특징으로 하는 에틸렌/스티렌 공중합체의 중합방법.10. The method of claim 9, wherein the cocatalyst is an organometallic compound. 제10항에 있어서, 상기 유기금속화합물은 알킬알루미늄옥산과 유기알루미늄화합물중 적어도 하나를 사용하는 것을 특징으로 하는 에틸렌/스티렌 공중합체의 중합방법.The polymerization method of ethylene / styrene copolymer according to claim 10, wherein the organometallic compound comprises at least one of an alkylaluminum oxane and an organoaluminum compound. 제11항에 있어서, 상기 알킬알루미늄옥산은 메틸알루미늄옥산 및 개질된 메틸알루미늄옥산인 것을 특징으로 하는 에틸렌/스티렌 공중합체의 중합방법.The method of claim 11, wherein the alkyl aluminum oxane is methyl aluminum oxane and modified methyl aluminum oxane. 제11항에 있어서, 상기 유기알루미늄화합물은 하기 화학식(4)으로 표시되는 알루미늄옥산을 단위로 가지며, 하기 화학식(5) 및 (6)으로 표시되는 사슬상 및 환상의 알루미늄옥산인 것을 특징으로 하는 에틸렌/스티렌 공중합체의 중합방법:The organoaluminum compound according to claim 11, wherein the organoaluminum compound has aluminum oxane represented by the following formula (4) as a unit, and is a chain-shaped and cyclic aluminum oxane represented by the following formulas (5) and (6). Polymerization method of ethylene / styrene copolymer: 화학식 4Formula 4 화학식 5Formula 5 화학식 6Formula 6 상기식(4), (5) 및 (6)에서 R2은 C1∼6의 알킬기이고, 그리고 r은 0 내지 100의 정수임.In formulas (4), (5) and (6), R 2 is a C 1-6 alkyl group, and r is an integer from 0 to 100. 제9항 내지 제13항의 어느 한 항에 따라 제조되고, 평균 분자량이 30,000 이상이고, 스티렌 함량이 1∼99 몰%이며, 그리고 신디오탁틱 폴리스티렌 블록을 포함하는 것을 특징으로 하는 에틸렌/스티렌 공중합체.Ethylene / styrene copolymer prepared according to any one of claims 9 to 13, characterized in that the average molecular weight is at least 30,000, the styrene content is from 1 to 99 mol% and comprises syndiotactic polystyrene blocks. . 제14항에 있어서, 상기 신디오탁틱 폴리스티렌 블록은 스티렌 반복단위가 적어도 3 이상인 것을 특징으로 하는 에틸렌/스티렌 공중합체.15. The ethylene / styrene copolymer of claim 14, wherein the syndiotactic polystyrene block has at least three styrene repeat units.
KR1019990029500A 1999-07-21 1999-07-21 Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same KR100328870B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990029500A KR100328870B1 (en) 1999-07-21 1999-07-21 Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990029500A KR100328870B1 (en) 1999-07-21 1999-07-21 Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same

Publications (2)

Publication Number Publication Date
KR20010010543A KR20010010543A (en) 2001-02-15
KR100328870B1 true KR100328870B1 (en) 2002-03-20

Family

ID=19603249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990029500A KR100328870B1 (en) 1999-07-21 1999-07-21 Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same

Country Status (1)

Country Link
KR (1) KR100328870B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258812A (en) * 1989-03-31 1990-10-19 Idemitsu Kosan Co Ltd Styrene-based copolymer and production thereof
US5372980A (en) * 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
US5420089A (en) * 1988-03-24 1995-05-30 Idemitsu Kosan Co., Ltd. Catalyst for the production of styrene-based polymers
JPH07173208A (en) * 1993-12-21 1995-07-11 Mitsui Toatsu Chem Inc New metallocene compound and olefin polymerization using the same
JPH07247317A (en) * 1994-03-11 1995-09-26 Tosoh Corp Ionic metallocene compound, its production, and olefin polymerization catalyst using it
KR19990000189A (en) * 1997-06-03 1999-01-15 유현식 Catalysts for styrene polymerisation and the process of preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420089A (en) * 1988-03-24 1995-05-30 Idemitsu Kosan Co., Ltd. Catalyst for the production of styrene-based polymers
JPH02258812A (en) * 1989-03-31 1990-10-19 Idemitsu Kosan Co Ltd Styrene-based copolymer and production thereof
US5372980A (en) * 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
JPH07173208A (en) * 1993-12-21 1995-07-11 Mitsui Toatsu Chem Inc New metallocene compound and olefin polymerization using the same
JPH07247317A (en) * 1994-03-11 1995-09-26 Tosoh Corp Ionic metallocene compound, its production, and olefin polymerization catalyst using it
KR19990000189A (en) * 1997-06-03 1999-01-15 유현식 Catalysts for styrene polymerisation and the process of preparation thereof

Also Published As

Publication number Publication date
KR20010010543A (en) 2001-02-15

Similar Documents

Publication Publication Date Title
KR101637026B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
US6376412B1 (en) Metallocene compositions
KR20040076965A (en) A supported multinuclear metallocene catalysts for olefin polymerization and a process for preparing the same
US6380124B1 (en) Metallocene compositions
US6380330B1 (en) Metallocene compositions
KR20140049452A (en) Novel metallocene compound, catalyst composition comprising the same, and method for preparing olefin-based polymers using the same
CN106661072B (en) Metallocene compound, catalyst composition comprising the same, and method for preparing olefin-based polymer using the same
KR100440482B1 (en) New multinuclear half metallocene catalyst for styrene polymerization
WO2012036443A2 (en) Dinuclear metallocene compound and a production method for polyolefins using the same
KR101617871B1 (en) Dinuclear metallocene compound, catalyst composition and method for preparing polyolefin using the same
KR100371909B1 (en) Metallocene Catalysts Having Multi-nuclear Constrained Geometry and Ethylene/Aromatic Vinyl Compound Co-polymers Prepared by Using the Same
US11077434B2 (en) Method of preparing metallocene catalyst for polyolefin preparation
JPH1180183A (en) Metal compound for polymerization and production of aromatic vinyl compound-olefin copolymer with the same
KR101973191B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR100961079B1 (en) Catalyst for polymerization of olefin and polymerization process of olefin using the same
KR100328870B1 (en) Metallocene Catalysts for Ethylene/Styrene Co-polymerization and Method of preparing Same
KR100211854B1 (en) Catalysts for styrene polymerisation and the process of preparation thereof
KR100349979B1 (en) Multi-metallic Metallocene Catalysts for Polymerization of Styrene and Method of Polymerization Using the Same
KR100425250B1 (en) Styrene polymerization process using new multinuclear half metallocene catalyst
KR101233924B1 (en) Catalysts for poly(1-butene) and preparation of poly(1-butene) using the same
KR101785705B1 (en) Catalyst composition and method for preparing polyolefin using the same
KR100615460B1 (en) A Metallocene Catalyst and a Method for preparing Polyethylene Wax using the Metallocene Catalyst
KR100376053B1 (en) Metallocene Catalysts Having Multi-Nuclear Constrained Geometry and Polymerization Process Using the Catalysts
KR100497172B1 (en) Multinuclear half metallocene catalyst having sandwitch type metallocene derivatives as ligands for styrene polymerization and polymerization process using the metallocene catalyst
KR100503359B1 (en) Metallocene catalyst for styrene polymerization and polymerization process using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090105

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee