KR100323837B1 - Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent - Google Patents

Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent Download PDF

Info

Publication number
KR100323837B1
KR100323837B1 KR1020000000417A KR20000000417A KR100323837B1 KR 100323837 B1 KR100323837 B1 KR 100323837B1 KR 1020000000417 A KR1020000000417 A KR 1020000000417A KR 20000000417 A KR20000000417 A KR 20000000417A KR 100323837 B1 KR100323837 B1 KR 100323837B1
Authority
KR
South Korea
Prior art keywords
levanschkrase
levan
molecular weight
enzyme
immobilized
Prior art date
Application number
KR1020000000417A
Other languages
Korean (ko)
Other versions
KR20010068479A (en
Inventor
이상기
송기방
장기효
김철호
정봉현
Original Assignee
복성해
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 복성해, 한국생명공학연구원 filed Critical 복성해
Priority to KR1020000000417A priority Critical patent/KR100323837B1/en
Publication of KR20010068479A publication Critical patent/KR20010068479A/en
Application granted granted Critical
Publication of KR100323837B1 publication Critical patent/KR100323837B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1055Levansucrase (2.4.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/0101Levansucrase (2.4.1.10)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 저분자량 레반의 제조방법에 관한 것으로, 마그네타이트 비드(magnetite bead)에 고정된 레반슈크라제, 또는 레반슈크라제가 발현된 균체를 유기용매로 처리하여 퍼미어빌라이제이션(permeabilization)시킨 균체를 레반슈크라제의 효소원으로 사용하고 설탕을 기질로 하여 레반을 제조하는 본 발명의 방법에 의하면 저분자량의 레반을 경제적이고 효율적으로 대량생산할 수 있다.The present invention relates to a method for producing a low molecular weight levan, which is a cell obtained by permeabilization of a levanschkrase immobilized on a magnetite bead or a cell expressing Levanschkrase with an organic solvent. According to the method of the present invention, which is used as an enzyme source of levanschkraze and prepares levan by using sugar as a substrate, it is possible to mass-produce low molecular weight levan economically and efficiently.

Description

고정화된 레반슈크라제 또는 유기용매 처리된 균체를 이용한 저분자량 레반의 제조방법{PROCESS FOR THE PREPARATION OF LOW-MOLECULAR WEIGHT LEVAN BY USING IMMOBILIZED LEVANSUCRASE OR MICROORGANISM CELLS TREATED WITH AN ORGANIC SOLVENT}PROCESS FOR THE PREPARATION OF LOW-MOLECULAR WEIGHT LEVAN BY USING IMMOBILIZED LEVANSUCRASE OR MICROORGANISM CELLS TREATED WITH AN ORGANIC SOLVENT}

본 발명은 저분자량의 레반을 대량생산하는 방법에 관한 것으로서, 보다 구체적으로는 정제된 레반슈크라제(levansucrase, E.C.2.4.1.10)를 마그네틱 비드에 고정화하거나, 또는 레반슈크라제를 함유한 균체를 유기용매로 퍼미어빌라이제이션(permeabilization)시켜 각각을 레반슈크라제 효소원으로 이용함으로써 저분자량의 레반을 대량생산하는 방법에 관한 것이다.The present invention relates to a method for mass production of low-molecular weight levan, and more specifically, to fix purified levansucrase (EC2.4.1.10) in magnetic beads, or cells containing levanschkrase The present invention relates to a method for mass production of low molecular weight levan by permeabilization with an organic solvent and using each as an enzyme source of levanschkrase.

레반은 Glu-(Fru)n(여기에서, Glu는 글루코스 잔기, Fru는 프락토스 잔기, n은 약 101-105의 수를 나타낸다)로 나타내어지는 수용성 과당 폴리머로서 레반슈크라제의 과당 전이반응에 의해 설탕으로부터 생산된다. 이는 덱스트란과 물리화학적 특성이 유사하여 혈장대용제나 폴리에틸렌글리콜/레반의 수상이상분계 형성을 이용한 단백질의 분리(대한민국 특허출원 공개 제 99-54630 호) 등 덱스트란을 대신하여 사용될 수 있으며, 유화제, 안정화제, 캡슐화 시약 등 폭넓은 분야에 응용되고 있다(Lwibovici et al.,Anticancer Res.,5, 553(1985); 및 Stark et al.,Br. J. Exp. Path.,67, 141(1986)). 최근 레반은 산업용 폴리머 식품(Hatcher et al.,Boprocess, technol.,11, 1(1989)), 화장품, 제약분야에 응용되고 있다(Whiting et al.,J. Inst. Brew.,73, 422(1961); 및 Han,Bioprocess Technol.,12, 1(1990)).Levan is a water soluble fructose polymer represented by Glu- (Fru) n where Glu represents a glucose residue, Fru represents a fructose residue, and n represents a number of about 10 1 -10 5 . Produced from sugar by reaction. It has similar physicochemical properties to dextran and can be used in place of dextran, such as separation of proteins using plasma substitutes or the formation of aqueous phase separation systems of polyethylene glycol / levan (Korean Patent Application Publication No. 99-54630), emulsifiers, It has been applied to a wide range of fields such as stabilizers, encapsulation reagents (Lwibovici et al., Anticancer Res. , 5 , 553 (1985); and Stark et al., Br. J. Exp. Path. , 67 , 141 (1986). )). Recently, Levan has been applied in industrial polymer food (Hatcher et al., Boprocess , technol. , 11 , 1 (1989)), cosmetics and pharmaceuticals (Whiting et al., J. Inst. Brew. , 73 , 422 ( 1961) and Han, Bioprocess Technol. , 12 , 1 (1990)).

레반의 산업적인 응용에 있어서, 레반의 구조와 크기는 중요한 요소로서 작용한다. 즉, 저분자량의 균일한 크기의 레반은 혈장 대용제나 폴리에틸렌글리콜/레반의 수상이상분계 형성을 이용한 단백질 분획시 유용하게 사용될 수 있으며, 항종양 활성 또는 면역증강 작용에 있어서도 우수한 것으로 알려져 있다. 효소 합성된 레반의 특성은 레반의 가지사슬 형성정도(degree of branch)와 분자량에 의하여 변하게 되며 레반 생성시 반응조건 중 효소 반응온도와 반응액의 pH에 따라서 영향을 받게 된다. 예를들면, 0-37oC의 반응온도에서 생성되는 레반의 분자량은 반응온도에 반비례하게 된다. 또한, 레반은 몇몇 식물의 저장 탄수화물로서 저분자(분자량: <5,000)로 존재하며, 설탕을 함유한 배지 또는 자연상태에서 미생물의 세포외 합성에 의해 비교적 고분자(> x106)로서 생산될 수 있다(Han Y. W.,Adv. Appl. Microbiol.,35, 171(1990)).In the industrial application of Levan, the structure and size of Levan serve as an important factor. That is, the low molecular weight uniform size of levan can be usefully used for protein fractionation using plasma substitute or polyethylene glycol / levane dendritic system formation, and is known to be excellent in antitumor activity or immunopotentiation. The characteristics of the enzyme synthesized Levan are changed by the degree of branching and the molecular weight of Levan and are affected by the enzyme reaction temperature and pH of the reaction solution during the reaction. For example, the molecular weight of the levan produced at a reaction temperature of 0-37 ° C. is inversely proportional to the reaction temperature. Levan is also present as a low-molecular weight (molecular weight: <5,000) as a storage carbohydrate of some plants and can be produced as a relatively high polymer (> x10 6 ) by medium containing sugar or extracellular synthesis of microorganisms in nature ( Han YW, Adv. Appl. Microbiol. , 35 , 171 (1990)).

레반슈크라제를 이용하여 레반을 제조하는 방법들은 다수 보고된 바 있는데, 예를 들어, 미국특허 제 4,879,228 호 및 국제특허 공개 제 86-4091 호에서는 대사과정에서 활동하는 미생물을 이용하여 설탕으로부터 레반을 생산하고자 한 바 있으나, 이 방법은 레반의 생산수율이 낮을 뿐만 아니라 부산물과 불순물이 많이 혼재된 레반이 생성되어 정제하는데 많은 어려움이 있으며, 저분자량의 레반을 생산하기 위하여 높은 반응온도(37oC)를 적용한 결과 저분자량의 레반과 올리고당을 제조할 수는 있었지만 기질 대비 레반의 생성 수율이 10이하로 감소하게 되는 문제점이 발생하였다.A number of methods for preparing levans using levanschkrase have been reported. For example, US Pat. No. 4,879,228 and International Patent Publication No. 86-4091 disclose leban from sugar using microorganisms that act in metabolic processes. However, this method not only has low yield of levane but also has a lot of difficulty in purifying and producing a mixture of by-products and impurities, and has a high reaction temperature (37 o) to produce low molecular weight levane. As a result of applying C), the low molecular weight levane and oligosaccharide could be prepared, but the production yield of the levane to the substrate was reduced to 10 or less.

회분법에 의하여 레반을 제조하는 방법에 의해서는 효소를 기질용액과 섞어서 사용하므로 효소의 재사용률이 떨어져 경제적인 면에서 불리하다는 단점이 있으며, 하이드록시아파타이트(hydroxyapatite)와 같은 담체에 레반슈크라제를 고정화시켜 레반을 생산하는 방법에 의해서는 오히려 회분법에 의하여 생성된 레반보다 고분자량의 레반이 생성된다는 보고가 있다(Chambert et al.,Carbohydr. Res., 244, 129(1993)).The method of preparing levan by batch method is disadvantageous in that it is economically disadvantageous because the enzyme reuse rate is mixed with substrate solution, and it is disadvantageous in the case of hydroxyapatite in a carrier such as hydroxyapatite. It is reported that the method of producing levane by immobilization of ethylene produces a higher molecular weight levane than the levane produced by a batch method (Chambert et al., Carbohydr. Res., 244 , 129 (1993)).

이에 본 발명자들은 지모모나스 모빌리스(Zymomonas mobilis)의 레반슈크라제 유전자를 이용하여 형질전환된 대장균에서 대량발현된 재조합 레반슈크라제를 이용하여 레반을 생산한 바 있으나(Belghith, H. et al.,Biotechnol. Letts,18, 467(1996), 대한민국 특허공고 제 176410 호 및 제 145946 호), 보다 효율적이고 경제적인 방법으로 저분자량의 레반을 제조하기 위해 계속 연구를 진행한 결과, 마그네타이트 비드에 레반슈크라제를 고정화시키거나 또는 레반슈크라제가 포함된 균체를 유기용매로 퍼미어빌라이제이션(permeabilization)시켜 이들을 각각 레반슈크라제 효소원으로 사용함으로써 이를 달성할 수 있음을 발견하여 본 발명을 완성하였다.Therefore, the inventors of the present invention have produced levane using recombinant Levanschkrase that is expressed in E. coli transformed using the Levanschkrase gene of Zymomonas mobilis (Belghith, H. et al. ., Biotechnol. Letts , 18 , 467 (1996), Korean Patent Publication Nos. 176410 and 145946), continued research to produce low molecular weight levans in a more efficient and economical manner. The present invention has been found to be achieved by immobilizing Levanschkrase or permeabilization of cells containing Levanschkrase with organic solvents and using them as Levanschkrase enzyme sources, respectively. Completed.

본 발명의 목적은 저분자량의 레반을 고수율로 생산하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing low molecular weight levans in high yield.

도 1은 대장균에서 생성된 레반슈크라제를 금속 친화성 크로마토그라피법에 의하여 정제한 결과를 나타낸 것이고,Figure 1 shows the result of the purification of levansucase produced in E. coli by metal affinity chromatography,

도 2는 HPLC에서 젤 투과 크로마토그래피 칼럼을 이용하여 레반의 분자량을 측정한 결과를 나타낸 것이다.Figure 2 shows the result of measuring the molecular weight of Levan using a gel permeation chromatography column in HPLC.

상기 목적을 달성하기 위해, 본 발명에서는 마그네타이트 비드에 고정화된 레반슈크라제, 또는 레반슈크라제가 발현된 균체를 유기용매 처리하여 퍼미어빌라이제이션(permeabilization)시킨 균체를 레반슈크라제 효소원으로 사용하고 설탕을 기질로 하여 레반을 생산하는 방법을 제공한다.In order to achieve the above object, in the present invention, the cells obtained by performing permeabilization of the microorganisms in which Levanschkrase immobilized on the magnetite beads or Levanschkrase are expressed by organic solvent treatment are used as the Levanschkrase enzyme source. It provides a method for producing levan by using sugar as a substrate.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 사용되는 레반슈크라제는 레반슈크라제를 고발현하도록 고안된 균주, 예를 들어 대한민국 특허공고 제 145946 호에서 제조한 재조합 대장균(KCTC 8661P)을 적절한 조건에서 배양한 다음 초음파 파쇄하고 금속 친화성 크로마토그라피(metal affinity chromatography)로 정제하여 수득할 수 있다(도 1).Levanschkras used in the present invention is cultured strains designed for high expression of Levanschkrase, for example, recombinant Escherichia coli (KCTC 8661P) prepared in the Republic of Korea Patent Publication No. 145946 and then ultrasonically crushed and metal It can be obtained by purification by affinity chromatography (Fig. 1).

분리 정제된 레반슈크라제를 고정화 담체 표면에 고정화시키는 방법은 다음과 같다. 먼저, 고정화 담체로서 자철광 산화물(magnetic iron oxide) 5 내지 100 mg을 TiCl4와 물의 혼합용액(1:10 내지 1:30(v/v), 바람직하게는 1:20(v/v))에 첨가하여 교반한 다음, 1M 암모니아 용액으로 처리하고 다시 교반한다. 이를 pH 3.0 내지 7.0, 바람직하게는 pH 4.0의 초산 완충용액으로 1 내지 5 회, 바람직하게는 3회 이상 세척한다. 이어서 상기 준비된 담체와 레반슈크라제 0.1 내지 2 U, 바람직하게는 0.4 U를 동일한 초산 완충용액에 혼합하고 4oC에서 30 분 내지 16 시간 동안, 바람직하게는 1 시간 동안 균일한 속도로 교반하여 효소를 담체에 고정화시킨다. 고정화되지 않은 효소는 초산 완충용액으로 유리 효소의 활성이 검출되지 않을 때까지, 예를 들어 3번 이상 세척하여 제거한다.The method of immobilizing the separated and purified Levanschkrase on the surface of the immobilized carrier is as follows. First, 5 to 100 mg of magnetic iron oxide as an immobilization support was added to a mixed solution of TiCl 4 and water (1:10 to 1:30 (v / v), preferably 1:20 (v / v)). After addition and stirring, treatment with 1M ammonia solution and stirring again. It is washed 1 to 5 times, preferably 3 or more times with acetic acid buffer solution of pH 3.0 to 7.0, preferably pH 4.0. Then, the prepared carrier and Levanschkrase 0.1 to 2 U, preferably 0.4 U are mixed in the same acetic acid buffer solution and stirred at a uniform rate at 4 o C for 30 minutes to 16 hours, preferably 1 hour. The enzyme is immobilized on the carrier. Unimmobilized enzyme is removed by, for example, washing three times or more until acetic acid buffer is not detected free enzyme activity.

또한, 레반슈크라제가 발현된 균체를 퍼미어빌라이제이션시켜 레반슈크라제 효소원으로 이용하는 방법은 다음과 같다. 즉, 레반슈크라제 유전자를 포함하는 균체, 예를 들어 재조합 대장균 BL21(DE3)/pEL12(KCTC 8661P)를 적절한 배지에서 배양하고 레반슈크라제의 발현을 유도한 후 원심분리하여 회수한 균체를 초산 완충용액, 바람직하게는 50mM 초산 완충용액(pH 6.0)으로 세척하고, 다시 동일한 초산 완충용액을 첨가하여 10 내지 20 배 농축한 후, 유기용매를 1:10 내지 1:100(유기용매:균체), 바람직하게는 1:10(유기용매:균체)의 비율로 첨가하여 상온에서 3 내지 10분, 바람직하게는 5분 동안 강하게 교반시킨다. 유기용매로서는 톨루엔, CTAB(cetyltrimethylammonium bromide) 등을 사용할 수 있고, 톨루엔을 사용하는 것이 바람직하다. 이어서, 원심분리하여 유기용매를 제거한 후, 초산 완충용액으로 균체를 세척하고 이를 레반슈크라제 효소원(유기용매 처리된 균체)으로 사용한다.In addition, the method of using the Levans-Curase enzyme source by performing the permeation of the cells expressing Levans-Chrase is as follows. In other words, the cells containing the Levanschkrase gene, for example, recombinant E. coli BL21 (DE3) / pEL12 (KCTC 8661P) incubated in a suitable medium, induces the expression of Levanschkrase and centrifuged and recovered the cells After washing with acetic acid buffer, preferably 50 mM acetic acid buffer (pH 6.0), and concentrating 10 to 20 times by adding the same acetic acid buffer solution, the organic solvent is 1:10 to 1: 100 (organic solvent: bacteria) ), Preferably in a ratio of 1:10 (organic solvent: bacteria) and vigorously stirred at room temperature for 3 to 10 minutes, preferably 5 minutes. Toluene, CTAB (cetyltrimethylammonium bromide), etc. can be used as an organic solvent, It is preferable to use toluene. Subsequently, the organic solvent is removed by centrifugation, and the cells are washed with acetic acid buffer and used as a Levanschkrase enzyme source (organic solvent treated cells).

이와 같이 수득된 마그네타이트 비드에 고정화된 레반슈크라제 또는 유기용매 처리된 균체를 이용하여 설탕을 기질로 하여 효소 합성법에 의해 레반을 제조할 수 있다. 효소반응에 사용되는 기질인 설탕의 농도는 10 내지 50(w/v), 바람직하게는 10 내지 20이며, 반응 pH는 4 내지 6, 바람직하게는 pH 4이고, 반응온도는 통상 0 내지 37oC, 바람직하게는 0 내지 20oC, 가장 바람직하게는 4℃가 효소의 실활이 적고 효소의 수명이 연장되어 적당하다. 이 때 반응시간은 20 내지 100 시간, 바람직하게는 70 시간 동안 수행한다.The levan can be prepared by enzyme synthesis using sugar as a substrate using levanschkrase or organic solvent-treated cells immobilized on the magnetite beads thus obtained. The concentration of sugar as a substrate used for the enzyme reaction is 10 to 50 (w / v), preferably 10 to 20, the reaction pH is 4 to 6, preferably pH 4, the reaction temperature is usually 0 to 37 o C, preferably 0 to 20 ° C., most preferably 4 ° C., is suitable because of low activity of the enzyme and extended life of the enzyme. At this time, the reaction time is carried out for 20 to 100 hours, preferably 70 hours.

본 발명의 마그네타이트 비드에 고정화된 레반슈크라제 또는 유기용매 처리된 균체를 이용하면 레반의 생산량이 약 12-30 g/ℓ에 이르며, 이 때 수득된 레반의 분자량은 2백만(톨루엔 처리된 균체) 내지 3백만(고정화 효소)으로서, 동일한 조건에서 비처리 효소에 의하여 생성된 레반의 분자량(6백만 이상)에 비해 상당히 작다.When the levanschkrase or organic solvent treated cells immobilized on the magnetite beads of the present invention, the yield of the levan reaches about 12-30 g / l, and the molecular weight of the obtained levan is 2 million (toluene-treated cells). ) To 3 million (immobilized enzyme), which is significantly smaller than the molecular weight (more than 6 million) of the Levan produced by the untreated enzyme under the same conditions.

효소반응 방법은 회분식 또는 반회분식(semi-batch reaction)으로 실시할 수 있다.The enzyme reaction method can be carried out in a batch or semi-batch reaction.

이하, 본 발명을 하기 실시예에 의해 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

참 조 예Reference Example

(1) 단백질 정량법(1) Protein Assay

표준 단백질로 오브알부민을 사용하여 다음과 같이 단백질을 정량하였다.Using ovalbumin as the standard protein, the protein was quantified as follows.

시료 100㎕에 쿠마시블루액(Bio-Rad protein assay, 바이오래드사 제품) 5 ㎖를 가하여 혼합한 후, 실온에서 10 분간 방치하고, 595nm에서 흡광도를 측정하여 단백질을 정량하였다.5 ml of Coomassie Blue solution (Bio-Rad protein assay, manufactured by Biorad) was added to 100 µl of the sample, mixed, and the mixture was left at room temperature for 10 minutes, and absorbance was measured at 595 nm to quantify the protein.

(2) 레반슈크라제의 활성 측정(2) Determination of Levanschkrase Activity

레반슈크라제의 활성은 오뮬란 등의 방법(O'Mullan et al.,Biotechnonol. Lett.,13, 137(1991))에 의해 다음과 같이 측정하였다.The activity of levanschkrase was measured by Omulan et al. (O'Mullan et al., Biotechnonol. Lett. , 13 , 137 (1991)) as follows.

50mM 초산 완충용액(pH 5.0)에 설탕을 1로 용해시킨 후 440 ㎕를 취하고, 여기에 조효소 10 ㎕를 첨가하여 37℃에서 30 분간 반응시켰다. 반응액 중 생성된 환원당을 GOD-PAP 키트(베링거마하임사 제품)를 이용하여 정량하였다. 1 분간 1 μM의 포도당을 생성하는 효소활성을 1 유니트(U)로 정의하였다.After dissolving sugar in 50 mM acetate buffer (pH 5.0) to 1, 440 µl was taken, and 10 µl of coenzyme was added thereto and reacted at 37 ° C for 30 minutes. The reducing sugar produced in the reaction solution was quantified using a GOD-PAP kit (Berlinger Mahheim). The enzymatic activity of producing 1 μM of glucose for 1 minute was defined as 1 unit (U).

(3) 레반 정량법(3) Levan Assay

효소 반응액을 0.45 ㎛ 여과막으로 여과한 다음, 여액 20 ㎕를 HPLC(System Gold, 벡크만사 제품)에 주입하여 레반량을 정량하였다. HPLC 분석조건은 50oC로 유지시킨 칼럼(Ionpak KS-802, Shodex사 제품)을 이용하여 증류수를 0.4 ㎖/분의 속도로 흘려주었고, 굴절율(refractive index)에 의해 검출하였다.The enzyme reaction solution was filtered through a 0.45 μm filtration membrane, and then 20 μl of the filtrate was injected into HPLC (System Gold, Beckman Co., Ltd.) to quantify the amount of leban. HPLC analysis conditions were run by distilled water at a rate of 0.4 ml / min using a column (Ionpak KS-802, Shodex) maintained at 50 ° C., was detected by the refractive index (refractive index).

(4) 레반의 분자량 측정(4) Molecular weight measurement of Levan

효소 반응액을 0.45 ㎛ 여과막으로 여과한 다음, 여액 100 ㎕를 HPLC(System Gold, 벡크만사 제품)에 주입하여 각각의 레반이 칼럼을 통과하는 시간을 상호 비교하였다. 분자량의 크기에 따른 칼럼의 통과 시간을 측정하기 위하여, 표준물질로 폴리에틸렌 옥사이드(분자량 8x106), 덱스트란 표준물질(분자량 8x106, 7.5x105, 1.7x105, 4x104)과 수크로즈(분자량 342)를 사용하였다. 두 개의 연결된 칼럼(GPC columns 4,000-1,000, Polymer Laboratories사 제품)을 사용한 것을 제외하고는 HPLC 분석 조건은 상기 (3)과 동일한 방법을 사용하였다. HPLC 분석 조건은 50℃로 유지시킨 칼럼(Ionpak KS-802, Shodex사 제품)을 이용하여 증류수를 0.4 ㎖/분의 속도로 흘려주었고, 굴절율(refractive index)에 의해 검출하였다.The enzyme reaction was filtered through a 0.45 μm filtration membrane, and then 100 μl of the filtrate was injected into HPLC (System Gold, Beckman) to compare the time for each Levan to pass through the column. In order to measure the passage time of the column according to the size of the molecular weight, polyethylene oxide (molecular weight 8x10 6 ), dextran standards (molecular weight 8x10 6 , 7.5x10 5 , 1.7x10 5 , 4x10 4 ) and sucrose (molecular weight) were used as standards. 342). HPLC analysis conditions were the same as in (3), except that two connected columns (GPC columns 4,000-1,000, manufactured by Polymer Laboratories) were used. HPLC analysis conditions were run by distilled water at a rate of 0.4 mL / min using a column (Ionpak KS-802, Shodex Co., Ltd.) maintained at 50 ℃, it was detected by the refractive index (refractive index).

(5) 레반슈크라제의 정제(5) Purification of Levanschkrase

레반슈크라제를 고발현하도록 고안된 재조합 대장균 BL21(DE3)/pEL12(KCTC8661P; 대한민국 특허공고 제 145946 호)를 M9-ZB 배지(1ℓ중 트립톤 10g, NaCl 5g, 염화암모늄 1g, 인산이수소칼륨 3g, 인산이나트륨 6g, 포도당 4g, 1M 황산마그네슘 1㎖)에 접종하여 37℃에서 진탕배양하면서 600㎚에서의 흡광도가 0.7에 도달하면 IPTG(시그마사 제품)를 1mM이 되도록 첨가하여 레반슈크라제의 발현을 유도하였다. 3시간 뒤 배양액을 원심분리하여 균체를 회수한 후 초음파로 파쇄하고 파쇄액을 컬럼으로서 Ni-NTA 수지컬럼(큐아젠사 제품)을 사용하고 용출액으로 0.25M 이미다졸(imidazole)을 사용한 금속 친화성 크로마토그라피(metal affinity chromatography)로 정제하였다. 도 1은 정제된 레반슈크라제를 확인한 것으로, M열은 표준 분자량 마커이고, 제1열은 대장균 전체단백질이며, 제2열은 금속 친화성 크로마토그라피로 정제한 레반슈크라제이다.Recombinant Escherichia coli BL21 (DE3) / pEL12 (KCTC8661P; Korean Patent Publication No. 145946) designed to express high level of Levanschkrase was added to M9-ZB medium (10 g of tryptone in 1 L, 5 g of NaCl, 1 g of ammonium chloride, potassium dihydrogen phosphate). Inoculate 3g, disodium phosphate 6g, glucose 4g, 1M magnesium sulfate 1ml) and shaken at 37 ° C, and absorbance at 600nm reaches 0.7, then add IPTG (from Sigma) to 1mM to make Levanschkra Expression of the agent was induced. After 3 hours, the culture solution was centrifuged to recover the cells, and then crushed by ultrasonic waves. The crushed solution was used as a column using a Ni-NTA resin column (Qiagen Co., Ltd.) and a metal affinity using 0.25M imidazole as eluent. Purification was carried out by metal affinity chromatography. Figure 1 shows the purified Levanschkrase, column M is the standard molecular weight marker, the first column is E. coli whole protein, the second column is levanschease purified by metal affinity chromatography.

실 시 예 1 : 레반슈크라제의 고정화 및 레반 생성Example 1 Immobilization of Levanschkraze and Generation of Levan

(단계 1)(Step 1)

자철광 산화물 50 ㎎에 25 ㎕의 TiCl4와 500 ㎕의 물을 가하여 4℃에서 1 시간 동안 교반한 다음, 1M 암모니아 용액 280 ㎕을 첨가한 후, 4℃에서 1 시간 동안 다시 교반하였다. 6,000 rpm에서 원심분리하여 화학반응이 끝난 담체를 회수한 후, pH 4.0의 50mM 초산 완충용액으로 3회 세척하였다.25 μl of TiCl 4 and 500 μl of water were added to 50 mg of magnetite oxide, followed by stirring at 4 ° C. for 1 hour. Then, 280 μl of 1M ammonia solution was added, followed by stirring at 4 ° C. for 1 hour. The carrier was recovered by centrifugation at 6,000 rpm, and then washed three times with 50 mM acetic acid buffer solution at pH 4.0.

상기 담체와 레반슈크라제 0.4 U을 pH 4.0의 초산 완충용액에 혼합하고 4oC에서 1 시간 동안 교반한 후 초산 완충용액으로 세척하여 마그네타이트에 고정화된레반슈크라제를 75의 효소 회수율로 수득하였다.The carrier and levanschkrase 0.4 U were mixed in acetic acid buffer solution at pH 4.0, stirred at 4 ° C. for 1 hour, and washed with acetic acid buffer to obtain levanschkrase immobilized on magnetite with an enzyme recovery of 75. It was.

(단계 2)(Step 2)

pH 4.0의 50mM 초산 완충용액 1㎖에 설탕을 10(w/v) 농도가 되도록 녹이고, 상기 단계 1에서 수득한 고정화효소 또는 참조예의 (5)에서와 같이 정제된 레반슈크라제 0.3 U를 첨가한 후 4℃, 10℃, 20℃ 및 37oC로 온도를 조절하여 70 시간 동안 반응시켰다. 반응 후 생성된 레반량을 참조예의 (3)과 같이 측정하고 그 결과를 하기 표 1에 나타내었다.The sugar was dissolved in 1 ml of 50 mM acetic acid buffer solution at pH 4.0 to a concentration of 10 (w / v), and the immobilized enzyme obtained in step 1 or 0.3 U of purified levanschkrase as described in (5) of Reference Example was added. Then, the temperature was adjusted to 4 ° C., 10 ° C., 20 ° C. and 37 ° C. for 70 hours. The amount of leban produced after the reaction was measured as in Reference Example (3), and the results are shown in Table 1 below.

효소원Enzyme 반응온도에 따른 상대적인 레반농도 ()Relative Leban Concentration According to Reaction Temperature () 4oC4 o C 10oC10 o C 20oC20 o C 37oC37 o C 고정화 효소Immobilized Enzyme 100100 9797 8484 6161 정제된 레반슈크라제Refined Levanschkrases 100100 9494 7272 2020

상기 표 1에서 보듯이, 두 효소 모두 4℃에서 반응시켰을 때 레반 생성량이 가장 많으며, 온도가 증가될수록 레반의 생산 수율은 감소되었다. 하지만, 효소 고정화에 의하여 레반슈크라제의 온도에 대한 안정성은 크게 증가되어 높은 반응 온도, 즉, 20℃ 또는 37℃에서 고정화되지 않은 레반슈크라제에 비해 고정화된 레반슈크라제에 의해 레반의 생성량이 많음을 알 수 있다.As shown in Table 1, when both enzymes were reacted at 4 ℃, the production of Levan was the most, and as the temperature increases, the yield of Levan was decreased. However, by the immobilization of enzymes, the stability of the temperature of the levanschkraase is greatly increased so that the levanschkrase is immobilized by the immobilized levanschkrase as compared to the levanschkrase which is not immobilized at a high reaction temperature, that is, 20 ° C or 37 ° C. It can be seen that the amount of production.

또한, 상기 두 효소의 최적 pH를 비교한 결과, 각각 pH 4.0(고정화 효소)과 pH 5.0(정제된 레반슈크라제)으로서 고정화에 의하여 효소의 최적 pH가 좀더 산성조건으로 변화되는 것이 관찰되었다. 기질농도에 따른 레반 생성물로의 전환율을조사한 결과 상기 두 효소는 유사한 효소적 특성을 나타내었는데, 기질농도 5%에서는 기질전환율에 큰 변화가 없어 효소활성이 저해되지 않음을 확인하였으며 그 이상의 기질농도에서는 효소활성의 저해가 관찰되었다.In addition, as a result of comparing the optimum pH of the two enzymes, it was observed that the optimum pH of the enzyme is changed to more acidic conditions by immobilization as pH 4.0 (immobilized enzyme) and pH 5.0 (purified levanschkrase), respectively. As a result of investigating the conversion to the levane product according to the substrate concentration, the two enzymes showed similar enzymatic properties. At 5% of the substrate concentration, there was no significant change in substrate conversion rate, so that the enzyme activity was not inhibited. Inhibition of enzymatic activity was observed.

실 시 예 2 : 톨루엔 또는 아세톤 처리된 균체 제조 및 레반 생성Example 2 Preparation of Toluene or Acetone Cells and Production of Levan

(단계 1)(Step 1)

레반슈크라제 유전자를 포함한 재조합 대장균 BL21(DE3)/pEL12(KCTC 8661P)를 참고예의 (5)에서와 같이 배양하고 레반슈크라제의 발현을 유도한 후, 배양액 1 ℓ를 원심분리하여 회수한 균체를 1/10 분량의 50 mM 초산 완충용액(pH 6.0)으로 세척하고, 회수된 균체에 다시 50mM 초산 완충 용액(pH 6.0) 5㎖를 첨가하여 레반슈크라제를 20배 농축하였다. 농축된 균체 5㎖에 톨루엔 0.5㎖ 및 0.05㎖, 및 아세톤 0.5㎖을 각각 가하고, 상온에서 5 분 동안 강하게 교반한(vortexing) 다음, 원심분리하여 톨루엔 및 아세톤을 제거한 후, 50mM 초산 완충용액(pH 6.0)으로 균체를 2번 세척하여 톨루엔 또는 아세톤 처리된 균체를 수득하였다.Recombinant Escherichia coli BL21 (DE3) / pEL12 (KCTC 8661P) containing the Levanschkrase gene was cultured as in (5) of the Reference Example, and the expression of Levanschkrase was induced, followed by centrifugation of 1 L of the culture solution. The cells were washed with 1/10 portions of 50 mM acetic acid buffer (pH 6.0), and 5 ml of 50 mM acetic acid buffer solution (pH 6.0) was further added to the recovered cells, thereby concentrating the Levanschkrase by 20 times. 0.5 ml and 0.05 ml of toluene and 0.5 ml of acetone were added to 5 ml of the concentrated cells, vigorously stirred at room temperature for 5 minutes, and then centrifuged to remove toluene and acetone, followed by 50 mM acetic acid buffer solution (pH 6.0) to wash the cells twice to obtain toluene or acetone-treated cells.

(단계 2)(Step 2)

10설탕을 함유한 50 mM 초산 완충용액(pH 4.0) 1 ml에 상기 톨루엔 또는 아세톤 처리된 균체, 및 비처리 균체 100㎕를 각각 첨가한 후, 4oC에서 6 시간 동안 반응시켜 생성된 레반의 농도를 하기 표 2에 나타내었다.Toluene or acetone-treated cells and 100 µl of untreated cells were added to 1 ml of 50 mM acetic acid buffer solution (pH 4.0) containing 10 sugars, respectively, and then reacted for 6 hours at 4 ° C. The concentrations are shown in Table 2 below.

처리 방법Processing method 상대적인 레반농도 ()Relative Leban Concentration () 비처리 균체Untreated cells 3535 톨루엔 처리된 균체(톨루엔:균체 = 1:100)Toluene-treated cells (toluene: bacteria = 1: 100) 8787 톨루엔 처리된 균체(톨루엔:균체 = 1:10)Toluene-treated cells (toluene: cells = 1:10) 100100 아세톤 처리된 균체(아세톤:균체 = 1:10)Acetone-treated cells (acetone: cells = 1:10) 2929

상기 표 2에서 보듯이, 톨루엔이 1:10의 비율(톨루엔:균체)로 처리된 균체는 비처리 균체와 비교하여 효소활성이 3배 정도 높았으며, 톨루엔으로 처리한 경우가 아세톤으로 처리한 경우보다 효소활성이 3.5배 높은 것으로 나타났다. 반면 아세톤 처리군에서는 비처리군보다 레반 생성율이 낮게 나타나 레반슈크라제의 경우 아세톤 처리는 적당하지 않은 것으로 나타났다.As shown in Table 2, the cells treated with toluene at a ratio of 1:10 (toluene: cells) had about three times higher enzymatic activity than untreated cells, and those treated with toluene were treated with acetone. The enzyme activity was 3.5 times higher. On the other hand, in the acetone-treated group, the leban production rate was lower than that in the acetone-treated group, indicating that acetone treatment was not appropriate for the levanschkrase.

실 시 예 3 : 톨루엔 처리된 균체의 반응온도에 따른 레반 생성Example 3 Leban Formation According to Reaction Temperature of Toluene Treated Cells

1:10의 비율(톨루엔:균체)로 톨루엔 처리된 균체를 사용하고, 반응온도를 하기 표 3과 같이 4℃, 10℃, 20℃ 및 37℃로 하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 온도에 따라 생성된 레반의 농도를 측정하여 그 결과를 하기 표 3에 나타내었다.Toluene-treated cells were used at a ratio of 1:10 (toluene: cells), and the reaction temperatures were the same as those of Example 2 except that the reaction temperatures were 4 ° C, 10 ° C, 20 ° C, and 37 ° C as shown in Table 3 below. By measuring the concentration of the leban produced according to the temperature and the results are shown in Table 3 below.

효소원Enzyme 반응온도에 따른 상대적인 레반농도 ()Relative Leban Concentration According to Reaction Temperature () 4oC4 o C 10oC10 o C 20oC20 o C 37oC37 o C 톨루엔 처리된 균체Toluene Treated Cells 100100 100100 8383 4343 정제된 레반슈크라제Refined Levanschkrases 100100 9494 7272 2020

상기 표 3에서 보듯이, 상기 반응 조건에서 톨루엔 처리된 균체에 의한 최적 레반 생성 온도는 4℃였으며, 정제된 레반슈크라제와 비교시, 온도에 대한 안정성은 크게 증가되어, 높은 반응온도, 즉, 20℃ 또는 37℃에서는 정제된 레반슈크라제를 사용한 경우에 비해 레반의 생성량이 많음을 알 수 있다.As shown in Table 3, the optimum leban production temperature by the toluene-treated cells under the reaction conditions was 4 ℃, compared to the purified levansuckrase, the stability to temperature is greatly increased, that is, high reaction temperature At 20 ° C. or 37 ° C., it can be seen that the amount of levane produced is greater than that of purified levane sukrases.

또한, 기질농도에 따른 레반 생성물로의 전환율을 조사한 결과 상기 두 효소는 유사한 효소적 특성을 나타내었는데, 기질농도 5%에서는 기질전환율에 큰 변화가 없어 효소활성이 저해되지 않음을 확인하였으며 그 이상의 기질농도에서는 효소활성의 저해가 관찰되었다.In addition, as a result of examining the conversion rate to the levane product according to the substrate concentration, the two enzymes showed similar enzymatic properties. At 5% substrate concentration, there was no significant change in substrate conversion rate, so that the enzyme activity was not inhibited. Inhibition of enzyme activity was observed at the concentration.

실 시 예 4 : 생성된 레반의 분자량 측정Example 4 Measurement of the Molecular Weight of the Prepared Levan

고정화되지 않은 레반슈크라제(참고예의 (5)), 고정화된 레반슈크라제(실시예 1의 단계 1) 및 톨루엔 처리된 균체(실시예 3)에 의하여 4℃의 반응 온도에서 실시예 2의 방법으로 생성된 레반의 분자량을 참고예의 (4)와 같이 젤 투과 크로마토그라피(gel permeation chromatography)법으로 분석하였다.Example 2 at a reaction temperature of 4 ° C. with unimmobilized Levanschkrase ((5) of Reference Example), immobilized Levanschkrase (Step 1 of Example 1) and toluene treated cells (Example 3) The molecular weight of the Levan produced by the method was analyzed by gel permeation chromatography as in (4) of the Reference Example.

그 결과, 동일한 반응조건에서 고정화되지 않은 유리효소에 의하여 합성된 레반의 분자량은 6백만 이하로 관찰되었으며, 톨루엔 처리된 균체로부터 생성된 레반은 약 2백만 정도로 측정되었고, 고정화 효소에 의하여 생성된 레반의 분자량은 약 3백만 정도로 측정되어 톨루엔 처리된 균체나 고정화된 효소에 의하여 생성된 레반은 유리 효소로부터 생성된 레반에 비하여 저분자량인 것을 알 수 있다(도 2).As a result, the molecular weight of the levan synthesized by the free enzyme that was not immobilized under the same reaction conditions was observed to be 6 million or less, and the leban produced from the toluene-treated cells was measured to about 2 million, and the levan produced by the immobilized enzyme. The molecular weight of was measured to about 3 million, it can be seen that the leban produced by the toluene-treated cells or immobilized enzyme is lower molecular weight than the leban produced from the free enzyme (Fig. 2).

실 시 예 5 : 고정화된 효소의 재사용 시험Example 5 Reuse Test of Immobilized Enzyme

고정화된 효소의 재사용 가능성을 다음과 같은 방법으로 조사하였다. 50mM 초산 완충용액(pH 4.0) 1㎖에 설탕을 10(w/v) 농도가 되도록 녹이고, 실시예 1의 단계 2에서 제조된 고정화 효소 0.3 U를 첨가한 후 4oC에서 6시간 동안 반응시키고 반응이 종결된 후 원심분리하여 고정화된 효소를 회수하였다. 회수된 고정화 효소에 다시 기질용액(50mM 초산 완충용액(pH 4.0) 1㎖에 설탕이 10(w/v) 농도로 첨가된 용액)을 첨가하여 상기와 동일하게 효소반응을 수행한 후 잔존 효소활성을 조사하고 상기 절차를 반복 실시하였다.The reusability of the immobilized enzyme was investigated in the following manner. In 1 ml of 50 mM acetic acid buffer (pH 4.0), sugar was dissolved to a concentration of 10 (w / v), 0.3 U of the immobilized enzyme prepared in Step 2 of Example 1 was added, and then reacted at 4 ° C. for 6 hours. After the reaction was terminated by centrifugation to recover the immobilized enzyme. Subsequently, the enzyme solution was added to the recovered immobilized enzyme and the enzyme solution was added to 1 ml of 50 mM acetic acid buffer (pH 4.0) at a concentration of 10 (w / v). Was investigated and the procedure was repeated.

고정화 효소의 재사용 빈도Frequency of reuse of immobilized enzyme 1회1 time 2회Episode 2 3회3rd time 4회4 times 잔존 효소활성()Remaining enzyme activity () 100100 8484 5252 1515

표 4에서와 같이 3회 반복사용시까지 50이상의 활성이 존재하였으며 4회 반복시에는 처음 효소활성의 약 15정도만이 잔존하는 것으로 나타났다. 따라서 마그네타이트 비드(magnetite bead)의 표면에 레반슈크라제를 고정화한 경우 효소 반응 생성물이 거대분자인 레반인 관계로 효소 재사용율이 낮아 약 3회 정도의 효소 재사용이 가능하였다.As shown in Table 4, there were more than 50 activities until three times of repeated use and only about 15 of the initial enzyme activity remained after four times of repeated use. Therefore, when the levanschkrase immobilized on the surface of the magnetite bead (magnetite bead), the enzyme reuse was low because the enzyme reaction product is a large molecule Levan was possible about 3 times the enzyme reuse.

이와 같이 레반슈크라제를 마그네타이트에 고정화하거나 레반슈크라제가 발현된 균체를 유기용매 처리하여 레반슈크라제 효소원으로 사용함으로써 효소의 안정성을 증가시키고 반복적인 사용을 가능하게 하여 경제적으로 저분자량의 레반을 제조할 수 있으며, 의약품, 식품, 화장품 등에 유용하게 사용할 수 있다.In this way, by immobilizing Levanschkrase to magnetite or treating the cells expressing Levanschkrase with organic solvent and using them as Levanschkrase enzyme source, it is possible to increase the stability of the enzyme and enable repeated use. Levan can be prepared, and can be usefully used in medicine, food, cosmetics, and the like.

Claims (4)

마그네타이트 비드(magnetite bead)에 고정화된 레반슈크라제를 이용하여 설탕을 기질로 하여 레반을 생산하는 방법.A method of producing levan by using sugar as a substrate by using levanschkrase immobilized on magnetite beads. 레반슈크라제가 발현된 균체를 유기용매 처리하여 퍼미어빌라이제이션(permeabilization)시킨 균체를 이용하여 설탕을 기질로 하여 레반을 생산하는 방법.A method of producing levan by using sugar as a substrate using cells subjected to permeabilization by treating organic cells with Levanschkrase expressed cells. 제 2 항에 있어서,The method of claim 2, 유기용매가 톨루엔인 것을 특징으로 하는 방법.The organic solvent is toluene. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 4 ℃ 내지 37 ℃의 반응온도에서 수행하는 것을 특징으로 하는 방법.Characterized in that it is carried out at a reaction temperature of 4 ℃ to 37 ℃.
KR1020000000417A 2000-01-06 2000-01-06 Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent KR100323837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000000417A KR100323837B1 (en) 2000-01-06 2000-01-06 Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000000417A KR100323837B1 (en) 2000-01-06 2000-01-06 Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent

Publications (2)

Publication Number Publication Date
KR20010068479A KR20010068479A (en) 2001-07-23
KR100323837B1 true KR100323837B1 (en) 2002-02-07

Family

ID=19636633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000000417A KR100323837B1 (en) 2000-01-06 2000-01-06 Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent

Country Status (1)

Country Link
KR (1) KR100323837B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715143B1 (en) * 2005-10-27 2007-05-10 니트젠테크놀러지스 주식회사 A streaming based contents distribution network system and methods for splitting, merging and playing files
US9169506B2 (en) 2013-09-05 2015-10-27 E I Du Pont De Nemours And Company Process for producing alpha-1,3-glucan polymer with reduced molecular weight

Also Published As

Publication number Publication date
KR20010068479A (en) 2001-07-23

Similar Documents

Publication Publication Date Title
Bayer et al. [8] Isolation and properties of streptavidin
Ståhl et al. The synthesis of a D-amino acid ester in an organic media with α-chymotrypsin modified by a bio-imprinting procedure
KR101177218B1 (en) Preparation method of turanose using amylosucrase and sweetner using turanose
CN113025678A (en) Method for screening hypoglycemic peptide capable of inhibiting alpha-amylase activity
EP0608636B1 (en) Cycloisomaltooligosaccharides, an enzyme and process for producing said oligosaccharides, and a process for producing said enzyme
KR100323837B1 (en) Process for the preparation of low-molecular weight levan by using immobilized levansucrase or microorganism cells treated with an organic solvent
KR20070069221A (en) Novel inulin synthase and process for producing inulin by using the same
JPS62224285A (en) Culture product containing new bacteria of ampullariella
WO2022031314A2 (en) Scalable production of polyribonucleotides of controlled size
JPH11113592A (en) Production of d-amino acid
KR101262523B1 (en) Preparation Method of Turanose Using Immobilized Enzyme on pH-Sensitive Polymer
JP2001292792A (en) Method for recovering n-acetylglucosamine
JP2010022280A (en) New microorganism, inulinase, inulin decomposer, method for producing inulo-oligosaccharide and method for producing inulinase
JP2001112496A (en) Production of cellooligosaccharide
JPH02252701A (en) Novel cyclic inulooligosaccharide and its production
JPH07327691A (en) Production of trehalose
EP4151742B1 (en) Transgenic cell line and genetically engineered bacterium expressing fructosamine deglycase, and use of fructosamine deglycase
KR920006399B1 (en) Purification of amino peptidase
KR20120016843A (en) Method for preparing cycloamylose
EP0059182B1 (en) A process for isolating aminoacylase enzyme from a mammal kidney extract
JPH04200386A (en) Beta-fructofuranosidase and production thereof
KR101944881B1 (en) Separation and purification method of maltodextrin using reverse phase chromatography
JPS62122588A (en) Production of pure chondroitinase
JPH0568239B2 (en)
JP3690612B2 (en) Process for producing phenethyl-β-D-galactopyranoside

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150127

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190123

Year of fee payment: 18