KR100321473B1 - METHOD FOR FABRICATING DeNOx CATALYST - Google Patents

METHOD FOR FABRICATING DeNOx CATALYST Download PDF

Info

Publication number
KR100321473B1
KR100321473B1 KR1019940025207A KR19940025207A KR100321473B1 KR 100321473 B1 KR100321473 B1 KR 100321473B1 KR 1019940025207 A KR1019940025207 A KR 1019940025207A KR 19940025207 A KR19940025207 A KR 19940025207A KR 100321473 B1 KR100321473 B1 KR 100321473B1
Authority
KR
South Korea
Prior art keywords
zeolite
ion exchange
catalyst
nox
aqueous solution
Prior art date
Application number
KR1019940025207A
Other languages
Korean (ko)
Other versions
KR960010076A (en
Inventor
박상철
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019940025207A priority Critical patent/KR100321473B1/en
Publication of KR960010076A publication Critical patent/KR960010076A/en
Application granted granted Critical
Publication of KR100321473B1 publication Critical patent/KR100321473B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper

Abstract

PURPOSE: Provided is a method for fabricating DeNOx catalyst with improved catalytic activity and thermal durability. CONSTITUTION: The method comprises the steps of (a) dipping zeolite into Na aqueous solution with Na concentration of 0.1-0.15 mole to acquire Na ion exchanged zeolite (Na-zeolite), (b) rinsing the Na-zeolite, (c) drying the Na-zeolite, (d) acquiring Cu ion exchanged zeolite (Cu-zeolite) by dipping the Na-zeolite into Cu aqueous solution, and (e) calcining the Cu-zeolite.

Description

질소산화물(NOx) 정화용 촉매의 제조방법Method for preparing a catalyst for purifying nitrogen oxides (NOx)

본 발명은 질소산화물(NOx) 정화용 촉매의 제조방법에 관한 것으로, 좀 더 상세하게는 NOx 정화용 촉매의 제조시 금속이온의 이온교환율을 향상시킬 수 있도록 NaNo3몰비와 이온교환방법을 변화시키므로써 이온교환율을 향상시키고 제조공정을 단순화시켜 제조 공정시간을 줄일 수 있는 NOx 정화용 촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for purifying nitrogen oxides (NOx), and more particularly, by changing the NaNo 3 molar ratio and the ion exchange method to improve the ion exchange rate of metal ions in the production of the catalyst for NOx purification. The present invention relates to a method for producing a catalyst for purifying NOx, which can reduce the production process time by improving the ion exchange rate and simplifying the production process.

금속한 산업경제 발전에 따른 자동차 보유대수의 증가와 이에 따른 유해 배기가스의 증가는 지구환경을 크게 손상시켜 심각한 사회문제로 대두되고 있다. 이러한 문제를 해결하기 위해서 미국, 일본을 비롯한 자동차 선진각국 뿐만 아니라 국내 자동차 산업계에서는 연비규제외 배기가스 규제를 동시에 만족시키기 위한 일환으로 희박연소 엔진(jozn burn engine)의 개발과 상용회에 관심을 집중시키고 있으며, 이외 힘의 희박연소 엔진의 배기가스 처리용 촉매의 개발에 박차를 가하고 있다.The increase in the number of cars owned by the industrial development of metals and the increase of harmful emissions have seriously damaged the global environment, which is becoming a serious social problem. In order to solve these problems, the automobile industry in the US, Japan and other advanced countries as well as the domestic automobile industry have focused their attention on the development of lean burn engines and commercial trade as part of satisfying emission regulations other than fuel consumption. In addition, other efforts are being made to develop catalysts for exhaust gas treatment of lean-burn engines of other forces.

희박연소 엔진에서 나오는 배기가스의 처리시 기존의 3원 촉매를 사용할 경우에는 기존의 규제치를 만족시킬 수 없다. 즉, 희박연소에서는 공연비(air/fuel의 비)가 18-26까지 증가되어 과양의 산화분위기가 되므로 HC와 CO는 산화반응에 의해 정화가 용이하지만 NOx는 산화분위기에서 환원시켜야 하기 때문에 이 NOx를 환원시키기 위한 새로운 촉매계의 개발이 필요하게 되었다. 특히, NOx에 의한 광학적 스모그 발생과 산성비의 강하로 인한 인체, 동식물 및 재료에 미치는 지대한 영향으로 인하여 NOx에 대한 규제가 점차 강화되고 있는 실정이다.If the existing three-way catalyst is used to treat the exhaust gas from lean-burn engines, the existing regulation cannot be satisfied. That is, in lean combustion, the air-fuel ratio (air / fuel ratio) is increased to 18-26, resulting in an excessive oxidation atmosphere, so HC and CO can be easily purified by oxidation, but NOx must be reduced in the oxidation atmosphere. There is a need for the development of new catalyst systems for reduction. In particular, the regulation of NOx is gradually being strengthened due to the great influence on the human body, flora and fauna due to the generation of optical smog and acid rain.

한편, 희박연소 뿐만 아니라 보일러 등의 산업용에서 발생되는 NOx의 건식처리 방법에 있어서 환원제를 전혀 사용하지 않고 NO를 직접 분해시킬 수 있는 직접분해 방법이 가장 바람직한 반응경로이나 이에 관한 촉매계는 실현되지 못하고 있다. 이에 따라, NOx 분해를 위해 HC를 환원제로 사용하는 새로운 촉매제가 제안되었다. 그 중 이와모또(Iwamoto) 등은 새로운 촉매의 활성 및 HC의 가스 선택성은 제올라이트의 구리 이온교환율이 높아짐에 따라 더욱 더 크게 나타난다고 제안하였으며, 특히 양이온 제올라이트 중 양이온에 대해 Cu 이온교환량이 100~120%일 때 촉매의 활성이 더욱 우수함을 알 수 있다. 그러나, 종래는 Cu 이온교환량이100∼120%인 우수한 특성을 지닌 촉매를 얻기 위해서 많은 횟수의 Cu 이온교환 공정을 반복 실시하여야 했다.On the other hand, in the dry treatment method of NOx generated not only in lean combustion but also in industries such as boilers, a direct decomposition method capable of directly decomposing NO without using any reducing agent is the most preferable reaction route, but a catalyst system has not been realized. . Accordingly, new catalysts have been proposed that use HC as reducing agent for NOx decomposition. Among them, Iwamoto et al. Proposed that the activity of the new catalyst and the gas selectivity of HC appear more and more as the copper ion exchange rate of zeolite increases. It can be seen that the activity of the catalyst is more excellent at 120%. However, conventionally, a large number of Cu ion exchange processes have to be repeated in order to obtain a catalyst having excellent characteristics of 100 to 120% Cu ion exchange amount.

따라서, 본 발명은 Cu 이온 교환율을 높여 상기 문제점을 해결할 뿐만 아니라 제조공정을 단순화하여 제조 공정시간을 줄일 수 있는 NOx 정화용 촉매의 제조방법을 제공하는 데 있다.Accordingly, the present invention is to provide a method for producing a catalyst for NOx purification that can not only solve the above problems by increasing the Cu ion exchange rate but also simplify the manufacturing process to reduce the manufacturing process time.

상기 목적을 달성하기 위한 본 발명의 NOx 정화용 촉매의 제조방법은, Na 수용액에 제올라이트를 첨가하여 Na 이온교환시키고 이를 세척 및 건조시키고 하소한 후 Na-제올라이트를 Cu 수용액에 첨가하여 Cu 이온교환시켜 Cu-제올라이트를 제조하는 NOx 정화용 촉매의 제조방법에 있어서, 상기 하소 공정전에 Cu 이온 교환 공정을 실시하는 것으로 이루어진다.In order to achieve the above object, a method for preparing a catalyst for purifying NOx of the present invention is performed by adding zeolite to an aqueous Na solution, exchanging Na ion, washing, drying, and calcining, and then adding Na-zeolite to an aqueous Cu solution to perform Cu ion exchange. -A method for producing a catalyst for NOx purification for producing a zeolite, wherein the Cu ion exchange step is performed before the calcination step.

이하 본 발명의 구성을 첨부된 도면을 참조하여 좀 더 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the accompanying drawings.

제올라이트의 양이온 교환법은 교환되는 이온의 종류시 용액의 종류에 따라 달라지므로 이에 관한 최적의 교환법이 확립되어야 제올라이트의 양이온 교환율이 증진되고 NO의 N2로의 전환효율이 향상된다.Since the cation exchange method of zeolite varies depending on the type of solution in the type of ion to be exchanged, an optimal exchange method must be established to improve the cation exchange rate of zeolite and the conversion efficiency of NO to N 2 .

제올라이트에 양이온을 교환시키기 위해서는 먼저 제올라이트에 활성이 뛰어난 Na 이온을 이온교환 시킨후 원하는 양이온을 이온교환시킨다. 그 이유는 Na 이온은 이온교환 능력이 뛰어나기 때문에 교환하고자 하는 다른 금속이온과 우선적으로 쉽게 교환되기 때문이다. 또한, Na 이온교환시 Na 수용액의 몰비에 따라 다른금속 양이온의 이온교환율이 크게 변화되기 때문에 최적의 몰비를 정해주어야 한다. 즉, 용액의 농도가 묽어지면 이온의 반응도는 높아지지만 운동성은 떨어지고 반대로 용액의 농도가 진해지면 반응도는 낮아지지만 운동성은 커지기 때문이다.In order to exchange cations in the zeolite, Na ion having excellent activity in the zeolite is first ion exchanged, and then the desired cation is ion exchanged. This is because Na ions are easily exchanged preferentially with other metal ions to be exchanged because of their excellent ion exchange capacity. In addition, since the ion exchange rate of other metal cations is greatly changed depending on the molar ratio of Na aqueous solution during Na ion exchange, an optimal molar ratio should be determined. In other words, the thinner the concentration of the solution, the higher the reactivity of the ions but the lower the motility and conversely, the higher the concentration of the solution, the lower the reactivity but the greater the mobility.

이러한 점을 감안하여 본 발명자들은 제올라이트의 양이온 교환에 앞서 Na 수용액인 NaNO3의 농도를 0.1∼0.l5mole로 정하고 있으며 일반적으로 1차 Na 이온교환 후 세척-건조-하소 후 새로운 2차 구리 이온교환을 실시하던 종래와는 달리 하소공정을 거치지 않은 상태에서 Na 이온교환세척-건조공정 후에 2차 이온 교환공정을 수행하므로써 Cu 이온교환율을 향상시켜 제조공정을 단순화시키고 있다.In view of this, the present inventors set the concentration of NaNO3, an aqueous solution of Na, to 0.1 to 0.5 mole prior to cation exchange of zeolite, and generally, after the first Na ion exchange, after washing-drying and calcination, a new secondary copper ion exchange was performed. Unlike the conventional practice, the secondary ion exchange process is performed after the Na ion exchange washing-drying process without the calcination process, thereby improving the Cu ion exchange rate to simplify the manufacturing process.

간략히 말해서, 본 발명의 NOx 정화용 촉매의 제조방법은 Na 수용액에 제올라이트를 첨가하여 Na 이온교환시키고 이를 세척 및 건조시키고 하소한 후 Na-제올라이트를 Cu 수용액에 첨가하여 Cu 이온교환시켜 Cu 제올라이트를 제조하는 NOx 정화용 촉매의 제조방법에 있어서, 상기 하소 공정전에 Cu 이온교환 공정을 실시하는 것에 특징이 있다.In brief, the method for preparing a catalyst for purifying NOx of the present invention is to prepare a zeolite by adding zeolite to Na aqueous solution, Na ion exchange, washing, drying and calcining, and then adding Na-zeolite to Cu aqueous solution for Cu ion exchange. The method for producing a catalyst for purifying NOx is characterized by performing a Cu ion exchange step before the calcination step.

제1도는 본 발명에 따른 NOx 정화용 촉매의 제조공정도이고, 제2도는 NaNO3몰 농도의 변화에 따른 이온교환율의 변화를 나타낸 그래프이다.FIG. 1 is a manufacturing process diagram of a catalyst for purifying NOx according to the present invention, and FIG. 2 is a graph showing a change in ion exchange rate according to a change in NaNO 3 molar concentration.

제1도를 참조하여 본 발명의 NOx 정화용 촉매의 제조방법을 설명하면 다음과 같다.Referring to Figure 1 describes a method for producing a catalyst for purifying NOx of the present invention.

NaNO3와 같은 Na 수용액에 제올라이트의 일종인 H-보데나이트를 첨가하여 약 40 ~ 70℃의 온도에서 교반에 의해 Na 이온 교환을 시킨 후 이를 여과시킨다. 이때Na 수용액의 농도는 0.1 ~ 0.15mole이 바람직하다.H-Bodenite, a kind of zeolite, was added to an aqueous Na solution such as NaNO 3 , followed by Na ion exchange by stirring at a temperature of about 40 to 70 ° C., and then filtered. At this time, the concentration of Na aqueous solution is preferably 0.1 ~ 0.15mole.

여과된 습식 케이크를 탈이온수와 함께 용기에 넣고 교반에 의해 표면에 잔존한 Na 이온을 제거할 수 있도록 세척 및 여과를 각각 3 ~ 4회정도 반복한 후 100 ~ 120℃의 온도에서 건조시킨다.The filtered wet cake was placed in a container with deionized water and washed and filtered three or four times to remove Na ions remaining on the surface by stirring, followed by drying at a temperature of 100 to 120 ° C.

건조된 Na-보데나이트 분말을 구리 이온교환을 위해 구리 수용액인 Cu(CH3COO)2H2O (copper acetate) 수용액과 교환한 후 pH 7.5인 NH4OH 용액을 이용하여 적정시킨다. 적정후, 여과시킨 습식 케이크를 교반에 의해 세척 및 여과를 각각 3 ~ 4회정도 반복한 후 100 ~ 120℃의 온도에서 건조시킨다.The dried Na-bodenite powder is exchanged with a copper aqueous solution of Cu (CH 3 COO) 2 H 2 O (copper acetate) for copper ion exchange, and then titrated with NH 4 OH solution at pH 7.5. After the titration, the filtered wet cake is washed by stirring and repeated three to four times, respectively, and then dried at a temperature of 100 to 120 ° C.

건조된 분말을 초기 공정과 동일한 방법으로 2회 이상, 바람작하게로는 3 ~ 4회 정도로 Cu 이온교환 시킨 후, 500 ~ 550℃의 온도에서 하소하고 최종적으로 열처리하여 Cu-제올라이트를 제조한다.The dried powder is subjected to Cu ion exchange at least twice, preferably 3 to 4 times, in the same manner as the initial process, and then calcined at a temperature of 500 to 550 ° C. and finally heat treated to produce Cu-zeolite.

제2도는 NaNO3몰 농도의 변화에 따른 Cu 이온교환율의 변화를 나타낸 그래프이다.2 is a graph showing the change of Cu ion exchange rate with the change of NaNO 3 molar concentration.

제2도에 도시된 바에 따르면, NaNO3몰 농도가 0.1mole에서 최대의 Cu 이온교환율을 나타내고 있다. 또한, 0.15mole의 NaHO3몰농도에서도 약 40% 이상의 Cu 이온교환율을 나타내고 있다. 이와 같이 Cu 이온교환율이 40%를 넘도록 Na 수용액의 농도를 조절함이 좋다.As shown in FIG. 2, the NaNO 3 molar concentration shows the maximum Cu ion exchange rate at 0.1 mole. In addition, at a molar concentration of 0.15 mole of NaHO 3 , the Cu ion exchange rate was about 40% or more. As such, it is preferable to adjust the concentration of the Na aqueous solution so that the Cu ion exchange rate exceeds 40%.

따라서, 약 40% 이상의 이온교환 효율을 향상시킬 수 있도록 Na 수용액의 농도는 0.1 ~ 0.15mole로 정하는 것이 좋으나, 이 범위에 형성되지 않고 상기 농도범위를 벗어나더라도 Cu 이온 교환율이 약 40% 내외로 되는 해당농도의 Na 수용액이면 좋다.Therefore, the concentration of the Na aqueous solution is preferably set to 0.1 ~ 0.15mole so as to improve the ion exchange efficiency of about 40% or more, Cu Cu ion exchange rate of about 40% even if not formed in this range and out of the concentration range What is necessary is just the aqueous solution of Na of the said concentration.

이하 실시예 및 비교예를 통하여 본 발명을 좀 더 상세히 설명하지만, 이것이 본 발명의 범주를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but this does not limit the scope of the present invention.

실시예 1Example 1

먼저, 0.1mole NaNO31,000ml에 H-보테나이트를 15g 첨가하여 약 50℃의 온도에서 24시간동안 교반에 의해 Na 이온교환을 시킨 후 이를 여과시켰다.First, 15 g of H-botenite was added to 1,000 ml of 0.1 mole NaNO 3 , and Na ion exchange was carried out by stirring at a temperature of about 50 ° C. for 24 hours, followed by filtration.

여과된 습식 케이크를 탈이온수와 함께 비이커에 넣고 교반에 의해 표면에 잔존한 Na이온을 제거할 수 있도록 세척 및 여과를 각각 3회정도 반복한 후 110℃의 온도에서 24시간동안 건조시켰다.The filtered wet cake was placed in a beaker with deionized water and washed and filtered three times, respectively, to remove Na ions remaining on the surface by stirring, and then dried at a temperature of 110 ° C. for 24 hours.

건조된 Na-모데나이트 분말을 구리이온교환을 위해 Cu(CH3COO)2H2O 수용액과 교환한 후 pH 7.5인 NH4OH 용액을 이용하여 적정시켰다. 적정후, 여과시킨 습식 케이크를 교반에 의해 세척 및 여과를 각각 4회 정도 반복한 후 110℃의 온도에서 12시간 건조시켰다.The dried Na-mordenite powder was exchanged with Cu (CH 3 COO) 2 H 2 O aqueous solution for copper ion exchange, and then titrated with NH 4 OH solution at pH 7.5. After the titration, the filtered wet cake was washed by stirring and repeated four times, respectively, and dried at a temperature of 110 ° C. for 12 hours.

건조된 분말을 2차 및 3차 양이온 교환을 위해 초기 공정과 동일한 방법으로 2회 반복하이 Cu 이온교환 시킨 후, 550℃의 온도에서 3시간 하소하였고 최종적으로 질소 분위기하 550℃의 온도에서 5시간동안 열처리하여 Cu-제올라이트를 제조하였다.The dried powder was subjected to Cu ion exchange twice in the same manner as in the initial process for secondary and tertiary cation exchange, and then calcined at 550 ° C. for 3 hours and finally 5 hours at 550 ° C. under nitrogen atmosphere. Cu-zeolite was prepared by heat treatment.

제3도는 종래 및 본 발명(실시예 1)에 의해 이온교환된 제올라이트의 이온교환율을 나타낸 그래프로서, 상기의 공정을 거쳐 제조한 Cu-제올라이트에 대해 ICP(Inductively Coupled Plasma)와 AA(Atomic Adsorption)법을 이용하여 이온교환율을 측정하였고 이를 제3도의 a)로 나타내었고, 종래 Cu-제올라이트의 제조방법인 건조 및 하소후의 이온 교환공정에 의한 Cu-제올라이트의 이온 교환율을 제3도의 b)로 나타내었다.3 is a graph showing ion exchange rates of zeolites ion-exchanged according to the present invention and the present invention (Example 1). Inductively Coupled Plasma (ICP) and Atomic Adsorption (AA) for Cu-zeolites prepared through the above process The ion exchange rate was measured by a method shown in Figure 3 a), and the ion-exchange rate of Cu-zeolite by the ion exchange process after drying and calcining, which is a conventional method for preparing Cu-zeolite, was measured in b) of FIG. ).

제 3도에 의하면, 본 발명에 따라 하소면계정 제2차, 3차 양이온이 교환되어 얻어진 Cu-제올라이트 촉매가 1차 이온교환하여 하소단계후 2차, 3차 양이온이 교환된 Cu-제올라이트 촉매보다 Cu 이온교환율이 훨씬 높으므로써 순수한 촉매특성을 보이는 Cu 이온 교환량 100 ~ 120℃를 얻기 위한 촉매 제조공정이 더욱 단축됨을 알 수 있다.According to FIG. 3, the Cu-zeolite catalyst in which the secondary and tertiary cations were exchanged after the calcination step was subjected to the primary ion exchange of the calcined surface secondary and tertiary cations exchanged according to the present invention. As the Cu ion exchange rate is much higher than that, it can be seen that the catalyst manufacturing process for obtaining a Cu ion exchange amount of 100 to 120 ° C. showing pure catalytic properties is further shortened.

그러므로, 본 발명에 의하면, 제2의 이온교환시 회적의 Na 수용액의 몰비를 얻으므로써 이온교환율을 향상시킬 수 있으며 제조공정을 단순화하여 제조공정 시간을 단축시킬 수 있는 잇점이 있다.Therefore, according to the present invention, the ion exchange rate can be improved by obtaining the molar ratio of the aqueous Na aqueous solution at the time of the second ion exchange, and the manufacturing process time can be shortened by simplifying the manufacturing process.

제1도는 본 발명에 따른 NOx 정화용 촉매의 제조 공정도이고,1 is a manufacturing process chart of the catalyst for NOx purification according to the present invention,

제2도는 NaNO3몰 농도의 변화에 따른 Cu 이온교환율의 변화를 나타낸 그래프이며,2 is a graph showing the change of Cu ion exchange rate according to the change of NaNO 3 molar concentration,

제3도는 종래 및 본 발명에 의해 이온교환된 제올라이트의 이온 교환율을 나타낸 그래프이다.3 is a graph showing the ion exchange rate of zeolites ion-exchanged by the conventional and the present invention.

Claims (2)

Na 수용액에 제올라이트를 첨가하여 Na 이온교환시키고 이를 세척 및 건조시키고 하소한 후 Na-제올라이트를 Cu 수용액에 첨가하여 Cu 이온교환시켜 Cu-제올라이트를 제조하는 NOx 정화용 촉매의 제조방법에 있어서, 상기 하소 공정전에 Cu 이온교환 공정을 실시하는 것을 특징으로 하는 질소산화물(NOx) 정화용 촉매의 제조방법.In the method for preparing a catalyst for NOx purification in which a zeolite is added to an aqueous Na solution, Na ion exchange is performed, washed, dried, and calcined, and then Na-zeolite is added to an aqueous Cu solution to exchange Cu to produce Cu-zeolite. A method for producing a catalyst for purifying nitrogen oxides (NOx), comprising performing a Cu ion exchange step before. 제1항에 있어서, 상기 Na 수용액의 농도가 0.1 ~ 0.15mole인것을 특징으로 하는 질소산화물(NOx) 정화용 촉매의 제조방법.The method for preparing a catalyst for purifying nitrogen oxides (NOx) according to claim 1, wherein the concentration of the Na aqueous solution is 0.1 to 0.15 mole.
KR1019940025207A 1994-09-30 1994-09-30 METHOD FOR FABRICATING DeNOx CATALYST KR100321473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940025207A KR100321473B1 (en) 1994-09-30 1994-09-30 METHOD FOR FABRICATING DeNOx CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940025207A KR100321473B1 (en) 1994-09-30 1994-09-30 METHOD FOR FABRICATING DeNOx CATALYST

Publications (2)

Publication Number Publication Date
KR960010076A KR960010076A (en) 1996-04-20
KR100321473B1 true KR100321473B1 (en) 2002-06-22

Family

ID=37460575

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940025207A KR100321473B1 (en) 1994-09-30 1994-09-30 METHOD FOR FABRICATING DeNOx CATALYST

Country Status (1)

Country Link
KR (1) KR100321473B1 (en)

Also Published As

Publication number Publication date
KR960010076A (en) 1996-04-20

Similar Documents

Publication Publication Date Title
EP1425099B1 (en) HYDROTHERMALLY STABLE METAL PROMOTED ZEOLITE BETA FOR NOx REDUCTION
US7695703B2 (en) High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion
CA2151229C (en) Ammonia decomposition catalysts
CN103008002B (en) Preparation method and application of Fe and Cu composite molecular sieve catalyst
CN109184860B (en) Method and system for purifying exhaust gases from an internal combustion engine
EP1495804A1 (en) Hydrotehermally stable metal promoted zeolite beta for NOx reduction
CN109174167B (en) Catalyst, preparation and NH3Method for selective catalytic reduction of NO
CN108772057B (en) Low-temperature SCR manganese oxide catalyst and preparation method and application thereof
CN110694670A (en) Preparation method of molecular sieve for purifying diesel vehicle tail gas
CN110947416A (en) For NH3-SCR iron/molecular sieve catalyst, preparation method and application thereof
KR100321473B1 (en) METHOD FOR FABRICATING DeNOx CATALYST
CN114275795B (en) CHA chabazite molecular sieve synthesis method and denitration catalytic application
JP3246757B2 (en) Nitrogen oxide removal catalyst
CN105688980A (en) Preparation method of molecular sieve supported SCR (selective catalytic reduction) catalyst
KR100321471B1 (en) METHOD FOR FABRICATING DeNOx CATALYST
CN114057208B (en) CHA type molecular sieve synthesized by double template agents and method for preparing SCR catalyst by using CHA type molecular sieve
KR100321472B1 (en) METHOD FOR FABRICATING DeNOx CATALYST
JPH01247710A (en) Purifying device for automobile exhaust
KR100349451B1 (en) FABRICATION METHOD OF DeNOx CATALYST
CN114044524B (en) CHA molecular sieve prepared by composite template agent and method for preparing SCR catalyst by using CHA molecular sieve
CN114162831B (en) CHA type molecular sieve synthesized by adopting composite template agent, preparation method and application thereof
CN108579800A (en) A kind of cleaning catalyst for tail gases of automobiles and preparation method thereof
JP3436419B2 (en) Method for producing high heat resistant nitrogen oxide purifying catalyst
KR20050006894A (en) Natural zeolite-supported catalyst, method of manufacturing the same, and method of removal of n2o using the same
KR100321470B1 (en) METHOD FOR FABRICATING DeNOx CATALYST

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 13

EXPY Expiration of term