KR100320958B1 - Method for manufacturing free cutting hot tool steel - Google Patents

Method for manufacturing free cutting hot tool steel Download PDF

Info

Publication number
KR100320958B1
KR100320958B1 KR1019960015129A KR19960015129A KR100320958B1 KR 100320958 B1 KR100320958 B1 KR 100320958B1 KR 1019960015129 A KR1019960015129 A KR 1019960015129A KR 19960015129 A KR19960015129 A KR 19960015129A KR 100320958 B1 KR100320958 B1 KR 100320958B1
Authority
KR
South Korea
Prior art keywords
molten steel
less
rare earth
steel
light rare
Prior art date
Application number
KR1019960015129A
Other languages
Korean (ko)
Other versions
KR970074950A (en
Inventor
송치복
Original Assignee
전선기
기아특수강 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전선기, 기아특수강 주식회사 filed Critical 전선기
Priority to KR1019960015129A priority Critical patent/KR100320958B1/en
Publication of KR970074950A publication Critical patent/KR970074950A/en
Application granted granted Critical
Publication of KR100320958B1 publication Critical patent/KR100320958B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing free cutting hot tool steels excellent in machinability, heat fatigue resistance at high temperatures and impact properties is provided. CONSTITUTION: The method for manufacturing free cutting hot tool steels includes step of preparing a molten steel comprising C 0.1 to 1.0 wt.%, Si 0.2 to 0.8 wt.%, Mn 0.3 to 4.0 wt.%, Ni 0.001 to 4.0 wt.%, Cr 1.5 to 6.0 wt.%, Mo to 4.0 wt.%, V 0.1 to 3.5 wt.%, Al 0.005 to 0.1 wt.%, at least one element selected from W 0.005 to 0.2 wt.%, Zr 0.005 to 0.2 wt.%, Nb 0.005 to 0.2 wt.%, Te 0.001 to 0.25 wt.%, Ti 0.01 wt.% or less and Co 0.001 wt.% or less, a balance of Fe and incidental impurities; performing vacuum oxygen decarburization at a vacuum condition of less than 1x10¬-1 torr for both desulfurization and decarburization; injecting either one element from light rare earth metal, light rare earth metal together with Ca, one element from mischmetal or mischmetals together with Ca into the pretreated molten steel at either one moment right after vacuum oxygen decarburization, one moment right before molten steel pouring, on the course of molten steel pouring into bottom or on the course of molten steel pouring into mold; cooling a molten steel including light rare earth metal and Ca at 1,600±50°C to prepare ingots; hot rolling the ingots at 1,000 to 1,300°C followed by forging; spheroidizing the forged tool steel at 840 to 870°C for more than 60 minutes 60/25.4mm; quenching the spheroidized tool steel at 1,000 to 1050°C for more than 30 minutes/25.4mm; and tempering the quenched tool steel at 200 to 650°C for more than 60 minutes/25.4mm.

Description

고온열피로특성 및 충격특성이 우수한 쾌삭열간공구강의 제조방법Manufacturing method of free cutting hot oral steel with excellent high temperature thermal fatigue characteristics and impact characteristics

[발명의 분야][Field of Invention]

본 발명은 쾌삭열간공구강의 제조방법에 관한 것으로써, 보다 구체적으로는 청정성의 향상과 고온열피로특성 및 충격특성이 우수하고 충격치의 이방성이 작을 뿐만아니라 절삭성이 우수한 쾌삭열간공구간의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-quality hot-rolled oral cavity, and more particularly, to a method for manufacturing a high-temperature hot-rolled section having excellent cleanability, high temperature fatigue fatigue characteristics and impact characteristics, and low anisotropy of impact value, as well as excellent cutting property. will be.

[종래 기술][Prior art]

최근 열간공구강의 사용조건이 점점 가혹화, 고속화 되어감에 따라 가혹한 열피로충격에 의한 열피로크랙발생 및 전파, 고온연화 등으로 인하여 금형소재가 조기에 파손되는 경향이 뚜렷하므로 그 개선이 강하게 요구되고 있으며, 열간공구강의 재질 특성상 절삭 또는 기계가공이 난해하여 금형제작에 있어서도 큰 어려움을 겪고 있다.As the usage conditions of hot oral cavity become more and more severe and high speed, the mold material tends to be damaged prematurely due to thermal fatigue crack generation, propagation, and high temperature softening due to severe thermal fatigue shock, so the improvement is strongly required. In addition, due to the characteristics of the hot-hole oral cavity, cutting or machining is difficult, and thus, it is difficult to produce a mold.

또한, 기존 열간공구강인 STD61이나, STD61을 기본으로 성분변화를 시도한소재로는 열피로특성, 충격특성 및 절삭성이라는 상반되는 특성들을 모두 만족시키기는 불가능함에 따라 열간공구강 사용업체의 생산원가에 큰 부담을 주었다.In addition, it is impossible to satisfy all the opposing characteristics such as thermal fatigue, impact and machinability with the existing hot-drilled STD61 or STD61. Gave.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로써, 열간 압출, 프레스, 단조가공등에 있어서 금형소재가 조기에 파손되는 문제점을 개선하여 고수명화되고 절삭성이 우수한 쾌삭열간공구강을 사용업체에 공급하는 것을 목적으로 한다.The present invention has been made in order to solve the above problems, to improve the problem that the mold material is damaged early in hot extrusion, press, forging, etc. to provide a high-life and excellent cutting hot work oral to the company It aims to do it.

제 1 도는 본 발명의 실시예에 따른 발명강과 비교강의 칩처리성을 비교한 사진1 is a photograph comparing the chip treatability of the inventive steel and the comparative steel according to an embodiment of the present invention

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명의 쾌삭열간공구강은 화학성분범위를 중량%로 C:0.1%∼1.0%, Si:0.2%∼0.8%, Mn:0.3%∼4.0%, Ni:0.001%∼4.0%, Cr:1.5%∼6.0%, Mo:0.3%∼4.0%, V:0.1%∼3.5%, Al:0.005%∼0.1%를 함유하고, 또한, W:0.005%∼0.2%, Zr:0.005%∼0.2%, Nb:0.005%∼0.2%, Ti:0.01%이하, Co:0.01%이하, Te:0.001%∼0.25%를 1종이상 함유하고, 잔량을 Fe및 전기로 제강시 함유될 수 있는 미량 불순물을 포함하는 용강을 준비하는 단계; 용제한 용강을 진공분위기하에서 진공정련하여 예비탈황 및 예비탈산을 실시하는 단계; 탈산·탈황된 용강에 경희토류원소(Ce, La, Nd, Pr, Y등 : 이하, REM으로 표기)를 단독첨가하거나 경희토류원소 및 Ca을 복합첨가하는 단계; 경희토류 원소 및 Ca이 첨가된 용강을 냉각시켜 강괴를 제조하는 단계; 제조된 강괴를 단조, 구상화, 담금질, 뜨임처리하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the object of the present invention as described above, the free cutting hot oral cavity of the present invention has a chemical composition in weight% of C: 0.1% to 1.0%, Si: 0.2% to 0.8%, Mn: 0.3% to 4.0%, Ni: 0.001% to 4.0%, Cr: 1.5% to 6.0%, Mo: 0.3% to 4.0%, V: 0.1% to 3.5%, Al: 0.005% to 0.1%, and W: 0.005% to 0.2%, Zr: 0.005% to 0.2%, Nb: 0.005% to 0.2%, Ti: 0.01% or less, Co: 0.01% or less, Te: 0.001% to 0.25%, and the balance of Fe and electricity Preparing a molten steel including trace impurities that may be contained during steelmaking; Vacuum refining the molten molten steel in a vacuum atmosphere to perform preliminary desulfurization and preliminary deoxidation; Adding light rare earth elements (Ce, La, Nd, Pr, Y, etc., hereinafter referred to as REM) to the deoxidized and desulfurized molten steel alone or adding a combination of light rare earth elements and Ca; Preparing a steel ingot by cooling the molten steel to which the light rare earth element and Ca are added; Forging, spheroidization, quenching, and tempering the prepared ingot is characterized in that it comprises a step.

이하, 본 발명강의 화학성분범위를 중량%로 한정하고 그 한정이유를 설명한다.Hereinafter, the chemical composition range of the inventive steel is limited to the weight percent, and the reason for limitation is described.

C : C는 기지에 고용하여 경도와 강도를 상승시킴에 따라 열간공구강에서 고온내마모성 및 고온연화저항성을 확보하기 위해 필수적인 첨가원소이다. 위의 효과들을 확보하기 위해서는 0.1%이상 첨가시키는 것이 필수적이며, 과량첨가시 충격특성 및 절삭성이 저하되므로 0.1%이하로 한정한다.C: C is an essential element to secure high temperature wear resistance and high temperature softening resistance in hot oral cavity by increasing the hardness and strength by solid solution at the base. In order to secure the above effects, it is essential to add more than 0.1%, and limited to less than 0.1% because the impact properties and machinability is lowered at the time of excessive addition.

Si : 탈산제로서 유효하게 작용함과 동시에 A1변태점을 높이고 내산화성을 부여하지만 과량첨가시 소재의 절삭성 및 충격특성을 해치므로 0.8% 이하로 하고, 소량첨가시 바라는 효과를 얻을 수 없으므로 0.2%이상으로 한정한다.Si: Effectively acts as a deoxidizer and increases A 1 transformation point and imparts oxidation resistance. However, it does not exceed 0.8% because it impairs the machinability and impact characteristics of the material when excessively added, and 0.2% or more since the desired effect cannot be obtained when a small amount is added. It is limited to.

Mn : 제강시 탈산, 탈황효과외에 소입성확보 및 단열성 피막형성을 위해 적극적으로 첨가시키는 것이 바람직하다. 그러나 과량첨가시 A1변태점을 저하시켜 어닐링경도가 높아지고 절삭성이 저하되며 잔류 오스테나이트가 증가하여 열간가공성을 해치므로 4,0%이하로 한다. 또한, 소량첨가시 소입성이 저하되므로 0.3%이상으로 한정한다.Mn: In addition to deoxidation and desulfurization effects during steelmaking, it is desirable to actively add in order to secure hardenability and to form an insulating film. However, when excessively added, the A 1 transformation point is lowered, so that the annealing hardness is increased, the machinability is lowered, the residual austenite is increased, and the hot workability is deteriorated. In addition, since the quenchability decreases when a small amount is added, it is limited to 0.3% or more.

Ni : 기지조직을 강화시키고 소입성을 높이는 원소로서 과량첨가시 충격특성과 절삭성을 해치므로 4.0%이하로 하고, 소량첨가시 균일경도 및 소입성확보가 어려우므로 0.001%이상으로 한정한다.Ni: As an element that strengthens the matrix structure and enhances the hardenability, it is less than 4.0% because it impairs the impact characteristics and machinability when it is added excessively, and it is limited to 0.001% or more because it is difficult to secure the uniform hardness and hardenability when the small amount is added.

Cr : 미세탄질화물을 형성하고 소입성 및 내산화성을 부여하는 원소로서, 고온내마모성, 고온연화저항성 및 고온강도를 높이지만, 과량첨가시 Cr탄화물을 과도하게 형성시켜 절삭성과 고온강도를 해치므로 6.0%이하로 하고, 소량첨가시 위 여러효과들을 얻을 수 없으므로 1.5%이상으로 한정한다.Cr: An element that forms fine carbonitrides and imparts quenching and oxidation resistance. It increases high temperature wear resistance, high temperature softening resistance, and high temperature strength, but excessive addition of Cr carbide damages cutting and high temperature strength. It should be less than%, and it is limited to more than 1.5% because the above effects cannot be obtained when a small amount is added.

Mo : 베이나이트 변태를 촉진하고 안정한 잔류오스테나이트를 생성시키며, 탄화물을 형성시키는 원소로서 고온연화저항성과 고온내마모성을 높이나 과량 첨가시 절삭성과 충격인성을 해치므로 4.0%이하로 하고, 소량첨가시 위 효과들을 기대할 수 없으므로 0.3%이상으로 한정한다.Mo: It promotes bainite transformation and produces stable residual austenite and forms carbide, and it is under 4.0% because it increases high temperature softening resistance and high temperature wear resistance, but damages cutting and impact toughness when added excessively. Since effects cannot be expected, it is limited to 0.3% or more.

V : C, N과 결합하여 미세탄질화물을 형성시켜 고온내마모성, 고온연화저항성 및 충격특성을 향상시키나 과량첨가시 그 효과에 비하여 경제적이지 못할 뿐만아니라 거대탄화물(VC)을 형성시켜 충격특성과 고온강도를 저하시키므로 3.5%이하로 하고, 소량첨가시 위 효과들의 확보가 어려우므로 0.1%이상으로 한정한다.V: Combines with C and N to form fine carbonitrides to improve high temperature abrasion resistance, high temperature softening resistance and impact characteristics, but it is not economical compared to the effects of excessive addition, and it forms macrocarbide (VC) to form impact characteristics and high temperature The strength is lowered to 3.5% or less, and it is limited to 0.1% or more because it is difficult to secure the above effects when a small amount is added.

W : 0.005%∼0.2%, Zr : 0.005%∼0.2%, Nb : 0.005%∼0.2%, Ti : 0.01%이하, Co : 0.01%이하로 모두 탄화물형성원소로서 고온내마모성, 고온연화저항성 확보를 위해 중요하기 때문에 1종류 이상 첨가시킨다.W: 0.005% to 0.2%, Zr: 0.005% to 0.2%, Nb: 0.005% to 0.2%, Ti: 0.01% or less, all of which are carbide forming elements to ensure high temperature wear resistance and high temperature softening resistance. It is important to add at least one kind.

상기 탄화형성온소들에 대해 수치한정한 이유를 보다 상세하게 설명하면 W : 은 기지에 고용하여 고온강도를 향상시키고, WC 탄화물을 형성하여 고온 내마모성을 향상시키며, 고온에서 오스테나이트 결정립 성장을 제어하고 결정립 세립화에 기여하여 충격인성 향상을 가져오므로 0.005%∼0.2%로 한정한다. 0.2% 이상 첨가시 응고시 거대한 1차 MC(WC)형 공정 탄화물을 형성하고 그 WC 공정탄화물이 군집을 이루어 열간 소성가공에 의해 Band 층을 형성하여 충격인성에 악 영향을 미치며, 0.005% 이하 첨가시 상기 효과를 기대할 수 없다.In more detail, the reason for the numerical limitation of the carbonization forming elements is explained in detail. W: is dissolved in a matrix to improve high temperature strength, form WC carbide to improve high temperature wear resistance, and control austenite grain growth at high temperature. It is limited to 0.005% to 0.2% because it contributes to grain refinement and improves impact toughness. When 0.2% or more is added, a large primary MC (WC) type process carbide is formed during solidification, and the WC process carbides are clustered to form a band layer by hot plastic processing, which adversely affects the impact toughness, and is added below 0.005%. You can not expect the above effects.

또한, Nb : Nb은 V과 같이 C과 결합하기 쉽고 본 발명에서 V과 복합 탄화물(Nb·V)C 형태의 경한 탄화물과 잔류 N과 결합된 (Nb)CN의 탄질화물을 만들어 내마모성을 향상시키고 고온에서 오스테나이트 결정립 성장을 제어(세립화)하여 인성을 향상시키는 것에서 유효한 원소이므로 0.005%∼0.2% 범위로 한정한다. 0.2% 이상 첨가시 응고시 거대한 1차 MC(NbC)형 공정탄화물 형성과 그 NbC 공정탄화물이 밴드 (Band) 층에 의해 인성 저하를 가져오고, 0.005% 이하 첨가시 상기 효과를 기대할 수 없다.In addition, Nb: Nb is easy to combine with C, such as V, in the present invention to create a light carbide in the form of V and complex carbide (Nb · V) C and (Nb) CN carbon nitride combined with residual N to improve wear resistance Since it is an effective element in controlling austenite grain growth at high temperature and improving toughness, it is limited to 0.005%-0.2% of range. The addition of 0.2% or more results in the formation of a large primary MC (NbC) type eutectic carbide upon solidification and its NbC eutectic carbides in the toughness caused by the band layer, and when added below 0.005%, the above effect cannot be expected.

Co : Co는 기지내 완전 고용 원소로서 오스테나이트 결정립 조대화를 일으키지 않고칭온도를 상승시키는 것이 가능하기 때문에 내열강도를 높이고 고속 마모영역에서 내마모성 개선에 효과가 있으며 고경도에서도 높은 충격인성의 확보가 가능하다. 고가인 합금원소로서 0.01% 이상 첨가시 경제적이지 않고 기지내 완전 고용원소로서 제 2상의 형성이 거의 없기 때문에 0.01% 이하로 한정한다.Co: Co is a fully solid solution element in the base and does not cause austenitic grain coarsening. It is possible to increase the temperature, so it is effective to increase the heat resistance and improve the wear resistance in the high-speed wear zone, and to secure high impact toughness even at high hardness. It is limited to 0.01% or less because it is not economical when 0.01% or more is added as an expensive alloy element and there is almost no formation of a second phase as a complete solid solution element in a matrix.

Ti : Ti은 결정립 미세화 및 강력한 탄질화물(TiCN) 형성 원소로서 유리 N을 고정하여 열처리시 유리 N의 입계에의 편석에 의한 입계 취화를 방지하는데 유효한 원소이다. 0.01% 이상이면 거대한 TiC를 형성하고 밴드(Band) 층을 이루어 인성 저하를 가져오므로 0.01% 이하로 한정한다.Ti: Ti is an element effective in preventing grain boundary embrittlement due to segregation of the glass N to grain boundaries during heat treatment by fixing the glass N as a grain refinement and a strong carbonitride (TiCN) forming element. If it is 0.01% or more, it forms a huge TiC and forms a band layer, thereby reducing the toughness, so it is limited to 0.01% or less.

Zr : Zr은 탈산제 보다는 미량 합금원소로서 첨가한다. 결정립 미세화에 의한 인성과 연성을 향상, 열간강도 향상 및 S와의 화합물로서 피삭성을 향상시키고 무엇보다 적열취성 방지에 효과적이다. 0.005% 이하 첨가시 그 효과를 기대할 수 없고 0.2% 이상 첨가시 경제적이지 않을 뿐만아니다. 과도한 산화물 등의 2상 입자를 형성하여 오히려 인성과 연성에 악 영향을 미치므로 0.005%∼0.2%로 한정한다.Zr: Zr is added as trace alloy element rather than deoxidizer. It improves toughness and ductility by grain refinement, improves hot strength, improves machinability as a compound with S, and above all, is effective in preventing red brittleness. If it is added below 0.005%, the effect cannot be expected and it is not economical when added above 0.2%. It is limited to 0.005% to 0.2% because it forms two-phase particles such as excessive oxides and thus adversely affects toughness and ductility.

Al : 탈산효과 및 결정립미세화효과, 질화효과가 있는 원소로서 REM 및 Ca첨가효과를 극대화하기 위하여 첨가시킨다. 과량첨가시 Al2O3를 다량 형성시켜 오히려 REM과 Ca첨가효과를 저하시키므로 0.1%이하로 하고, 소량첨가시 예비탈산효과, 결정립미세효과, 질화효과가 저하되므로 0.005%이상으로 한정한다.Al: As an element with deoxidation effect, grain refining effect, and nitriding effect, it is added to maximize REM and Ca addition effect. In case of excessive addition, a large amount of Al 2 O 3 is formed to decrease the effect of adding REM and Ca. Therefore, the addition amount is limited to 0.1% or less.

Te : 황화물의 형상을 변화시키지 않지만 황화물과 공정을 형성하여 비금속개재물의 융점을 저하시켜 절삭성을 향상시키는 주요한 원소로서, 0.001%이상 첨가시킨다. 그러나 0.25%이상의 첨가는 첨가량에 비하여 큰 효과를 기대할 수 없고 또한 경제적이지 못하다.Te: It is a major element that does not change the shape of sulfides but forms a process with sulfides to lower the melting point of nonmetallic inclusions, thereby improving machinability. However, the addition of more than 0.25% can not expect a great effect compared to the addition amount and is not economical.

Ca : 청정도향상과 비금속개재물 형상제어원소이고, 절삭성을 향상시키는 주요한 원소로서 0.001%∼0.1% 범위로 한정한다. 단, 최종 S량과 대비하여 Ca%/S%=1이하로 한다. 0.001%이하일때는 비금속개재물 형상제어효과 및 절삭성향상효과를 볼 수 없고, 0.1%이상, Ca%/S%=1이상일 때는 REM첨가효과를 저해하므로 한계치를 둔다.Ca: A clean element and a non-metallic inclusion shape control element, which is a major element for improving machinability, and is limited to 0.001% to 0.1%. However, compared with the final amount of S, Ca% / S% = 1 or less. If the value is less than 0.001%, the shape control effect and the cutting property improvement effect of the non-metallic inclusions are not seen. If the content is more than 0.1% and Ca% / S% = 1 or more, the REM additive effect is inhibited, so the limit value is set.

경희토류원소(REM) : 강의 청정도향상과 비금속개재물 형상제어원소로서 응고조직을 개선시키고 충격특성, 절삭성, 고온열피로특성을 향상시킬 뿐만아니라 충격치의 이방성을 작게한다. 그러나 과량첨가시 첨가량만큼 첨가효과를 얻을 수 없을 뿐만아니라 경제적이지 못하므로 최종 REM량을 0.25%이하로 한정하고, 소량첨가시 Al2O3, MnS 등 유해 비금속개재물의 단독생성을 완전하게 제어하는 것이 불가능하므로 0.0002%이상으로 한다. 단, 최종 S량과 대비하여 REM%/S%=2∼90, [REM%][S%]=3×10-5-100×10-5로 제한한다.Light Rare Earth Element (REM): As a clean element of steel and shape control element of non-metallic inclusions, it improves solidification structure, improves impact characteristics, machinability, high temperature thermal fatigue characteristics, and reduces anisotropy of impact value. However, when the addition amount is not sufficient, the addition effect is not obtained as well as the economical amount, so the final REM amount is limited to 0.25% or less, and when the small amount is added, it completely controls the sole generation of harmful nonmetallic inclusions such as Al 2 O 3 and MnS. Since it is impossible, it should be over 0.0002%. However, compared with the final amount of S, it is limited to REM% / S% = 2 to 90 and [REM%] [S%] = 3 × 10 −5 -100 × 10 −5 .

REM%/S%=2이하, [REM%][S%]=3×10-5이하일때는 비금속개재물의 형상제어가 충분하지 않고, REM%/S%=90이상, [REM%][S%]=100×10-5이상일때는 첨가량만큼 큰 탈산, 탈황효과를 볼 수 없고 경제적이지 않을 뿐만 아니라 제특성에 악영향을 미친다. 잔량은 Fe와 전기로 제강시 함유될 수 있는 미량 불순물이다.When REM% / S% = 2 or less and [REM%] [S%] = 3 × 10 -5 or less, the shape control of nonmetallic inclusions is not sufficient, REM% / S% = 90 or more, [REM%] [S When%] = 100 × 10 -5 or more, the deoxidation and desulfurization effect as large as the amount of addition is not seen, it is not economical, and it adversely affects the characteristics. The remaining amount is trace impurities that may be contained during steelmaking with Fe and electricity.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 기존 열간공구강(당사 열간공구강종)들의 화학성분을 변화시키고 경희토류원소(REM)와 REM+Ca을 특정 첨가시기 및 첨가방법을 이용하여 2성분 이상 첨가함으로써, O, S, P, N 등의 불순물과 총 비금속개재물량을 저감시켜 소재의 청정도를 향상시키고, 기존 열간공구강재내에 존재하는 Al2O3, MnS 등 유해 비금속개재물의 단독생성을 완전제어함과 동시에 크기가 5㎛이하의 구상형태인 RE계 복합개재물과 Ca이 함유된 RE계 복합개재물을 용강내에 소량 생성시키고 잔존시킴으로서 고온열피로특성, 충격특성, 절삭성이라는 상반되는 특성들을 모두 향상시킨 고청정 열간공구강에 관한 것이다.The present invention is to change the chemical composition of the existing hot oral cavity (our hot oral cavity species) by adding two or more components of the rare earth element (REM) and REM + Ca by using a specific addition time and method, O, S, P, Improving the cleanliness of the material by reducing impurities such as N and total nonmetallic inclusions, and fully controlling the formation of hazardous nonmetallic inclusions such as Al 2 O 3 and MnS existing in existing hot work materials and at the same time less than 5㎛ The present invention relates to a high-clean hot-hole oral cavity which improves all of the opposing properties such as high temperature thermal fatigue properties, impact characteristics, and machinability by generating and remaining a small amount of RE-based composite inclusions and Ca-containing RE-based composite inclusions in molten steel.

이하, 본 발명의 고청정 열간공구강에 대하여 보다 상세히 설명한다.Hereinafter, the high-cleaning hot pore of the present invention will be described in more detail.

본 발명은 기존 열간공구강들의 성분을 변화시킨 용강에 REM과 REM+Ca 첨가전 용강내 Al을 0.005%∼0.1%로 하고 진공도를 1×10-1torr이하로 하여 용강내 산소 (O)량을 15ppm이하로 제어하고 황(S)량을 100ppm이하로 한다. 용강내 O량이 15ppm이상이면 REM첨가후 고경도산화물인 RE-Oxide의 생성이 자유로와짐과 동시에 고경도산화물의 양이 증가되어 소재에 악영향을 미치고, 또한 용강내 S량이 100ppm이상이 되면 다량의 RE계 복합개재물이 생성되므로 이것 역시 소재에 악영향을 미친다.According to the present invention, the amount of oxygen (O) in the molten steel is reduced to 0.005% to 0.1% of Al in the molten steel before the addition of REM and REM + Ca to the molten steel which changes the components of the existing hot-hole oral cavity and the vacuum degree is 1 × 10 -1 torr or less. The amount is controlled to 15 ppm or less and the sulfur (S) amount is 100 ppm or less. If the amount of O in the molten steel is more than 15ppm, the formation of RE-Oxide, which is a high hardness oxide, becomes free after the addition of REM, and the amount of the high hardness oxide is increased, which adversely affects the material, and when the amount of S in the steel is 100ppm or more, This also adversely affects the material as RE-based composite inclusions are created.

용강내 REM 단독첨가나 REM+Ca 복합첨가시 그 첨가형태는 첫째 mischmetal (Ce, La, Nd, Pr, Fe)형태로 첨가, 둘째 경희토류원소들인 Ce, La, Nd, Pr, Y 등 각각에 대하여 단독첨가, 세째 mischmetal+Ca의 복합첨가, 네째 Ce, La, Nd, Pr, Y, Ca을 2성분내지 3성분 이상 첨가하는 것이다.When adding REM alone or REM + Ca complex in molten steel, the addition form is first added in the form of mischmetal (Ce, La, Nd, Pr, Fe), and the second light rare earth elements Ce, La, Nd, Pr, Y, etc. In this case, the monoaddition, the third mischmetal + Ca complex addition, and the fourth Ce, La, Nd, Pr, Y, and Ca are added in two to three components.

REM과 REM+Ca의 용강내 첨가시기는 제강공정중에서 진공정련후에 첨가하는 것으로 진공정련 직후에 첨가, 강괴제작시 용강주입직전 하주주입관내에 첨가, 용강주입중 몰드내에 첨가시키는 것을 기본으로 한다. 용해로내에 진공정련전에 첨가하지 않는 것은 다음 식과 같이 REM첨가 후부터 조괴까지의 시간 지연에 따른 복황반응과 RE-Oxide의 생성을 최소화시키기 위함이다.The addition time of REM and REM + Ca in the molten steel is added after vacuum refining during the steelmaking process. It is added immediately after vacuum refining, in the inlet injection pipe just before injection of molten steel, and in the mold during molten steel injection. It is not added before vacuum refining in the furnace to minimize duplex reaction and RE-Oxide formation due to the time delay from the addition of REM to the ingot as in the following equation.

2RES(S) + 20 = RE2O2S(S) + S2RES (S) + 20 = RE 2 O 2 S (S) + S

RE2O2S + O = RE2O3(S) + SRE 2 O 2 S + O = RE 2 O 3 (S) + S

REM과 REM + Ca을 많이 첨가할수록 용강내 Al2O3, MnS 등 유해비금속개재물의 단독 생성 제어효과와 불순물들을 크게 저감시킬 수는 있지만 과량첨가시 다량의 RE계 복합개재물들이 생성되어 일부는 부상분리에 의하여 제거되지만 일부는 용강내에 잔존되어 용강응고후 강재내에 남게 된다. 즉, 과량첨가시 큰 탈산, 탈황효과는 있지만 제특성에는 오히려 역효과를 초래한다. 충분한 탈산, 탈황효과와 생성된RE계 복합개재물과 Ca이 함유된 RE계 복합개재물을 강재내에 소량 잔존시키는 두가지 목적을 동시에 달성시키기 위해서는 적정 REM량과 Ca량이 필요하다. 용강내 REM과 Ca첨가에 의한 탈산, 탈황반응은 다음과 같다.The more REM and REM + Ca is added, the greater the control effect of the generation of harmful nonmetallic inclusions such as Al 2 O 3 and MnS in molten steel, and the impurities can be greatly reduced. Although removed by separation, some remain in the molten steel and remain in the steel after molten steel solidification. That is, when excessive addition, there is a large deoxidation, desulfurization effect, but rather adverse effects on the characteristics. In order to achieve both deoxidation and desulfurization effects and a small amount of the resultant RE-based composite inclusion and Ca-containing RE-based composite inclusion in the steel at the same time, an appropriate amount of REM and Ca are required. Deoxidation and desulfurization reaction by adding REM and Ca in molten steel are as follows.

2RE + 2O +S = RE2O2S2RE + 2O + S = RE 2 O 2 S

xRE + yS = REXSY xRE + yS = RE X S Y

Ca + (x + 1/3)Al2O3= CaOXAl2O3+2/3 AlCa + (x + 1/3) Al 2 O 3 = CaO X Al 2 O 3 +2/3 Al

CaO+ 2/3Al + S = CaS = 1/3 Al2O3 CaO + 2 / 3Al + S = CaS = 1/3 Al 2 O 3

용강내 REM과 REM + Ca의 첨가방법은 적정 REM과 Ca첨가량을 일정시기에 모두 첨가하거나 적정 REM과 Ca첨가량을 일정시기에 시간간격을 두고 나누어 첨가하는 2가지 방법을 기본으로 한다. REM첨가량을 일정시기에 시간간격을 두고 나누어 첨가하는 것, 이를테면 일정시간 간격의 다수회로 나누어 매회 동량이 투입되는 등의 여러 가지 방법이 있으나 본 발명강의 경우, 몰드내 또는 하주주입관내 첨가시기에 있어서 가장 효과적인 첨가방법은 주입시간중 주입초기에 40%를 첨가하고 나머지 REM량은 일정간격을 두고 나누어서 주입완료 3분전까지 100% 첨가완료 시키는 것이다.The addition of REM and REM + Ca in molten steel is based on two methods: adding appropriate REM and Ca at a certain time or adding the appropriate REM and Ca at a fixed time interval. There are various methods such as adding REM added at regular time intervals, for example, by dividing a plurality of times at regular time intervals, and adding the same amount each time. The most effective addition method is to add 40% at the beginning of the injection time and divide the remaining REM by a certain interval and add 100% until 3 minutes before the completion of injection.

[실시예]EXAMPLE

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

당사 열간공구강들인 STD61, KH90, KH71, KH80의 6톤강괴를 준비하고, 각 강괴들의 중부에서 스크랩을 내어 50kg급 진공유도로를 이용하여 재용해하는 것으로비교강을 제조하였으며, 용강주입시 용강온도를 1600℃±50℃로 하여 18kg급 강괴로 제작하였다.6 ton steel ingots of STD61, KH90, KH71, KH80, which are our hot work steels, were prepared, and scraps were prepared in the middle of each steel ingot and remelted using 50kg vacuum induction furnace. Was made into 18kg grade ingot at 1600 ℃ ± 50 ℃.

하기 표 1과 표 2에 발명강과 비교강의 화학성분과 제조방법을 자세히 나타내었다. 발명강은 비교강과 같은 방법으로 용강을 준비한 후, 발명강의 화학성분중 REM과 Ca을 제외한 성분으로 성분조정을 행한 다음 래들정련시 용강내 S량을 100ppm이하로 제어함과 동시에 용강내 Al량이 0.005%∼0.1%범위내로 되도록 Al을 첨가하고, 진공정련시 진공도를 1×10-1torr 이하로 하여 용강내 O량을 15ppm이하가 되도록 예비탈산을 시행한후 REM과 REM + Ca을 특정첨가시기와 특정첨가방법을 이용하여 2성분이상 첨가하였다. 그리고 용강주입시 용강온도를 1600℃±50℃로 하여 18kg급 강괴로 제작하였다.Table 1 and Table 2 shows the chemical composition and the production method of the inventive steel and comparative steel in detail. After the molten steel is prepared in the same way as the comparative steel, the chemical composition of the invention steel is adjusted to the components except REM and Ca, and then the amount of S in the molten steel is controlled to 100ppm or less, and the amount of Al in the molten steel is 0.005. Al is added so as to be within the range of% to 0.1%, and during vacuum refining, the vacuum degree is 1 × 10 -1 torr or less, preliminary deoxidation is carried out so that the amount of O in the molten steel is 15 ppm or less, and then REM and REM + Ca are added. More than two ingredients were added using a specific addition method. And molten steel was made into 18kg steel ingot with molten steel temperature of 1600 ℃ ± 50 ℃.

<표 1>TABLE 1

<표 2>TABLE 2

상기 표 1, 표 2에서 만들어진 강괴를 1000℃∼1300℃범위 내에서 33Ψ와 1.8U로 업(Upset)후 60×60mm인 두가지 치수로 단조를 실시 하였고, 구상화열처리는 840℃∼870℃범위에서 60분 이상/25.4mm 유지후 서냉하였으며, 33Ψ 소재는 피삭성시험을 위하여 그대로 두었다. 60×60mm소재는 1000℃∼1050℃에서 30분 이상/25.4mm 유지후, 공냉, 유냉, 수냉하는 담금질처리를 하였으며, 이어 뜨임처리를 실시하는데 뜨임처리는 일반적인 열간공구강의 뜨임처리, 즉 200∼500℃의 범위 내에서 실시하면 되나, 바람직하기로 본 실시예에서는 500℃∼650℃에서 60분 이상 /25.4mm 유지후 공냉하는 뜨임처리를 2회이상 실시하였다. 뜨임처리까지 실시된 소재는 충격특성평가와 열피로특성평가를 위하여 준비되었다. 비교강의 단조 크기 및열처리 조건은 발명강과 같다.The steel ingots made in Table 1 and Table 2 are upgraded to 33Ψ and 1.8U within the range of 1000 ° C to 1300 ° C. After the upset, the forging was performed in two dimensions of 60 × 60 mm. The spheroidizing heat treatment was cooled slowly after holding at 25.4 mm for more than 60 minutes in the range of 840 ° C. to 870 ° C., and the 33Ψ material was left for machinability test. 60 × 60mm material was quenched by air-cooling, oil-cooling, and water-cooling after holding at 30 ℃ / 25.4mm for more than 30 minutes at 1000 ℃ ~ 1050 ℃, followed by tempering treatment. Although it may be performed in the range of 500 ° C, preferably in this embodiment, two or more tempering processes of air cooling after holding at 25.4 mm for 60 minutes or more at 500 ° C to 650 ° C were carried out at least twice. Materials subjected to tempering were prepared for impact and thermal fatigue evaluation. Forging size and heat treatment conditions of the comparative steel are the same as the invention steel.

<표 3>TABLE 3

상기 표 3은 본 발명강의 최종 REM%/S%, [REM%][S%], Ca%/S%을 나타낸 것으로 본 발명법의 제한범위를 만족하고 있음을 보여준다.Table 3 shows the final REM% / S%, [REM%] [S%], Ca% / S% of the present invention to show that it satisfies the limits of the present invention method.

하기 표 4에 발명강 및 비교강의 충격특성평가를 60×60mm로 단조후 뜨임처리까지 실시된 각각의 시험재를 단조방향과 단조직각방향에서 시험편을 채취하여 KS 3호 충격시험편을 제작한 후, 상온에서 시험을 행하였고, 충격흡수에너지로써 판정하여 그 결과를 나타내었고 또한, 발명강과 비교강을 유사성분별로 나누고 각각 동일 열처리 조건별로 직경 25Ψ, 길이 20mm의 시험편을 제작한 후, 경도와 고온열피로특성을 비교하여 나타내었다.In Table 4, after the forging of the impact characteristics of the inventive steel and the comparative steel at 60 × 60 mm, each specimen was subjected to tempering treatment, and specimens were taken from the forging direction and the direction of the monostructure, and then the KS No. 3 impact test specimen was manufactured. The test was performed at room temperature, and the result was determined by the impact absorption energy. The results were also divided into similar components, and the test specimens having a diameter of 25Ψ and a length of 20 mm were prepared for the same heat treatment conditions, respectively. The fatigue characteristics are compared and shown.

<표 4>TABLE 4

상기에서 열피로특성평가는 시험편을 제작한후 상온에서 버어너 토치가열에 의하여 700℃까지 승온하고 시험편 내외부가 균일온도가 될 때까지 유지한 후 수냉시키는 온도승강작업을 1000회 반복하는 것으로 각각의 시험편에 발생되어 전파된 가장 깊은 열피크로크랙길이를 수치화시켜 판정한 것이다.In the above-mentioned thermal fatigue characteristic evaluation, after the test piece is manufactured, it is heated to 700 ° C by burner torch heating at room temperature and maintained until the inside and outside of the test piece are at a uniform temperature. The deepest thermal crack crack length generated and propagated in the test piece was quantified.

상기 제 4 표에서 히트 체크 테스터(Heat Check Tester)에 의하여 비교된 고온열피로크랙깊이는 발명강이 비교강에 비하여 최고 83.1%, 최저 67.3%로 감소하였다. 따라서 열피로특성은 발명강이 비교강에 비하여 우수함을 알 수 있다. 또, 발명강의 충격흡수에너지는 비교강에 비하여 우수함을 알 수 있다. 또, 발명강의 충격흡수에너지는 비교강에 비하여 횡축, 종축 모두에 대하여 증가하였고, 충격흡수에너지의 이방성비(횡축/종축) 역시 증가된 수치를 나타내었다.Compared to the heat check tester in the fourth table, the high temperature heat fatigue crack depth was reduced to 83.1% and 67.3%, respectively. Therefore, it can be seen that the thermal fatigue property is superior to the inventive steel compared to the comparative steel. In addition, it can be seen that the impact absorption energy of the inventive steel is superior to the comparative steel. In addition, the impact absorption energy of the inventive steel increased for both the abscissa and the longitudinal axis, and the anisotropy ratio of the impact absorption energy (the abscissa / vertical axis) also increased.

절삭성평가는 33Ψ로 단조되고 구상화처리된 시험소재들을 30Ψ로 선삭가공후 자동선반에서 TiCN으로 입혀진 초경공구를 사용하여 회전수 1010rpm, 이송속도 0.314mm/rev, 절삭깊이 1mm와 2mm로 피삭성 시험 후 최대절삭 저항력과 칩처리성을 비교하는 것으로 판정하였으며 그 결과를 제 5 표와 제 1 도에 나타내었다.Machinability test is performed after turning the test material forged and spheroidized to 33Ψ into 30Ψ and using a carbide tool coated with TiCN on an automatic lathe, after the machinability test with a rotational speed of 1010rpm, feed rate of 0.314mm / rev, depth of cut of 1mm and 2mm. It was determined to compare the maximum cutting resistance with the chip throughput, and the results are shown in Table 5 and FIG.

<표 5>TABLE 5

상기 표 5 는 발명강과 비교강에 대하여 피삭성시험후 최대절삭성저항력을 비교한 것이다. 절삭깊이 1mm에서 비교강은 최고 240kgf, 최저 200kgf를 나타내고 발명강은 최고 120kgf, 최저 76kgf를 나타내었다. 절삭깊이 2mm에서 비교강은 최고 405kgf, 최저 350kgf를 나타내고 발명강은 최고 245kgf, 최저 200kgf를 나타내었다. 따라서 발명강의 최대절삭저항력은 비교강에 비하여 절삭깊이 1mm, 2mm 모두에서 현저히 감소하였다.Table 5 compares the maximum machinability resistance after the machinability test for the invention steel and the comparative steel. At the cutting depth of 1mm, the comparative steel showed the highest 240kgf and the lowest 200kgf, and the inventive steel showed the highest 120kgf and the lowest 76kgf. At the cutting depth of 2mm, the comparative steel showed the highest 405kgf and the lowest 350kgf, and the inventive steel showed the highest 245kgf and the lowest 200kgf. Therefore, the maximum cutting resistance of the inventive steel was significantly reduced at both cutting depths of 1mm and 2mm compared to the comparative steels.

<표 6>TABLE 6

상기 표 6은 발명강과 비교강재내의 잔존되어있는 O, S, P, N의 불순물량과 총 Al량, 가용성 Al량, 총 비금속개재물량을 측정한 결과이다. O, S, P, N량 및 총 Al량, 가용성 Al량은 각 강괴의 중부 1/2 위치에서 측정한 것이고 총 비금속개재물량은 33Ψ로 단조된 소재의 1/2 위치에서 KS D0204에 준하여 측정한 것이다.Table 6 shows the results of measuring the amount of impurities, total amount of Al, soluble Al, and total amount of non-metallic inclusions of O, S, P, and N remaining in the inventive steel and the comparative steel. O, S, P, N content, total Al content, and soluble Al content were measured at the middle 1/2 position of each ingot, and total nonmetallic inclusions were measured according to KS D0204 at 1/2 position of forged material at 33Ψ. It is.

표에서 볼 수 있듯이 발명강은 비교강에 비하여 O량과 S량은 현저하게 저감되었으며, P량과 N량은 큰 저감효과는 없으나 발명강에서 다소 저감되었다. 발명강내 O량이 10ppm이하로 저감된 원인으로 가용성 Al량은 비교강에 비하여 현저히 증가하였으며, 총 Al 역시 발명강은 Al2O3를 생성시키지 않은 원인으로 인하여 증가하였다. 그리고 총 Al량과 가용성 Al량의 대비에서 비교강은 약 50%이하를 나타낸 반면, 발명강은 80%이상을 나타내었다. 총 비금속개재물량은 REM과 Ca첨가전 예비탈산, 탈황효과와 REM첨가후 소량의 RE계 복합개재물과 Ca이 함유된 RE계 복합개재물이 형성된후, 일부가 부상분리효과에 의하여 제거된 원인으로 발명강이 비교강에 비하여 최고 75.9%, 최저 22.9%로 저감되었다.As can be seen from the table, the amount of O and S was significantly reduced compared to the comparative steel, and the amount of P and N was not significantly reduced, but was slightly reduced in the invention steel. The amount of soluble Al was significantly increased compared to that of the comparative steel due to the reduction of O content in the invention steel below 10 ppm, and the total Al was also increased due to the cause of not producing Al 2 O 3 . In comparison with the total Al content and the soluble Al content, the comparative steel showed less than about 50%, while the inventive steel showed more than 80%. The total amount of non-metallic inclusions was invented due to the preliminary deoxidation, desulfurization effect before the addition of REM and Ca, and the addition of a small amount of RE-based composite inclusions and Ca-containing RE-based composite inclusions after REM addition, and part of which was removed by floating separation effect. The steel has been reduced to a maximum of 75.9% and a minimum of 22.9% compared to the comparative steel.

제 1 도는 발명강 A, H, I, K와 비교강 M에 대하여 피삭성시험후 칩처리성을 비교한 것으로서, 절삭깊이 1mm, 2mm 모두에 대하여 발명강은 비교강에 비하여 상당히 우수한 칩처리성을 나타내었으며, 전반적으로 발명강은 비교강에 비하여 우수한 칩처리성을 나타내었다.1 is a comparison of the chipability after machinability test with respect to the invention steels A, H, I, K and comparative steel M. For both the depth of cut 1mm and 2mm, the invention steel is considerably better than the comparative steel. In general, the inventive steel showed better chip treatment than the comparative steel.

이상에서 설명한 바와 같이, 본 발명강은 비교강에 비하여 고청정성을 나타내고 동일 열처리 조건에서 높은 경도치를 나타내었다. 또한, 충격특성향상, 충격치의 이방성 개선, 고온열피로특성향상, 절삭성향상이라는 상반되는 특성들을 모두 만족시킴에 따라 고수명화되고 절삭성 또한 우수한 쾌삭열간공구강을 실사용업체에 공급하는 것이 가능하게 되었다.As described above, the inventive steel exhibited higher cleanliness and higher hardness than the comparative steel under the same heat treatment conditions. In addition, by satisfying all of the opposing characteristics such as improvement of impact characteristics, improvement of anisotropy of impact value, improvement of high temperature thermal fatigue, and improvement of cutting property, it is possible to supply a high-quality, high- machinability cutting tool having a long life and excellent machinability.

Claims (5)

중량%로 C:0.1%∼1.0%, Si:0.2%∼0.8%, Mn:0.3%∼4.0%, Ni:0.001%∼4.0%, Cr:1.5%∼6.0%, Mo:0.3%∼4.0%, V:0.1%∼3.5%, Al:0.005%∼0.1%를 함유하고, 또한, W:0.005%∼0.2%, Zr:0.005%∼0.2%, Nb:0.005%∼0.2%, Te:0.001%∼0.25%, Ti:0.01%이하, Co:0.001%이하를 1종이상 함유하고, 잔량은 Fe 및 전기로 제강시 함유될 수 있는 미량 불순물을 포함하는 용강을 준비하는 단계; 상기 용강을 진공도 1×10-1torr이하의 진공분위기하에서 진공정련하여 탈황 및 탈산을 실시하는 단계; 예비탈산·탈황된 용강에 경희토류원소(Ce, La, Nd, Pr, Y 등)의 단독첨가, 경희토류원소 및 Ca의 복합첨가, mischmetal(Ce, La, Nd, Pr, Fe)의 단독첨가, 미쉬메탈 및 Ca의 복합첨가중 어느 하나를 진공정련직후, 용강주입직전, 용강주입중 하주주입관내로 또는, 용강주입중 몰드내에 투입하는 것으로 이루어지는 네 가지 투입시기중 어느 하나를 택일적으로 실시하는 단계; 경희토류원소 및 Ca이 첨가된 용강을 1,600±50℃에서 냉각시켜 강괴를 제조하는 단계; 제조된 강괴를 1,000∼1,300℃에서 열간압연 및 단조, 840∼870℃의 온도와 60분이상/25.4mm의 조건으로 구상화, 1,000∼1050℃에서 30분이상/25.4mm의 조건으로 담금질, 200∼650℃에서 60분이상 /25.4mm의 조건으로 뜨임처리하는 단계를 포함하는 것을 특징으로 하는 고온열피로특성 및 충격특성이 우수한 쾌삭열간공구강의 제조방법.By weight% C: 0.1%-1.0%, Si: 0.2%-0.8%, Mn: 0.3%-4.0%, Ni: 0.001%-4.0%, Cr: 1.5%-6.0%, Mo: 0.3%-4.0% , V: 0.1% to 3.5%, Al: 0.005% to 0.1%, W: 0.005% to 0.2%, Zr: 0.005% to 0.2%, Nb: 0.005% to 0.2%, Te: 0.001% Preparing a molten steel containing at least one of? 0.25%, Ti: 0.01% or less, and Co: 0.001% or less, and the balance of Fe and trace impurities that may be contained during steelmaking; Desulfurizing and deoxidizing the molten steel by vacuum refining under a vacuum atmosphere of 1 × 10 −1 torr or less; Addition of light rare earth elements (Ce, La, Nd, Pr, Y, etc.) alone, complex addition of light rare earth elements and Ca, and addition of mischmetal (Ce, La, Nd, Pr, Fe) to preliminary deoxidation and desulfurized molten steel Alternatively, any one of four dosing periods may be performed by directly adding vacuum, metal, and Ca mixed into the lower injection pipe during molten steel, immediately before molten steel injection, into molten steel injection, or into the mold during molten steel injection. Doing; Preparing a steel ingot by cooling the molten steel to which the light rare earth element and Ca are added at 1,600 ± 50 ° C .; The steel ingots were hot rolled and forged at 1,000 to 1,300 ° C, spheroidized at a temperature of 840 to 870 ° C for 60 minutes or more and 25.4 mm, and quenched at 1,000 to 1050 ° C for 30 minutes or more and 25.4 mm. A high-temperature hot fatigue and impact characteristics excellent manufacturing method of high-temperature hot cavity, comprising the step of tempering at 650 ℃ 60 minutes / 25.4mm conditions. 제 1 항에 있어서, 상기 탈산 및 탈황단계후의 산소 함량과 황 함량은 각각15ppm이하, 100ppm이하인 것을 특징으로 하는 쾌삭열간공구강의 제조방법.The method of claim 1, wherein the oxygen content and the sulfur content after the deoxidation and desulfurization step are 15 ppm or less and 100 ppm or less, respectively. 제 1 항 또는 제 2 항에 있어서, 상기 미쉬메탈, 경희토류원소 및 칼슘의 첨가단계에서 경희토류원소는 0.0002%∼0.25%, Ca는 0.001%∼0.1%인 것을 특징으로 하는 쾌삭열간공구강의 제조방법.The method of claim 1 or 2, wherein the light rare earth element is 0.0002% to 0.25%, Ca is 0.001% to 0.1% in the addition step of the mesh metal, light rare earth element and calcium production Way. 제 1 항 또는 제 2 항에 있어서, 상기 미쉬메탈, 경희토류원소, 또는 칼슘의 첨가방법은 첨가시기에 100% 투입 또는, 주입초기부터 완료까지 일정한 시간 간격의 다수회로 나누어 매회 동량 투입하거나 또는, 용강주입초기에 40%를 투입하고, 나머지 60%는 주입완료 3분전까지 나누어 투입하는 것중 하나인 것을 특징으로 하는 쾌삭열간공구강의 제조방법.The method of claim 1 or 2, wherein the method of adding the mismetal, light rare earth element, or calcium is added in the same amount every time by adding 100% at the time of addition or by dividing a plurality of times at a predetermined time interval from the beginning to the completion of the injection. 40% at the beginning of the molten steel injection, the remaining 60% is one of the input divided into three minutes before the completion of injection method for producing a high-quality hot-air cavity. 제 1 항 또는 제 2 항에 있어서, 최종 희토류 원소량과 칼슘량은 황원소량과 대비하여 REM%/St=2∼90, [REM][S%]=3×10-5∼ 100×10-5, Ca%/S%=1이하를 만족하는 것을 특징으로 하는 쾌삭열간공구강의 제조방법.3. The final rare earth element amount and calcium amount as defined in claim 1 or 2 are REM% / St = 2 to 90, [REM] [S%] = 3 × 10 −5 to 100 × 10 −, relative to the sulfur element amount. 5, Ca% / S% = 1 or less satisfies the manufacturing method of high-quality hot-rolled oral cavity.
KR1019960015129A 1996-05-08 1996-05-08 Method for manufacturing free cutting hot tool steel KR100320958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960015129A KR100320958B1 (en) 1996-05-08 1996-05-08 Method for manufacturing free cutting hot tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960015129A KR100320958B1 (en) 1996-05-08 1996-05-08 Method for manufacturing free cutting hot tool steel

Publications (2)

Publication Number Publication Date
KR970074950A KR970074950A (en) 1997-12-10
KR100320958B1 true KR100320958B1 (en) 2002-06-22

Family

ID=37460480

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960015129A KR100320958B1 (en) 1996-05-08 1996-05-08 Method for manufacturing free cutting hot tool steel

Country Status (1)

Country Link
KR (1) KR100320958B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR20190092750A (en) * 2018-01-31 2019-08-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748037B1 (en) * 1996-04-29 1998-05-22 Creusot Loire WELDABLE REPAIRABLE STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTIC MATERIALS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190036866A (en) * 2017-09-28 2019-04-05 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR101981226B1 (en) 2017-09-28 2019-05-22 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING HIGH STRENGTHIMPACT RESISTANCE AT LOW TEMPERATURE AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR20190092750A (en) * 2018-01-31 2019-08-08 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY
KR102021378B1 (en) 2018-01-31 2019-09-16 공주대학교 산학협력단 METHOD FOR MANUFACTURING CAST Ni-Cr-Mo STEEL HAVING 1350 MPa-GRADE HIGH STRENGTH-ELONGATION AND CAST Ni-Cr-Mo STEEL METHOD THEREBY

Also Published As

Publication number Publication date
KR970074950A (en) 1997-12-10

Similar Documents

Publication Publication Date Title
EP3733892A1 (en) Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
US6454881B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
CN113846260A (en) Production method of high-strength steel plate for engineering machinery
CN112430771B (en) Cold-rolled steel plate for precision stamping high-speed cutting chain saw blade and manufacturing method thereof
KR102570145B1 (en) High-carbon hot-rolled steel sheet and manufacturing method thereof
CN111500928A (en) Low-temperature high-toughness high-temperature high-strength and high-hardenability hot die steel and preparation technology thereof
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
CN114351060A (en) Hot-rolled steel strip, preparation method thereof and application thereof in bimetal band saw backing material
CN102162061B (en) Low-carbon bainite thick steel plate with high strength and toughness and manufacturing method thereof
JPH07188847A (en) Machine-structural carbon steel excellent in machiniability
CN113604745A (en) High-sulfur free-cutting tool steel bar and preparation method thereof
KR100320958B1 (en) Method for manufacturing free cutting hot tool steel
JPH02247357A (en) Steel for form rolling die
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP3411686B2 (en) Graphite composite free-cutting steel
KR19980073737A (en) High toughness cr-mo steel
CN113412340A (en) Steel plate
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
KR101657850B1 (en) Medium carbon free cutting steel having excellent hardenability and method for manufacturing the same
KR100309729B1 (en) A high speed tool steel for cold and warm working having good toughness and high strength and manufacturing method thereof
KR950007790B1 (en) Hot rolling tool(mold) steel &amp; the same making method
CN115637390B (en) Short-process cold-rolled DH980 steel plate and production method thereof
KR101302693B1 (en) Plastic mold steel with uniform hardness and workability by reducing segregation
CN105886908A (en) Production method of hot-rolled multiphase steel plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101126

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 15

EXPY Expiration of term