KR100314947B1 - Helium (HE) Liquefied Refrigerator - Google Patents

Helium (HE) Liquefied Refrigerator Download PDF

Info

Publication number
KR100314947B1
KR100314947B1 KR1019980005942A KR19980005942A KR100314947B1 KR 100314947 B1 KR100314947 B1 KR 100314947B1 KR 1019980005942 A KR1019980005942 A KR 1019980005942A KR 19980005942 A KR19980005942 A KR 19980005942A KR 100314947 B1 KR100314947 B1 KR 100314947B1
Authority
KR
South Korea
Prior art keywords
helium
compressor
liquefied
gas
heat exchanger
Prior art date
Application number
KR1019980005942A
Other languages
Korean (ko)
Other versions
KR19980071701A (en
Inventor
노부미 이노
히데하루 야나기
다까유끼 기시
마사미 코하마
마사또 노구찌
카쯔미 후지마
Original Assignee
시마가 테쭈오
마에카와 매뉴팩쳐링 캄파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시마가 테쭈오, 마에카와 매뉴팩쳐링 캄파니 리미티드 filed Critical 시마가 테쭈오
Publication of KR19980071701A publication Critical patent/KR19980071701A/en
Application granted granted Critical
Publication of KR100314947B1 publication Critical patent/KR100314947B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

본 발명은 부하의 변동에 따라서 전밀폐화된 가변속 진동압축기군의 효율적인 용량제어를 가능하게 하고, 독립변속 가스터빈 발전시스템을 구동전원으로 하여 구비하며, 연속운전성을 향상시키고, 아울러 상기 시스템의 냉열이용과 폐열회수를가능하게 하여, 고효율의 용량제어를 가능하게 한 헬륨 액화냉동 시스템을 제공하는 것으로서, 압축기용 가변주파수 발전시스템을 갖춘 헬륨 액화냉동기는, 헬륨 액화냉동기(13)와, 가스터빈 발전부(30)와, 케미칼 냉동기인 흡착냉동기(31)와, 연료 공급부(35)로 이루어진 가변주파수 발전시스템(33)으로 구성하고 있다.The present invention enables efficient capacity control of a group of variable speed vibration compressors enclosed according to load variation, and includes an independent variable speed gas turbine power generation system as a driving power source, and improves continuous operation. A helium liquefied refrigeration system having a variable frequency power generation system for a compressor, which provides a helium liquefied refrigeration system that enables the use of cold heat and waste heat recovery, and has a high-efficiency capacity control. The variable frequency power generation system 33 which consists of the power generation part 30, the adsorption freezer 31 which is a chemical refrigerator, and the fuel supply part 35 is comprised.

Description

헬륨(He) 액화냉동기Helium liquefied chiller

본 발명은 초전도 송전이나 저장, 핵융합 발전, 리니어모터카등의 초전도 장치에 이용되는 대용량의 헬륨 액화냉동기에 관한 것으로, 특히 열효율의 향상을 도모한, 압축기용 가변주파수 발전 시스템을 갖춘 헬륨 액화냉동기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large capacity helium liquefied chiller used for superconducting devices such as superconducting transmission, storage, fusion power generation, and linear motor cars. will be.

헬륨 액화냉동기는 압축기로서 승압한 헬륨을 팽창터빈에서 단열 팽창시켜 한랭(寒冷)을 발생시키고, 귀환헬륨과 열교환시켜 냉각하고, 또한 줄 톰슨(Joule -Thomson )밸브(JT밸브)에서 단열 자유팽창시킴으로써, 상기 숭압된 헬륨으로 부터액화헬륨으로 된 냉열원을 형성하여, 필요한 냉동을 한 후 상기 압축기에 귀환하도록 구성되어 있다.Helium liquefied refrigeration machine is a compressor by adiabatic expansion of the boosted helium in the expansion turbine to generate a cold, heat exchange with the return helium to cool, and also by adiabatic free expansion in the Joule-Thomson valve (JT valve) It is configured to form a cold heat source of liquefied helium from the quenched helium, and to return to the compressor after the necessary refrigeration.

상기 액화헬륨을 제조하는 냉동기로서는 예컨대 일본국 특개평 5-797l9호 공보기재의 도 3에 도시된 헬륨 액화냉동장치가 알려져 있다.As the refrigerator for producing the liquefied helium, for example, the helium liquefied refrigeration apparatus shown in Fig. 3 of Japanese Patent Laid-Open No. 5-797l9 is known.

즉, 이러한 헬륨 액화냉동장치는, 압축기(68)와, 예냉 열교환기(60), 열교환기 (61),(62),(63),(64)와, 액화질소 냉각장치부(69)와, 액화헬륨을 저장하는 헬륨탱크(66)를 설치하고, 상기 압축기(68)의 토출측(吐出側)으로 부터 각 열교환기를관통하여 상기 헬륨탱크(66)에 도입 되도록 형성된 고압 헬륨가스의 공급액화유로(50)와, 상기 헬륨탱크(66)로 부터 각 열교환기를 관통하여 압축기(68)의 흡입측으로 도입하도록 형성된 저압 헬륨가스의 환류회귀유로(51)와, 상기 공급 액화유로(50)와 환류회귀유로(51)와의 사이를 팽창터빈(53),(54)을 통해 접속하도록 된 한랭(寒冷) 바이패스유로(52)와, 상기 공급 액화유로의 말단에 설치된 JT 팽창밸브(50a)와, 예를 들면, 초전도자석을 내장하여 헬륨탱크(66)로 부터 액화헬륨의 공급을 받는 냉각부하 (65)로 구성되어 있다.That is, such a helium liquefied refrigeration apparatus includes a compressor 68, a precooled heat exchanger 60, heat exchangers 61, 62, 63, 64, a liquefied nitrogen cooler unit 69, And a helium tank 66 for storing liquefied helium, and a high pressure helium gas supply liquefaction passage formed to be introduced into the helium tank 66 through each heat exchanger from the discharge side of the compressor 68. (50), a reflux return flow path (51) of low pressure helium gas formed to penetrate each heat exchanger from the helium tank (66) to the suction side of the compressor (68), and the supply liquefaction flow path (50) and reflux return A cold bypass flow path 52 which is connected to the flow path 51 via expansion turbines 53 and 54, and a JT expansion valve 50a provided at the end of the supply liquefaction flow path; For example, it comprises a cooling load 65 having a superconducting magnet built therein and receiving liquid helium from the helium tank 66.

상기 구성을 갖는 액화냉동기에 있어서,In the liquefied refrigerator having the above configuration,

압축기(68)는 2개의 로터(rotor)의 단순 회전운동에 의해서 공간용적을 변화시켜 흡입, 압축 및 토출의 싸이클을 반복하는 순용적형 압축기로서, 회전수변화에대하여 효율변화가 적어 용량제어가 가능한 급유식 스큐류 압축기가 사용되고 있다.Compressor 68 is a forward displacement compressor that repeats cycles of suction, compression and discharge by changing the volume of space by simple rotational movement of two rotors. Possible oiled skew compressors are used.

상기 압축기(68)에 의해서 압축된 고압 헬륨가스는 공급 액화유로(50)를 통해 먼저 예냉 열교환기(60)로 도입되며, 그 열교환기(60)에 있어서 액체 질소냉각장치(60)로 부터의 액화질소 LN2의 기화열에 의해 되도록 예냉된다.The high pressure helium gas compressed by the compressor 68 is first introduced into the precooling heat exchanger 60 through the supply liquefaction flow path 50, and from the liquid nitrogen cooling device 60 in the heat exchanger 60. Precooled by the heat of vaporization of liquid nitrogen LN 2 .

이어서, 열교환기(61),(62),(63),(64)를 경유하여 천천히 냉각되고, 최종적으로 JT팽창밸브(50a)의 자유팽창에 의해서 기액(氣經) 2상 상태의 헬륨으로 되어,헬륨탱크(66)로 도입하도록 되어 있다.Subsequently, the mixture is slowly cooled via the heat exchangers 61, 62, 63, and 64, and finally helium in a gas-liquid two-phase state by free expansion of the JT expansion valve 50a. Thus, the helium tank 66 is introduced.

한편, 헬륨탱크(66)중 및 냉각부하(65)에 접하여 기화된 저입저온 헬륨가스는, 환류회귀유로(51)를 통해 상기 열교환기(64),(63),(62),(61), 예냉 열교환기(60)를 경유하여 압축기(68)의 흡입측에 환류되도록 하며, 열교환기(64), (63),(62),(61), 예냉 열교환기(60)를 통해 공급 액화유로(50)내의 고압 헬륨가스와 향류 열교환을 하여 고압 헬륨가스를 냉각시키는 구성으로 된다.On the other hand, the low-intake low-temperature helium gas vaporized in contact with the cooling load 65 and the helium tank 66, the heat exchanger (64), (63), (62), (61) through the reflux return flow path (51). And reflux to the suction side of the compressor 68 via the precooling heat exchanger 60, and liquefy feed through the heat exchangers 64, 63, 62, 61 and the precooling heat exchanger 60. The countercurrent heat exchange is performed with the high pressure helium gas in the flow path 50 to cool the high pressure helium gas.

또한, 공급 액화유로(50)내의 고압 헬륨가스의 일부는 한랭 바이패스유로(52)에 의해 분기되며, 팽창터빈(53),(54)을 경유하여 단열팽창에 의해서 한랭을 발생한 후, 열교환기(62)를 경유하여 환류회귀유로(51)의 열교환기(64)와 열교환기(63)와의 사이에서 합류하여 상기 고압 헬륨가스의 한랭 냉각원이 되며, 열교환기(63)에서 향류 열교환에 의한 공급 액화유로내의 고압 헬륨가스를 냉각한다.In addition, a part of the high-pressure helium gas in the supply liquefaction flow path 50 is branched by the cold bypass flow path 52, and after the cold air is generated by adiabatic expansion via the expansion turbines 53 and 54, the heat exchanger Through 62, the heat exchanger 64 and the heat exchanger 63 of the reflux return flow path 51 are joined together to form a cold cooling source of the high-pressure helium gas, and the heat exchanger 63 The high pressure helium gas in the supply liquefaction flow path is cooled.

한랭 냉각된 고압헬륨가스는 JT 팽창벨브(50a)를 동해 자유팽창을 하여 기액(氣液) 2상 상태의 헬륨이 되어, 힐륨탱크(66)로 도입 저장되도록 되어 있다.The cold-cooled high-pressure helium gas expands freely through the JT expansion valve 50a to become helium in a gas-liquid two-phase state, and is introduced and stored in the helium tank 66.

또한, 레벨 검출소자(67)를 통해 헬륨탱크(66)의 적정액면 레벨을 검출하고,노즐 개방도제어부 56에 의해서 상기 팽창터빈(53),(54)의 노즐 개방도를 제어가능하게 하여, 변동하는 냉동부하에 대응하도록 하고 있다.In addition, the level detection element 67 detects the appropriate liquid level of the helium tank 66, and the nozzle opening degree control section 56 makes it possible to control the nozzle opening degree of the expansion turbines 53 and 54, It is to cope with fluctuating refrigeration load.

그러나, 상기 제어수단에 의한 경우는 제어 에너지 손실이 높고, 또한 팽창터빈에 과열을 발생시키는 문제점도 있다. 이 때문에, 상기 공급 액화유로의 하류에 가변용량식 심냉 팽창터빈을 그 유로에 나란히 설치하고, 헬륨탱크에 설치된 액면검출에 의해 작동시켜, 전단계의 한랭 바이패스유로에 설치한 팽창터빈에 적정한 한랭 발생량을 유지할 수 있도록 한, 변동하는 냉동부하에 대응하는 수단이 제안되어 있다.However, in the case of the control means, the control energy loss is high, and there is also a problem of overheating the expansion turbine. For this reason, a variable capacity deep-cooled expansion turbine downstream of the supply liquefaction flow passage is installed side by side in the flow passage and operated by liquid level detection installed in the helium tank, so that the amount of cold generation appropriate for the expansion turbine installed in the cold bypass flow passage of the previous stage is provided. Means for responding to varying refrigeration loads have been proposed to maintain the pressure.

그리나, 핵 융합발전의 개발에는 대형 초전도마그네트의 개발이 불가피하기때문에, 이를 위해서는 그 마그네트의 냉각에 필요한 대용량의 헬륨 액화냉동기가필요로 하고, 더구나 신뢰성 및 연속운전성이 있는 냉동기의 출현이 강하게 요망되고 있는 상황이다.However, since the development of nuclear fusion power generation is inevitable, the development of a large superconducting magnet is inevitable, and this requires a large-capacity helium liquefied chiller necessary for cooling the magnet, and furthermore, the emergence of a refrigerator having reliability and continuous operation is strongly desired. It is a situation.

상기 냉동기의 신뢰성이나 연속 운전성을 좌우하는 압축기는, 상기 도 3에 도시한 종래예 에서도 설명한 바와같이, 급유식 스크류식 압축기가 사용되고 있지만, 냉동기의 대형화에 따라 오일 인젝션타입의 다단압축기가 복수개 이용되고, 더구나 압축기의 샤프트 시일부로 부터의 누유로 기인하는 환경오염의 문제 및 상기 샤프트 시일부로 부터의 대기혼입에 의한 헬륨 액화냉동기의 연속운전 저해의 문제가있기 때문에, 스크류 압축기의 밀폐화가 요구되며, 특히 효율화를 위해서 복수개의 다단 압축기의 밀폐화가 중요과제가 되는 것이다.As the compressor that determines the reliability and continuous operation of the refrigerator, as described in the conventional example shown in FIG. 3, a lubricated screw compressor is used, but a plurality of oil injection type multi-stage compressors are used according to the size of the refrigerator. Furthermore, since there is a problem of environmental pollution due to leakage of oil from the shaft seal part of the compressor and a problem of inhibiting continuous operation of the helium liquefied chiller due to atmospheric mixing from the shaft seal part, sealing of the screw compressor is required. In particular, the sealing of a plurality of multistage compressors is an important task for efficiency.

한편, 핵융합로에서 사용하는 안전상의 문제점으로 부터 보아도, 이들에 사용하는 헬륨 액화냉동기의 정전등에 의한 운전정지를 피하고, 운전을 계속하기 위해서 계획운전의 확보도 불가결한 문제점이다.On the other hand, even in view of the safety problems used in the fusion reactor, it is also indispensable to secure the planned operation in order to avoid the operation stop due to the power failure of the helium liquefied refrigerator used in these, and to continue the operation.

또한, 효율적인 운전을 위해서는 냉동부하의 변동에 대응가능한 압축기의 용량제어가 필요하다.In addition, for efficient operation, it is necessary to control the capacity of the compressor that can cope with variations in the refrigeration load.

상기 사항을 정리하면, 압축기에 대해서는,In summary, about the compressor,

1, 누유, 대기혼입의 문제점으로 부터 복수의 다단압축기의 밀폐화가 요구되고 있다.1, The sealing of a plurality of multistage compressors is required from the problems of leakage and air mixing.

2. 부하의 안전운전상의 문제로 부터, 정전시에도 연속운전을 필요로 한다.2. Continuous operation is required even in case of power failure due to the problem of safe operation of load.

3. 부하의 변동에 대응하여 용량제어가 가능하다.3. Capacitance control is available in response to changes in load.

상기 사항중 특히 제 2항의 해결을 위해서, 종래에는 도 4(B)에 표시한 엔진(78)에 의한 압축기(72),(73)의 직접운전이 제안되어 수행되고 있지만, 이러한 대책은 제 1항의 밀폐화의 점에서 적당하지 않다고 생각된다.In order to solve the above-mentioned problem, in particular, the direct operation of the compressors 72 and 73 by the engine 78 shown in FIG. 4 (B) has been proposed and performed. It is thought that it is not suitable in terms of sealing of a term.

또한, 상기 제3항, 제1항의 해결을 위하여, 종래에는 도 4(A)에 표시한 인버터 (74),(75)에 의해서 전동 다단압축기(70),(71)의 구동용 유도기(Mc),(Md)를 가변주파수에 의해 가변 회전수운전을 가능하게 하여 용량 제어할 수 있도록 하고 있다.In order to solve the above-mentioned claims 3 and 1, conventionally, the drive induction machine Mc of the electric multistage compressors 70 and 71 by the inverters 74 and 75 shown in Fig. 4A. ) And (Md) allow variable speed operation by variable frequency so that capacity can be controlled.

따라서, 상기 인버터에 의한 가변 주파수운전의 경우는, 밀폐화 분위기중에서의 용량제어가 가능하다는 점은 대략 해결되지만, 아래와 같은 문제점이 있다. 즉,Therefore, in the case of the variable frequency operation by the inverter, it is possible to solve the problem of capacity control in a sealed atmosphere, but there are problems as follows. In other words,

1. 인버터는 신뢰성의 낮고, 과부하나 미처 예측하지 못한사태의 발생에는 인버터가 최초에 손상을 받는 수가 많다.1. The inverter is low in reliability, and the inverter is often damaged in the event of an overload or an unexpected situation.

2. 인버터 구동압축기 에서는, 압축기 본체에 문제가 없는 경우에도 인버터의 이상이나 고장에 의해서 압축기 전체가 운전정지에 빠질 가능성이 있다.2. In the inverter drive compressor, even if there is no problem in the main body of the compressor, there is a possibility that the whole compressor may be stopped due to an abnormality or failure of the inverter.

3. 이 때문에 인버터 이상진단기능 장치를 설치할 필요가 있고, 또한 계통전원에 의해서 정속운전으로 교체하는 시스템이 필요하다.3. For this reason, it is necessary to install an inverter fault diagnosis function device and a system to be replaced by constant speed operation by the grid power supply.

4. 인버터손실에 의한 효율저하나 인버티 파형에 의한 전기적 노이즈에 의한 계측관련기기등의 오동작을 유인하고, 이어서 제어불능에 빠지는 문제점이 있다.4. There is a problem of reducing efficiency due to inverter loss or malfunctioning of measurement-related equipment due to electrical noise caused by inverted waveform, and then falling into control.

본 발명은 상기와 같은 문제점을 감안하여, 부하의 변동에 대하여 밀폐화된 전동 압축기군의 효율적인 용량제어을 가능하게 할수 있고, 독립변속 가스터빈에 의한 가변주파수 발전시스템을 갖추며, 동시에 그 장치의 연소계에 설치된 냉열교환부에 의하여 액화천연가스의 기화열 이용과 연소가스의 폐열회수를 가능하게 하여, 효율적인 헬륨 액화냉동기의 제공을 도모하도록 하는 것이다.In view of the above problems, the present invention can enable efficient capacity control of a hermetic electric compressor group against load fluctuations, and is equipped with a variable frequency power generation system by an independent variable speed gas turbine, and at the same time a combustion system of the apparatus. The cold heat exchanger provided in the present invention enables the use of the vaporized heat of liquefied natural gas and the waste heat recovery of the combustion gas to provide an efficient helium liquefied refrigerator.

압축기에 종래로 부터 요구되고 있는, 복수의 다단 압축기군의 구동모터를 포함하는 전밀폐화를 행하는 중에, 부하의 안전운전상의 문제가 되는 정전시에도 관계없이 연속운전을 가능하게 하고, 동시에 부하의 변동에 대응하여 용량제어를 가능하게 할수 있으며, 가스터빈 발전시스템을 가변주파수 진력공급용의 독립전원으로서 설치하고, 그 독립전원에 의해서 가변 주파수전력의 공급을 받아 가동하는 전밀폐형 가변속 전동스크류 다단압축기군을 설치하여, 냉동부하에 대응가능하게 함과 아울러, 상기 가스터빈 발전시스템의 연소계에 설치한 냉열이용을 가능하게 한 냉열교환부에 의해서, 냉동부하에 효율좋게 작동하는 압축기용 가변주파수 발전시스템을 갖춘 헬륨 액화냉동기의 제공을 목적으로 하는 것이다.During the enclosed sealing including the drive motors of a plurality of multistage compressor groups, which have been conventionally required for the compressor, continuous operation is possible regardless of the power failure, which is a problem in safe operation of the load, and at the same time Capacitive control is possible in response to fluctuations, and the gas turbine power generation system is installed as an independent power source for supplying variable frequency power, and is a fully enclosed variable speed electric screw multistage compressor operating under the supply of variable frequency power by the independent power supply. A variable frequency power generation system for compressors that efficiently operates under refrigeration loads by providing a group to cope with refrigeration loads and to enable use of cold heat installed in the combustion system of the gas turbine power generation system. The purpose is to provide a helium liquefied refrigeration machine equipped with a system.

도 1은 본 발명에 따른 압축기용 가변주파수 발전 시스템을 갖춘 헬륨 액화냉동기의 개략구성도이고,1 is a schematic configuration diagram of a helium liquefied chiller having a variable frequency power generation system for a compressor according to the present invention,

도 2는 도 1의 가변주파수 발전 시스템의 개략구성도이며,2 is a schematic configuration diagram of a variable frequency power generation system of FIG. 1,

도 3은 종래의 헬륨 액화냉동기의 개략구성도이며,3 is a schematic configuration diagram of a conventional helium liquefied refrigerator,

도 4는 종래의 압축기군의 구동방식을 표시한 도면으로서,4 is a view showing a driving method of a conventional compressor group,

(A)는 인버터(inverter)구동의 경우를 표시하며,(A) shows the case of inverter driving,

(B)는 엔진구동의 경우를 표시한 도면이다.(B) shows the case of engine driving.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 ...... 공급 액화유로 10a ..... JT 팽창벨브10 ...... Supply liquefied flow path 10a ..... JT expansion valve

11 ...... 환류회귀유로 12 ...... 한랭 바이패스유로11 ...... Reflux return euro 12 ...... Cold bypass euro

12a ..... 팽창터빈 13 ...... 헬륨 액화냉동기12a ..... Expansion Turbine 13 ...... Helium Liquefied Refrigerator

14 ...... 압축기군 16 ..... 액화헬륨탱크14 ...... Compressor Group 16 ..... Liquefied Helium Tank

15a,15b ..... 전밀폐형 가변속 전동스크류 다단압축기15a, 15b ..... Totally sealed variable speed electric screw multistage compressor

17 ....... 냉각부하 20,21 .... 예냉열교환기17 ....... Cooling load 20,21 .... Precooling heat exchanger

22,23,24... 열교환기 30 ....... 가스터빈 발전부22,23,24 ... Heat exchanger 30 .......

30b ...... 3상 가변주파수전력 30e ...... 온수30b ...... 3 phase variable frequency power 30e ......

30d ...... 게통전원 31 ....... 흡착냉동기30d ...... Cistern Power 31 ....... Adsorption Chiller

31a ...... 열원측 31b ...... 냉각측31a ...... Heat source side 31b ...... Cooling side

35 ....... 연료공급부 36 ....... LNG탱크35 ....... fuel supply 36 ....... LNG tank

37 ..,.... 가온부 38 ....... 기화부37 .., .... Warmer 38 ....... Vaporizer

41 ....... 콤프레셔 42 ....... 연소기41 ....... Compressor 42 ....... Combustor

43 ....... 가스터빈 45 ....... 주파수 변환기43 ....... Gas turbine 45 ....... Frequency converter

46 ....... 연료제어부 47 ....... 연산부46 ....... Fuel control unit 47 .......

상기 목적을 달성하기 위한 본 발명의 액화 냉동기는, 액화용 헬륨가스를 압축하는 압축기군과, 헬륨탱크와, 상기 헬륨탱크로 부터 헬륨을 공급 받는 냉각부하와, 압축기군의 배출측애서 헬륨탱크로 고압 헬륨가스를 공급하는 공급 액화유로와, 헬륨탱크에서 저압 저온헬륨가스를 압축기군의 흡입측으로 환류시키는 환류회귀유로와, 공급 액화유로와 환류회귀유로의 양쪽에 각각 관통하여 복수단 상태로 설치한 복수의 열교환기를 갖춘 액화냉동기에 있어서,The liquefied refrigeration machine of the present invention for achieving the above object is a compressor group for compressing liquefied helium gas, a helium tank, a cooling load supplied with helium from the helium tank, and a helium tank at the discharge side of the compressor group. A liquefaction flow path for supplying high pressure helium gas, a reflux return flow path for refluxing low-pressure low-temperature helium gas from the helium tank to the suction side of the compressor group, and a plurality of stages penetrating through the supply liquefaction flow path and the reflux return flow path respectively. In the liquefied chiller having a plurality of heat exchangers,

상기 압축기군은 전동스크류 다단압축기군으로 구성하고, 별도로 설치한 가 스터빈 발전시스템을 전원으로서 부하에 대응하여 회전수를 제어하는 동시에, 상기 복수단의 열교환기의 압축기 배출측에 다른 냉열매체에 의한 열교환 경로를 설치한 하나 이상의 예냉열 교환기를 설치하고, 상기 가스터빈에 공급되는 연료가 상기 예냉열교환기의 열교환 경로를 거쳐 공급토록 구성한 것을 특징으로 한다.The compressor group comprises an electric screw multi-stage compressor group, and controls the rotation speed in response to the load by using a separately installed gas turbine power generation system as a power source, and is provided to another cooling heat medium on the compressor discharge side of the heat exchanger of the plurality of stages. And at least one precooling heat exchanger provided with a heat exchange path, wherein the fuel supplied to the gas turbine is supplied through the heat exchange path of the precooling heat exchanger.

또한, 본 발명의 헬륨 액화냉동기에 있어서는, 상기 가스터빈의 연료가 상기 예냉열교환기의 열교환경로에서 기화시켜 그 기화열을 이용하여 예냉열교환기를 통과하는 압축기에서 배출된 헬륨가스의 예냉을 수행하는 것이다.In the helium liquefied refrigeration machine of the present invention, the gas of the gas turbine is vaporized in the heat exchange path of the precooling heat exchanger to perform precooling of the helium gas discharged from the compressor passing through the precooling heat exchanger using the heat of vaporization.

따라서, 본 발명에 의해서, 헬륨 액화냉동기에 대하여 별개로 독립하여 설치한 가변주파수 가스터빈 발전시스템에 의해서 가변속 전동스크류 다단압축기의 연속적인 고효율 구동이 가능하게 되어 냉동부하의 변동에 대응해서 용량제어가 가능하게 된다. 즉, 상기 압축기군의 조합에 대응한 균질파형을 가짐과 동시에 부하에대응한 최적 주파수전력의 도입에 의해서, 상기 전동스크류 다단압축기군 각각의 구동용 유도기가 부하요구에 대응한 동일 회전수로시 구동할 수 있고, 최적효율을 도모할 수 있다.Therefore, according to the present invention, the variable frequency gas turbine power generation system provided separately from the helium liquefied chiller enables continuous high efficiency driving of the variable speed electric screw multistage compressor, and the capacity control is made in response to the change in the refrigeration load. It becomes possible. That is, the drive inductors of each of the electric screw multistage compressor groups are driven at the same rotational speed corresponding to the load requirements by introducing a homogeneous waveform corresponding to the combination of the compressor groups and by introducing an optimum frequency power corresponding to the load. It is possible to achieve optimum efficiency.

또한, 상기와 같이 독립적으로 안정된 전원의 장비에 의해서, 연속운전의 확립을 도모할 수 있다.In addition, as described above, the independent stable power supply equipment can be used to establish continuous operation.

또한, 상기 가변주파수 가스터빈 발전시스템의 연소계에 있는 배기스의 배출측 및 연료 흡입측에 냉열변환부를 설치하고, 그 변환부로 부터 얻어진 냉열을 상기 헬륨 냉동기의 예냉열교관기에 도입하여, 용랑가변형 압축기군으로 부터의 고압 헬륨가스의 예냉을 할 수 있으며, 상기 가스터빈 발전시스템의 배기열의 유효한 이용 및 연료가스에 사용하는 천연가스의 냉열이용의 유기적 조합에 의해서, 효율적인 헬륨 액화냉동기의 운전이 가능하게 된다.In addition, a cold heat conversion unit is provided on the exhaust side and the fuel intake side of the exhaust gas in the combustion system of the variable frequency gas turbine power generation system, and the cold heat obtained from the conversion unit is introduced into the precooling heat integrator of the helium refrigerator, thereby changing the melt- varying type. It is possible to pre-cool high-pressure helium gas from the compressor group, and it is possible to operate the efficient helium liquefied chiller by the organic combination of the effective use of the exhaust heat of the gas turbine power generation system and the cooling heat of the natural gas used for the fuel gas. Done.

또한, 본 발명은 액화용 헬륨가스를 압축하는 압축기군과, 헬륨탱크와, 상기헬륨탱크에서 헬륨을 공급 받는 냉각부하와, 압축기군의 배출측에서 헬륨탱크로 고압 헬륨가스를 공급하는 공급 액화유로와, 헬륨탱크에서 저압 저온헬륨가스를 압축기군의 흡입측으로 환류시키는 환류회귀유로와, 공급 액화유로와 환류회귀유로의 양쪽에 각각 관통하여 복수단 상태로 설치한 복수의 열교환기를 갖춘 헬륨 액화냉동기에 있어서 ,The present invention also provides a compressor group for compressing liquefied helium gas, a helium tank, a cooling load supplied with helium from the helium tank, and a supply liquefied flow path for supplying high pressure helium gas from the discharge side of the compressor group to the helium tank. And a reflux return passage for refluxing the low pressure low temperature helium gas from the helium tank to the suction side of the compressor group, and a plurality of heat exchangers installed in a plurality of stages through the supply liquefaction flow path and the reflux return flow path, respectively. In that,

상기 압축기군은 전동스크류 다단압축기군으로 구성하고, 별도로 설치한 가 스터빈 발전시스템을 전원으로 부하에 대응하여 회전수를 제어하고, 상기 가스터빈발전시스템의 폐열을 이용하여 작동되는 케미컬냉동기를 설치함과 동시에, 상기 복 수단의 열교환기의 압축기 배출측에 다른 냉열매체에 의한 열교환 경로를 설치한 하나 이상의 예냉열 교환기를 설치하고, 상기 케미컬냉동기로부터 얻은 냉수를 예냉열교환기의 열교환 경로를 순환시키도록 구성하고, 상기 냉수를 이용하여 예냉열교환기를 통과하는 압축기에서 배출된 헬륨가스의 예냉을 수행하는 것을 특징으로한다.The compressor group comprises an electric screw multistage compressor group, controls the rotational speed corresponding to the load by using a separately installed gas turbine power generation system, and installs a chemical refrigerator operated by using waste heat of the gas turbine power generation system. At the same time, at least one precooling heat exchanger provided with a heat exchange path by another cold heat medium on the compressor discharge side of the heat exchanger of the recovery means, and circulates the heat exchange path of the precooling heat exchanger with the cold water obtained from the chemical freezer. And precooling the helium gas discharged from the compressor passing through the precooling heat exchanger using the cold water.

또한, 본 발명은 상기 가스터빈의 연료는 액화천연가스이며, 상기 예냉열교환기의 열교환 경로에서 액화천연가스를 기화하여, 그 기화열을 통해 예냉열교환기를 통과하는 압축기의 배출 헬륨가스의 예냉을 수행하는 하는 것이다.In addition, the present invention is the fuel of the gas turbine is liquefied natural gas, vaporize the liquefied natural gas in the heat exchange path of the precooling heat exchanger, and performs the pre-cooling of the discharge helium gas of the compressor passing through the precooling heat exchanger through the heat of vaporization. It is.

이하, 본 발명에 대한 실시예를 첨부된 도면에 따라 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

단, 본 실시애에 기재되어 있는 구성부분의 치수, 형상, 그 상대적 위치등은 특히 특정한 기재가 없는 한, 본 발명의 범위를 이것에 한정하는 취지는 아니며, 단순한 설명예에 불과하다.However, the dimensions, shapes, relative positions, and the like of the constituent parts described in the present embodiment are not intended to limit the scope of the present invention to them unless otherwise specified, and are merely illustrative examples.

도 1은 본 발명에 따른 압축기용 가변주파수 발전시스템을 갖춘 헬륨 액화냉동기의 개략구성도이고, 도 2는 가변주파수 발전시스템의 개략구성도이다.1 is a schematic configuration diagram of a helium liquefied chiller having a variable frequency power generation system for a compressor according to the present invention, Figure 2 is a schematic configuration diagram of a variable frequency power generation system.

도 1에 도시한 바와같이, 본 발명의 압축기용 가변주파수 발전시스템을 갖춘 헬륨액화냉동기는, 헬륨 액화냉동기(13)와, 가변주파수 발전시스템(33)으로 구성한다.As shown in FIG. 1, the helium liquefied refrigeration machine provided with the variable frequency power generation system for compressors of this invention is comprised from the helium liquefied refrigeration machine 13 and the variable frequency power generation system 33. As shown in FIG.

가변주파수 발전시스템(33)은 가스터빈 발전부(30)와, 케미칼 냉동기인 흡착냉동기 (31)와, 연료공급부(35)로 이루어져 있다.The variable frequency power generation system 33 includes a gas turbine power generation unit 30, a adsorption freezer 31, which is a chemical refrigerator, and a fuel supply unit 35.

헬륨 액화냉동기(13)는, 전밀폐형 가변속 전동스크류 다단압축기(15a),(15b)로 이루어진 밀폐형 압축기군(14)과, 액화 헬륨탱크(16)와, 예컨데 초전도 마그네트인 냉각부하(17)와, 압축기군(14)의 토출측으로 부터 고압 헬륨가스를 액화 헬륨탱크 (16)로 공급하는 공급액화유로(10)와, 액화 헬륨탱크(16)로 부터 저압저온 헬륨가스를 압축기군(14)의 흡입측으로 환류시키는 환류회귀유로(11)와, 예냉열교환기(20),(21), 열교환기(22),(23),(24)와, 공급액화유로(10)의 중간단부로 부터 환류유로(11)의 상류측 열교환기(22)와 (23)와의 사이에 팽창터빈(l2a)을 개재하여 합류하는 한랭 바이패스유로(12) 및 JT 팽창밸브(10a)로 구성한다.The helium liquefied refrigeration machine (13) includes a hermetic compressor group (14) consisting of a hermetically sealed variable speed electric screw multistage compressor (15a, 15b), a liquefied helium tank (16), a cooling load (17) that is a superconducting magnet, and The supply liquefaction flow path 10 for supplying the high pressure helium gas from the discharge side of the compressor group 14 to the liquefied helium tank 16, and the low pressure low temperature helium gas from the liquefied helium tank 16 are connected to the compressor group 14. Reflux recirculation flow path 11 refluxing to the suction side, reflux heat exchangers 20, 21, heat exchangers 22, 23, 24 and reflux from the intermediate end of feed liquefaction flow path 10. It consists of the cold bypass flow path 12 and the JT expansion valve 10a which are joined between the upstream heat exchanger 22 and 23 of the flow path 11 via the expansion turbine l2a.

상기 전밀폐형 가변속 전동스크류 다단압축기(15a),(15b)는, 샤프트 시일부로 부터의 오일누출에 의한 환경오염방지나 샤프트 시일부로 부터의 대기혼입에 의한 연속운전의 저해 방지를 위해서, 각각 가변속전동기를 내장밀폐화 되어있다.The totally sealed variable speed electric screw multi-stage compressors (15a) and (15b) are respectively variable speed motors for preventing environmental pollution due to oil leakage from the shaft seal portion or preventing continuous operation due to atmospheric mixing from the shaft seal portion. The interior is sealed.

또한, 소형화, 지코스트화를 도모하기 위해서, 1축에 저단기와 고단기를 조립하거나 양축모터를 사용하여 양축에 저단기와 고단기를 각각 조립한 것을 사용하도록 하고 있다.In addition, in order to achieve miniaturization and geocoating, low and high stages are assembled on one shaft, or low and high stages are assembled on both shafts using both shaft motors.

또한, 회전변화에 대해 효율변화를 수반하는 것이 적은 용량제어가 가능한 인젝션 급유식 스큐류압축기가 사용되고 있다.In addition, injection oil type screw flow compressors capable of volume control with little change in efficiency with respect to rotational changes are used.

구동용모터(Ma),(Mb)는 3상 유도전동기로 구성되고, 상기 가변주파수 발전시 스템 (33)으로 부터 3상 가변주파수전력의 공급을 받으며, 회전수 가변운전을 할수있도록 하여 부하 요구신호에 대응 용량제어가 가능한 구성으로 된다.The driving motors Ma and Mb are constituted by three-phase induction motors, and are supplied with three-phase variable frequency power from the variable frequency power generation system 33, so that the rotational speed can be changed and the load is required. A configuration capable of controlling the capacitance in response to the signal is provided.

상기 예냉열교환기(20)에 있어서는, 환류회귀유로(11)를 통해 환류하는 저압저온헬륨가스의 냉열과, 후술하는 LNG의 기화열에 대응하여 발생하는 냉열과, 흡착냉동기 (31)의 냉각측(31b)으로 부터 출력하는 냉열에 대하여 공급액화유로를 흐르는 고압헬륨가스가 향류열교환하여 예냉되도록 하고 있다.In the precooling heat exchanger 20, the cooling heat generated in response to the cold heat of the low pressure low temperature helium gas refluxed through the reflux return flow passage 11, the vaporization heat of LNG described later, and the cooling side of the adsorption freezer 31 ( The high-pressure helium gas flowing through the supply liquefaction flow passage is subjected to countercurrent heat exchange to precool the cold heat output from 31b).

또한, 예냉열교환기(21)에 있어서는, 환류회귀유로(11)를 통해 환류하는 저압저온헬륨가스의 냉열과, 후술하는 LNG의 기화열애 대응하여 발생하는 냉열에 대하여 공급액화유로를 흐르는 고압 헬륨가스가 향류열교환하여 예냉되도록 하고 있다.In the pre-cooling heat exchanger 21, the high-pressure helium gas flowing through the supply liquefaction flow passage in response to the cold heat of the low pressure low temperature helium gas refluxed through the reflux return flow passage 11 and the vaporization heat of LNG described later. The counter current is preheated by heat exchange.

또한, 냉열교환기(23),(24)에 있어서는, 환류회귀유로(11)를 통해 환류하는저압저온 헬륨가스의 냉열에 대하여 공급액화유로를 흐르는 고압 헬륨가스가 향류 열교환하여 예냉되도록 하고 있다.In the cold heat exchangers 23 and 24, the high pressure helium gas flowing through the supply liquefaction flow passage is precooled by countercurrent heat exchange with respect to the cold heat of the low pressure low temperature helium gas refluxed through the reflux return flow passage 11.

또한, 열교환기(22)에 있어서는, 공급액화유로(10)의 중단(中斷)에서 분기된 한랭바이패스유로(12)상에 설치한 팽창터빈(12a)에 의해 단열팽창하여 한랭상태로된 고압 헬륨가스가 환류회귀유로를 환류하는 저압저온 헬륨가스와 합류하여 발생하는 한랭 냉열에 대하여 공급액화유로(10)를 흐르는 고압 헬륨가스가 향류열교환하여 액화에 근방까지 냉각되도록 한다.In the heat exchanger 22, the high pressure which is adiabatically expanded by an expansion turbine 12a provided on the cold bypass flow passage 12 branched from the middle of the supply liquefaction flow passage 10 and is cooled to a cold state. The high-pressure helium gas flowing through the supply liquefaction flow path 10 is countercurrently heat-exchanged and cooled to the vicinity of the liquefaction against cold cold heat generated by joining the low-pressure low-temperature helium gas flowing through the reflux return flow path.

또한, JT 팽창밸브(10a)는 단열 팽창밸브이며, 상기와 같이 예냉 열교환기(20),(21)를 통해 순차예냉되고, 더욱이 열교환기(22),(23),(24)의 순으로 순차 냉각되며, 액화바로 전까지 온도가 강하한 공급액화유로(10)를 흐르는 고압 헬륨가스가 단열팽창에 의해 액화되며, 기액 2상 상태가 되어 액화 헬륨탱크(16)에 공급 저장되도록 한다.In addition, the JT expansion valve 10a is an adiabatic expansion valve, and is sequentially precooled through the precooling heat exchangers 20 and 21 as described above, and further, in the order of the heat exchangers 22, 23, and 24. The high-pressure helium gas flowing through the supply liquefaction flow path 10 which is cooled sequentially and immediately before the liquefaction bar is liquefied by adiabatic expansion, and becomes a gas-liquid two-phase state to be supplied and stored in the liquefied helium tank 16.

이러한 경우, 냉각부하(17)는 유로(16a)를 통해 액화 헬륨탱크(16)로 부터 액화헬륨의 공급을 받을 수 있는 것이다. 또한 냉각부하(17)에 접촉한 결과 기화된 저온 헬륨가스는 유로(17a)를 통해 헬륨탱크(16)의 상부에 저장되고, 저온저압 헬륨가스로 되어 환류회귀유로(11)를 경유하여 압축기군(14)의 흡입측으로 환류되는순환로를 형성한다.In this case, the cooling load 17 can receive the supply of liquefied helium from the liquefied helium tank 16 through the flow path 16a. In addition, the low-temperature helium gas vaporized as a result of contacting the cooling load 17 is stored in the upper portion of the helium tank 16 through the flow path 17a, and becomes a low-temperature low-pressure helium gas through the reflux return flow path 11 through the compressor group. A circulation path is formed to be returned to the suction side of (14).

가변주파수 발전시스템(33)은, 가스터빈 발전부(30)와, 케미칼 냉동기인 흡착냉동기(31)와 연료공급부(35)로 구성한다.The variable frequency power generation system 33 includes a gas turbine power generation unit 30, an adsorption freezer 31, which is a chemical refrigerator, and a fuel supply unit 35.

상기 가스터빈 발전부(30)는 도 2에 도시한 바와같이, 대기를 흡기하여 압축하는 콤프레셔(41)와, 그 콤프레셔(41)에 의해 형성된 압축공기와 연료(LNG 기화가스) (30a)를 이용하여 연소를 수행하는 연소기(42)와, 그 연소기(42)에서 형성된 연소공기로서 구동되는 가스터빈(43)과, 주파수변환기(45)와, 연료제어부(46)와 연 산부(47)을 포함하여 구성된다.As shown in FIG. 2, the gas turbine power generation unit 30 includes a compressor 41 for inhaling and compressing air, and compressed air and fuel (LNG vaporized gas) 30a formed by the compressor 41. The combustor 42 which performs combustion by using the gas turbine 43, the frequency converter 45, the fuel control unit 46, and the operation unit 47, which are driven as combustion air formed in the combustor 42. It is configured to include.

또한, 주파수변환기(45)와 콤프레셔(41), 가스터빈(43)은 동일축상에 셋트되는 것으로 한다.In addition, the frequency converter 45, the compressor 41, and the gas turbine 43 are set on the same axis.

주파수변환기(45)는 계통전원(30d)에 의한 교류여자에 의해서 가스터빈(43)의 회전수에 상응한 3상 가변주파수전력(30b)을 얻을 수 있도록 한 것이다.The frequency converter 45 is such that the three-phase variable frequency power 30b corresponding to the rotation speed of the gas turbine 43 can be obtained by the AC excitation by the system power supply 30d.

연산부(47)는 가변속인 가스터빈(43)을 운전하기 위해서, 냉각부하(17)로 부터의 부하요구신호 Pd와, 대기 온도검출기로서 검출한 대기온도 T를 입력시켜 소요연료량을 연산하여 연료제어부(46)에서 소요연료를 제어공급하고, 주파수변환기(45)로 부터 부하요구 신호에 상응하는 최적 주파수전력인 3상 가변주파수 전력을 압축기군(14)의 유도기(Ma),(Mb)로 공급하여, 압축기군(14)의 용량제어를 가능하게한다.In order to operate the variable speed gas turbine 43, the calculation unit 47 inputs the load request signal Pd from the cooling load 17 and the atmospheric temperature T detected by the atmospheric temperature detector to calculate the required fuel amount to control the fuel control unit. In 46, the required fuel is controlled and supplied from the frequency converter 45 to the inductors Ma and Mb of the compressor group 14, which are three-phase variable frequency power corresponding to the load request signal. Thus, the capacity control of the compressor group 14 is enabled.

케미칼 냉동기인 흡착냉동기(31)는, 가스터빈 발전부(30)의 배가스에 의해 형성된 온수(30e)를 열원측(3la)으로 공급하여, 냉각측(31b)으로 부터 냉열을 얻도록 하는 것이기 때문에, 상기에서와 같이 냉각측(31b)에서 얻어진 상기 냉열은 예냉열교환기(20)로 공급하여, 공급액화유로(10)를 흐르는 고압 헬륨가스의 예냉을 가능하게 한다.Since the adsorption freezer (31), which is a chemical refrigerator, supplies hot water (30e) formed by the exhaust gas of the gas turbine power generation unit (30) to the heat source side (3la) to obtain cooling heat from the cooling side (31b). As described above, the cold heat obtained at the cooling side 31b is supplied to the precooling heat exchanger 20 to enable precooling of the high pressure helium gas flowing through the supply liquefaction flow path 10.

연료공급부(35)는, LNG탱크(36)와, 가온부(37)와, 예냉 열교환기(20),(21)에 있어서의 예냉용 냉열발생용의 기화부(38)로 구성한다.The fuel supply part 35 is comprised from the LNG tank 36, the heating part 37, and the vaporization part 38 for the precooling heat generation in the precooling heat exchanger 20,21.

가온부(37)는, 가스터빈(43)으로의 공급 LNG양이 예냉열교환기(20).(21)의 기화부(38)에서의 기화량보다 많은 경우에, LNG를 강제적으로 기화시켜 가스터빈(43)으로의 연료적정 공급량을 확보하는 구성으로 된다.When the amount of LNG supplied to the gas turbine 43 is more than the amount of vaporization in the vaporization part 38 of the precooling heat exchanger 20 and 21, the heating part 37 forcibly vaporizes LNG by gas It is set as the structure which ensures the fuel suitable supply amount to the turbine 43.

또한, 흡착냉동기(31)에 형성된 냉열은, 공급 액화유로(10)를 흐르는 고압 헬륨 가스의 예냉에 이용되고, 가스터빈(43)으로의 공급 LNG량이 예냉 열교환기의기화부(38)에서의 기화량보다 적은 경우에는, 예냉부하를 저감하여 밸런스를 취하도록 한다.In addition, the cold heat formed in the adsorption freezer 31 is used for precooling the high pressure helium gas which flows through the supply liquefaction flow path 10, and the amount of supply LNG to the gas turbine 43 in the vaporization part 38 of a precooling heat exchanger is carried out. If less than the amount of vaporization, the precooling load is reduced to achieve balance.

상기 가스터빈발전부(30)의 배가스에 의해 발생하는 냉열과 연료공급부(35)의 기화부(38)로 부터 발생하는 냉열에 의한, 예냉 열교환기(20),(21)에서의 예냉에 의하여 종래 시스템에 볼수 있는 액화질소의 기화에 의한 예냉을 필요없게 한다.By precooling in the precooling heat exchanger (20), (21) by the cold heat generated by the exhaust gas of the gas turbine power generation unit 30 and the cold heat generated from the vaporization unit 38 of the fuel supply unit (35). This eliminates the need for precooling by vaporization of liquid nitrogen found in conventional systems.

상술한 바와같이 본 발명은, 흡착냉동기(31)와 연료공급부(35)와의 시스템내의 각 기기를 유기적으로 조합하여 열효율을 올리도록 하고 있다.As described above, the present invention is to improve thermal efficiency by organically combining the devices in the system between the adsorption freezer (31) and the fuel supply unit (35).

상기 헬륨 액화냉동기에 대하여 개별적으로 설치한 가변주파수 발전시스템에 의해서 밀폐화된 전동스크류 다단 압축기군의 효율적인 구동이 가능하게 되고, 상기 압축기군의 조합에 대응한 균질파형을 가지고 최적의 동일주파수 전력을 도입하여, 상기 가변속 전력스크류 다단압축군을 부하요구에 대응한 최적 회전수로시 구동할수 있으며, 최적효율화를 도모할 수 있다.The variable frequency power generation system installed separately for the helium liquefied chiller enables efficient driving of the hermetic screw screw compressor group, and achieves the same frequency power with a homogeneous waveform corresponding to the combination of the compressor groups. Introduced, the variable speed power screw multistage compression group can be driven at the optimum rotational speed corresponding to the load demand, and the optimum efficiency can be achieved.

또한, 상기와 같이 안정된 독립전원 시스템의 장비에 의해서, 연속운전의 확보가 도모된다.Moreover, the continuous operation can be secured by the stable independent power supply system as described above.

또한, 가변주파수 발전시스템을, LNC를 사용하는 가스터빈 발전부와, 연료 공급부와, 케미칼 냉동기로 구성함으로서, LNG의 기화열에 상당하는 냉열과 페열을 이용한 냉열을 고압 헬륨가스의 예냉에 이용함으로써, 시스템의 열효율을 도모할 수 있다.In addition, the variable frequency power generation system is composed of a gas turbine power generation unit using an LNC, a fuel supply unit, and a chemical refrigeration unit, and by using cold heat corresponding to LNG vaporization heat and cooling heat using waste heat for precooling high pressure helium gas, The thermal efficiency of the system can be attained.

또한, 종래의 예냉용 액화질소가 필요없게 된다.In addition, there is no need for a conventional precooled liquid nitrogen.

Claims (4)

액화용 헬륨가스를 압축하는 압축기군과, 헬륨탱크와, 상기 헬륨탱크로 부터 헬륨을 공급 받는 냉각부하와, 압축기군의 배출측에서 헬륨탱크로 고압 헬륨가스를 공급하는 공급 액화유로와, 헬륨탱크에서 저압 저온헬륨가스를 압축기군의 흡입측으로 환류시키는 환류회귀유로와, 공급 액화유로와 환류회귀유로의 양쪽에 각각 관통하여 복수단 상태로 설치한 복수의 열교환기를 갖춘 액화냉동기에 있어서,A compressor group for compressing liquefied helium gas, a helium tank, a cooling load supplied with helium from the helium tank, a supply liquefied flow path for supplying high pressure helium gas from the discharge side of the compressor group, and a helium tank; In the liquefied refrigeration refrigerator having a reflux return flow path for refluxing the low-pressure low-temperature helium gas to the suction side of the compressor group, and a plurality of heat exchangers installed in a plurality of stages through each of the supply liquefaction flow path and the reflux return flow path, 상기 압축기군은 전동스크류 다단압축기군으로 구성하고, 별도로 설치한 가 스터빈 발전시스템을 전원으로서 부하에 대응하여 회전수를 제어하는 동시에, 상기 복수단의 열교환기의 압축기 배출측에 다른 냉열매체에 의한 열교환 경로를 설치한 하나 이상의 예냉열 교환기를 설치하고, 상기 가스터빈에 공급되는 연료가 상기 예냉열교환기의 열교환 경로를 거쳐 공급토록 구성한 것을 특징으로 하는 헬륨 액화냉동기.The compressor group comprises an electric screw multi-stage compressor group, and controls the rotation speed in response to the load by using a separately installed gas turbine power generation system as a power source, and is provided to another cooling heat medium on the compressor discharge side of the heat exchanger of the plurality of stages. And at least one precooling heat exchanger provided with a heat exchange path, wherein the fuel supplied to the gas turbine is supplied through a heat exchange path of the precooling heat exchanger. 제 1항에 있어서, 상기 가스터빈의 연료가 상기 예냉열교환기의 열교환경로에서 기화시켜 그 기화열을 이용하여 예냉열교환기를 통과하는 압축기에서 배출된 헬륨가스의 예냉을 수행하는 것을 특징으로 하는 헬륨 액화냉동기.The helium liquefied chiller of claim 1, wherein the fuel of the gas turbine is vaporized in a heat exchange path of the precooling heat exchanger, and the preheating of the helium gas discharged from the compressor passing through the precooling heat exchanger is performed using the heat of vaporization. . 제 1항에 있어서, 상기 가스터빈의 연료는 액화천연가스이며, 상기 예냉열교환기의 열교환 경로에서 액화천연가스를 기화하여, 그 기화열을 통해 예냉열교환기를 통과하는 압축기의 배출 헬륨가스의 예냉을 수행하는 것을 특징으로 하는 헬륨액화냉동기.The fuel of the gas turbine is liquefied natural gas, and vaporizes the liquefied natural gas in a heat exchange path of the precooling heat exchanger, and precools the discharged helium gas of the compressor passing through the precooling heat exchanger through the heat of vaporization. Helium liquefied chiller, characterized in that. 액화용 헬륨가스를 압축하는 압축기군과, 헬륨탱크와, 상기 헬륨탱크에서 헬륨을 공급 받는 냉각부하와, 압축기군의 배출측에서 헬륨탱크로 고압 헬륨가스를 공급하는 공급 액화유로와, 헬륨탱크에서 저압 저온헬륨가스를 압축기군의 흡입측으로 환류시키는 환류회귀유로와, 공급 액화유로와 환류회귀유로의 양쪽에 각각 관통하여 복수단 상태로 설치한 복수의 열교환기를 갖춘 헬륨 액화냉동기에 있어서,A compressor group for compressing liquefied helium gas, a helium tank, a cooling load supplied with helium from the helium tank, a supply liquefied flow path for supplying high pressure helium gas from the discharge side of the compressor group to a helium tank, and a helium tank. In a helium liquefied refrigeration machine having a reflux return flow path for refluxing low-pressure low-temperature helium gas to the suction side of the compressor group, and a plurality of heat exchangers installed in both stages through the supply liquefaction flow path and the reflux return flow path, respectively. 상기 압축기군은 전동스크류 다단압축기군으로 구성하고, 별도로 설치한 가 스터빈 발전시스템을 전원으로 부하에 대응하여 회전수를 제어하고, 상기 가스터빈 발전시스템의 폐열을 이용하여 작동되는 케미컬냉동기를 설치함과 동시에, 상기 복수단의 열교환기의 압축기 배출측에 다른 냉열매체에 의한 열교환 경로를 설치한 하나 이상의 예냉열 교환기를 설치하고, 상기 케미컬냉동기로부터 얻은 냉수를 예냉열교환기의 열교환 경로를 순환시키도록 구성하고, 상기 냉수를 이용하여 예냉열교환기를 통과하는 압축기에서 배출된 헬륨가스의 예냉을 수행하는 것을 특징으로 하는 헬륨 액화냉동기.The compressor group comprises an electric screw multistage compressor group, and controls the rotational speed corresponding to the load by using a separately installed gas turbine power generation system as a power source, and installs a chemical refrigerator operated by using waste heat of the gas turbine power generation system. At the same time, at least one precooling heat exchanger having a heat exchange path by another cold heat medium is installed on the compressor discharge side of the plurality of heat exchangers, and the cold water obtained from the chemical freezer is circulated through the heat exchange path of the precooling heat exchanger. And precooling the helium gas discharged from the compressor passing through the precooling heat exchanger using the cold water.
KR1019980005942A 1997-02-25 1998-02-25 Helium (HE) Liquefied Refrigerator KR100314947B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05542597A JP3859797B2 (en) 1997-02-25 1997-02-25 He liquefaction refrigerator
JP9-55425 1997-02-25

Publications (2)

Publication Number Publication Date
KR19980071701A KR19980071701A (en) 1998-10-26
KR100314947B1 true KR100314947B1 (en) 2002-02-28

Family

ID=12998238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980005942A KR100314947B1 (en) 1997-02-25 1998-02-25 Helium (HE) Liquefied Refrigerator

Country Status (2)

Country Link
JP (1) JP3859797B2 (en)
KR (1) KR100314947B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521833B2 (en) * 2004-11-15 2010-08-11 株式会社前川製作所 Cryogenic refrigeration method and apparatus
KR100871843B1 (en) * 2007-10-31 2008-12-03 두산중공업 주식회사 Multi-gm cold head integrated cooling device
KR101071919B1 (en) 2009-09-29 2011-10-11 한국과학기술원 High efficient Gas Compression System using Absorption refrigeration
FR2957406A1 (en) * 2010-03-12 2011-09-16 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
JP2013195031A (en) * 2012-03-22 2013-09-30 Aisin Seiki Co Ltd Precooling type cooling device
CN104879968B (en) * 2015-04-17 2017-10-24 浙江大学 Using the low temperature dividing wall type heat exchanger and pre- cold mould J T refrigeration machines of bypass throttle
CN114739030B (en) * 2022-03-07 2024-05-28 安徽万瑞冷电科技有限公司 Control method of vibration reduction variable frequency helium compressor system

Also Published As

Publication number Publication date
JP3859797B2 (en) 2006-12-20
JPH10238889A (en) 1998-09-08
KR19980071701A (en) 1998-10-26

Similar Documents

Publication Publication Date Title
KR101161339B1 (en) Cryogenic refrigerator and control method therefor
US7540171B2 (en) Cryogenic liquefying/refrigerating method and system
EP1913117A1 (en) Lng bog reliquefaction apparatus
JP6769850B2 (en) Boil-off gas liquefaction system
AU2020324275A1 (en) Refrigeration and/or liquefaction method, device and system
CN115711360B (en) Deep cooling type evaporation gas reliquefaction system
KR100314947B1 (en) Helium (HE) Liquefied Refrigerator
Tavian Large Cryogenics systems at 1.8 K
EP4146977A1 (en) Method for operating a reliquefaction system
WO2002002920A1 (en) System and method for gaseous fuel control for a turbogenerator/motor
JP2021533321A (en) High-temperature superconductor refrigeration system
JP2003056312A (en) Closed-cycle gas turbine and power generation system using the gas turbine
Claudet Recent progress in power refrigeration below 2 K for superconducting accelerators
Michel et al. Preliminary studies of the MINERVA cryogenic supply system
Saji et al. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling
Parish et al. Design of a Large 2.0 K Refrigerator for CEBAF
US20220090854A1 (en) Process for subcooling liquid stream with refrigerant gas
JPH09170834A (en) Helium refrigerating system
US20210348840A1 (en) Method for operating a reliquefaction system
EP4296477A2 (en) Pumped heat energy storage system with modular turbomachinery
JP2000154944A (en) Cooling apparatus for cryogenic container
WO2020228986A1 (en) Compressor train with combined gas turbine and steam turbine cycle
JPH04254168A (en) Heat pump system and electric power generator in a same system
Kerney et al. A 50-Liters/hr helium liquefier for a superconducting magnetic energy storage system
Dauguet et al. Two Large 18 KW (Equivalent Power at 4.5 K) Helium Refrigerators for Cern’s LHC Project, Supplied by Air Liquide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111028

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee