KR100310933B1 - Method for preparing polyethylene wax by using metallocene catalyst - Google Patents

Method for preparing polyethylene wax by using metallocene catalyst Download PDF

Info

Publication number
KR100310933B1
KR100310933B1 KR1019990014914A KR19990014914A KR100310933B1 KR 100310933 B1 KR100310933 B1 KR 100310933B1 KR 1019990014914 A KR1019990014914 A KR 1019990014914A KR 19990014914 A KR19990014914 A KR 19990014914A KR 100310933 B1 KR100310933 B1 KR 100310933B1
Authority
KR
South Korea
Prior art keywords
polyethylene wax
polymerization
methyl
metallocene catalyst
group
Prior art date
Application number
KR1019990014914A
Other languages
Korean (ko)
Other versions
KR20000067267A (en
Inventor
신동근
변두진
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR1019990014914A priority Critical patent/KR100310933B1/en
Publication of KR20000067267A publication Critical patent/KR20000067267A/en
Application granted granted Critical
Publication of KR100310933B1 publication Critical patent/KR100310933B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B65/00Implements for throwing  ; Mechanical projectors, e.g. using spring force
    • A63B65/08Boomerangs ; Throwing apparatus therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 메탈로센 촉매에 의한 폴리에틸렌 왁스의 제조방법에 관한 것으로서, 더욱 상세하게는 에틸렌 단량체를 단일 중합하거나 또는 에틸렌 단량체와 α-올레핀 단량체를 공중합하여 폴리에틸렌 왁스를 제조함에 있어, 치환된 구조의 시클로펜타디에닐 골격구조를 배위자로 하는 특정 구조의 메탈로센 촉매와 알루미녹센 및 유기보레이트 화합물의 조촉매로 구성되는 촉매계를 사용하고, 알킬알루미늄을 중합의 연쇄이동제로 사용하여 포화된 말단기 구조(saturated terminal structure)의 폴리에틸렌 왁스를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing polyethylene wax by a metallocene catalyst, and more particularly, to preparing a polyethylene wax by homopolymerizing an ethylene monomer or copolymerizing an ethylene monomer and an α-olefin monomer. Saturated end group structure using a catalyst system composed of a metallocene catalyst of a specific structure having a cyclopentadienyl skeleton as a ligand and a cocatalyst of an aluminoxene and an organoborate compound, and an alkylaluminum as a chain transfer agent for polymerization. A method for preparing polyethylene wax of saturated terminal structure.

본 발명에 따른 폴리에틸렌 왁스의 제조 방법은 온화한 저온저압의 중합조건에서 중합이 가능하고 중합의 연쇄이동제로 수소를 사용하지 않으며, 말단 불포화기의 생성을 최소화하며 분자량 분포가 균일한 폴리에틸렌 왁스를 제조하는 특징을 갖는다.The method for producing polyethylene wax according to the present invention is capable of polymerization under mild low-temperature low-pressure polymerization conditions and does not use hydrogen as a chain transfer agent for polymerization, minimizes the generation of terminal unsaturated groups and produces a polyethylene wax with a uniform molecular weight distribution. Has characteristics.

Description

메탈로센 촉매에 의한 폴리에틸렌 왁스의 제조방법{Method for preparing polyethylene wax by using metallocene catalyst}Method for preparing polyethylene wax by metallocene catalyst {Method for preparing polyethylene wax by using metallocene catalyst}

본 발명은 메탈로센 촉매에 의한 폴리에틸렌 왁스의 제조방법에 관한 것으로서, 더욱 상세하게는 에틸렌 단량체를 단일 중합하거나 또는 에틸렌 단량체와 α-올레핀 단량체를 공중합하여 폴리에틸렌 왁스를 제조함에 있어, 다음 화학식 1로 표시되는 특정한 구조의 메탈로센 촉매를 사용하고, 조촉매로는 다음 화학식 2와 3으로 표시되는 알루미녹센 화합물 및 유기보레이트 화합물을 사용하며, 그 외에 알킬알루미늄을 중합의 연쇄이동제로 사용하여 포화된 말단기 구조(saturatedterminal structure)의 폴리에틸렌 왁스를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing polyethylene wax using a metallocene catalyst, and more particularly, to preparing a polyethylene wax by homopolymerizing an ethylene monomer or copolymerizing an ethylene monomer and an α-olefin monomer. A metallocene catalyst having a specific structure as shown is used, and an aluminoxane compound and an organoborate compound represented by the following Chemical Formulas 2 and 3 are used as cocatalysts, and alkylaluminum is used as a chain transfer agent for A method for preparing polyethylene wax of saturated terminal structure.

(C5H5-mRm)2MX1X2 (C 5 H 5-m R m ) 2 MX 1 X 2

상기 화학식 1에서 :In Formula 1 above:

(C5H5-mRm)은 시클로펜타디에닐 골격의 배위자를 나타내는 것으로서, 구체적으로는 시클로펜타디에닐의 5개 골격탄소 중 최소한 1개 이상은 수소가 아닌 탄소 및 실리콘과 결합된 치환된 구조를 지칭하여 알킬 및 아릴 치환 시클로펜타디에닐, 알킬 및 아릴 치환 인데닐, 알킬 및 아릴 치환 푸로레닐을 표시하며, 여기서 R은 C1∼C20의 알킬기 및 아릴기, 실리콘 원자가 함유된 알킬기 및 알릴기이며, 또한 서로 다른 시클로펜타디에닐 골격에 R이 서로 결합하여 연결된(bridged) 배위자 구조이어도 무방하고; m은 1 내지 5의 정수이고; M은 4B 또는 5B족 전이금속, 바람직하게는 4B족 전이금속이고; X1및 X2는 서로 같거나 다른 것으로서 중심금속(M)에 배위된 시클로펜타디에닐 골격의 배위자 이외의 배위자를 나타내는 것으로 C1∼C11의 알킬기, 아릴기, 알콕시기, 아민기, 할로겐 원자 또는 수소원자를 나타낸다.(C 5 H 5-m R m ) represents the ligand of the cyclopentadienyl skeleton, specifically, at least one of the five skeletal carbons of cyclopentadienyl is substituted with carbon and silicon other than hydrogen Refers to an alkyl and aryl substituted cyclopentadienyl, alkyl and aryl substituted indenyl, alkyl and aryl substituted furorenyl, wherein R represents an alkyl group and an aryl group containing C 1 to C 20 and an alkyl group containing silicon atoms And an allyl group, and may have a ligand structure in which R is bridged to each other to a different cyclopentadienyl skeleton; m is an integer from 1 to 5; M is a Group 4B or 5B transition metal, preferably a Group 4B transition metal; X 1 and X 2 , which are the same as or different from each other, represent a ligand other than the ligand of the cyclopentadienyl skeleton coordinated to the central metal (M), and a C 1 to C 11 alkyl group, aryl group, alkoxy group, amine group, halogen Represents an atom or a hydrogen atom.

본 발명은 일반적인 메탈로센 촉매 중합에서와 마찬가지로 좁은 분자량 분포의 폴리에틸렌 왁스를 제조하며, 생성되는 폴리에틸렌 왁스의 분자량 분포는 중량평균분자량(weight-average molecular weight)을 수평균분자량(number-average molecular weight)로 나눈 값 즉, 분산도(disperisity)로 1 ∼ 3의 값을 갖음을 특징으로 하는데, 이 역시 메탈로센 촉매에 형성되는 중합 활성점의 균일성에 기인하는 것이다. 일반적인 메탈로센 촉매 중합의 경우, 메탈로센 촉매중합의 또다른 특징으로서 중합체내에 불포화 말단기를 포함하게 되는데, 본 발명에서 얻어지는 폴리에틸렌 왁스는 중합체내의 불포화 말단기 생성이 억제되는 중합 메카니즘상의 특이성을 갖는다.The present invention produces polyethylene wax with a narrow molecular weight distribution as in general metallocene catalyzed polymerization, the molecular weight distribution of the resulting polyethylene wax is a weight-average molecular weight number-average molecular weight (number-average molecular weight) It is characterized by having a value of 1 to 3 divided by), that is, a dispersion (disperisity), which is also due to the uniformity of the polymerization active point formed on the metallocene catalyst. In general metallocene catalyzed polymerization, another characteristic of metallocene catalyzed polymerization includes unsaturated end groups in the polymer. The polyethylene wax obtained in the present invention has a specificity on the polymerization mechanism in which the generation of unsaturated end groups in the polymer is suppressed. Have

메탈로센 촉매에 의한 α-올레핀의 중합에서는 일반적인 중합조건하에서 대부분 β-수소이탈반응을 통하여 중합체 말단에 비닐, 비닐리덴, 비닐렌기를 통칭하는 불포화 결합기를 포함하게 된다[J. Polym. Sci., Polym. Chem., 28, 15(1990);Macromol. Rapid Commun., 18, 715(1997);Macromol. Chem. Phys., 197, 4237(1996);Polymer, 37, 5011(1996);Macromlecules, 27, 2120(1994);J. Am. Chem. Soc., 114, 1025(1992)]. 이와 같이 중합체내에 포함되는 불포화 결합기는 포화된 탄화수소기에 비하여 화학적·열적으로 불안정하여 중합체의 화학적·열적 안정성을 해치게 되는데, 많은 경우 산소 존재하의 라디칼 공격에 의한 열산화 열화반응(thermal oxidative degradation)에 의한 착색, 산화, 가교 및 절단 반응들이 문제가 된다.In the polymerization of α-olefin by a metallocene catalyst, under the general polymerization conditions, most of the polymers include unsaturated bond groups collectively known as vinyl, vinylidene, and vinylene groups at the end of the polymer through β-hydrogenation reaction [ J. Polym. Sci., Polym. Chem. , 28, 15 (1990); Macromol. Rapid Commun. , 18, 715 (1997); Macromol. Chem. Phys. , 197, 4237 (1996); Polymer , 37, 5011 (1996); Macromlecules , 27, 2120 (1994); J. Am. Chem. Soc. , 114, 1025 (1992). As such, the unsaturated bond groups included in the polymer are chemically and thermally unstable compared to the saturated hydrocarbon group, thereby impairing the chemical and thermal stability of the polymer. Coloring, oxidation, crosslinking and cleavage reactions are problematic.

현재 공업적인 폴리올레핀 왁스 제조방법으로서, 가장 광범위하게 채택되고 있는 폴리올레핀 수지의 열분해에 의한 제조방법[Int. Polym. Sci. Technol., 23, 104(1996) ; 일본국 공개특허 평4-351608호] 역시 열분해 메카니즘상 생성되는 왁스 중합체의 내부 또는 말단에 비닐, 비닐리덴, 비닐렌과 같은 불포화 결합기를 포함하게 된다[Die Angew. Makro. Chem., 247, 31(1997);Macromolecules, 28,7973(1995)].Production method by thermal decomposition of polyolefin resin which is the most widely adopted method of producing polyolefin wax at present [ Int. Polym. Sci. Technol ., 23, 104 (1996); Japanese Patent Laid-Open No. 4-351608 also includes unsaturated bond groups such as vinyl, vinylidene, and vinylene at the end or inside of the wax polymer generated on the pyrolysis mechanism [ Die Angew. Makro. Chem. , 247, 31 (1997); Macromolecules , 28,7973 (1995).

이 외에도 열분해 방법에 의한 폴리에틸렌 왁스의 제조에 있어서는 고점도체의 고중합체를 고온에서 조작하여 생산하는 방식이므로 다음과 같은 문제점이 수반하게 된다: 첫째, 반응기 내의 유동성이 불량하여 온도 분포가 균일하지 못하며 이에 따라 발열체에 밀착한 부분은 온도 과열에 의한 탄화 및 지나친 열분해가 진행되기 쉬우며 반대로 발열체로부터 먼부분은 충분한 열분해가 진행되지 못하게 되어 전반적으로 얻어지는 열분해 생성물이 불균일하며, 반응의 제어가 어려워 동일한 품질의 제품을 얻기가 어렵다. 둘째, 열분해 생성물 내에 다량의 오일상 저중합체 생성물이 포함되거나, 탄화된 알맹이가 포함되거나, 황색의 착색이 일어나기 쉬운 문제점이 있고, 일반적으로 중합 분산도가 넓어 균일한 품질을 기대하는 응용분야에는 사용할 수 없는 문제점을 가지고 있다.In addition, in the production of polyethylene wax by the pyrolysis method, a high viscosity high polymer is produced by operating at a high temperature, and thus, the following problems are involved: First, the fluidity in the reactor is poor, so that the temperature distribution is not uniform. Therefore, the part in close contact with the heating element tends to be prone to carbonization and excessive pyrolysis due to temperature overheating. On the contrary, the part far from the heating element does not undergo sufficient thermal decomposition, resulting in non-uniform pyrolysis products. Hard to get product Secondly, pyrolysis products contain a large amount of oily oligomer product, carbonized kernels, or yellowing, and are generally susceptible to yellowing. I have a problem that I can't.

상기한 바와 같은 문제점을 피할 수 있는 가장 유력한 폴리에틸렌 왁스의 제조방법은 에틸렌을 저중합하는 합성법으로 제조하는 방법이며, 폴리에틸렌의 분자량을 낮은 값으로 통제하기 위해서는 수소를 중합의 연쇄이동제로 사용하게 된다. 이 방법에서 분자량의 통제는 반응기내에 투입되는 수소의 양에 의존하며 수소의 연쇄이동반응에 의한 분자량 저하 효과는 전통적인 불균일계 지글러-나타 촉매에서 보다 메탈로센 촉매에 의한 에틸렌 중합에서 효과적으로 나타난다[J. Polym. Sci., Polym. Chem., 28, 15(1990);Prog. Polym. Sci., 20, 309(1995)]. 또한 이 방법은 수소의 연쇄이동 반응에 의한 중합체 성장의 중단에 기초한 것이므로 중합체 말단에 불포화 결합기가 형성되는 것을 피할 수 있어 효과적인 폴리에틸렌 왁스의제조 방법으로 인식되게 되었다[대한민국특허 제137,960호; 미국특허 제4,914,253호; 미국특허 제5,023,388호]. 그러나 이 방법은 폭발성 가스인 수소를 사용해야 하는 위험요소가 내포되어 있으며, 수소의 투입과 제거에 필요한 장치적· 공정적 복잡함이 부가될 뿐 아니라, W. Kaminsky 등의 연구에 의하면 수소의 사용은 메탈로센 촉매의 중합 활성도를 낮추는 문제점을 갖게 된다[Makromol. Chem., Rapid Commun., 5, 225(1984)].The most potent method for producing polyethylene wax that can avoid the above problems is a method of producing ethylene by low polymerization method, and hydrogen is used as a chain transfer agent for polymerization in order to control the molecular weight of polyethylene to a low value. Control of the molecular weight in this way is dependent on the amount of hydrogen and the molecular weight decreases the effect of the chain transfer reaction of hydrogen traditional heterogeneous Ziegler are placed in a reactor when effective in the ethylene polymerization by the metallocene catalyst than in the Ziegler-Natta catalyst [J Polym. Sci., Polym. Chem. , 28, 15 (1990); Prog. Polym. Sci. , 20, 309 (1995). In addition, this method is based on the interruption of polymer growth due to the chain transfer reaction of hydrogen, thereby avoiding the formation of unsaturated bond groups at the end of the polymer, which has been recognized as an effective method for producing polyethylene wax [Korea Patent No. 137,960; US Patent No. 4,914,253; US Patent No. 5,023,388]. However, this method implies the danger of using explosive gas, hydrogen, and not only does it add to the mechanical and process complexity required for the introduction and removal of hydrogen, but W. Kaminsky et al. There is a problem of lowering the polymerization activity of the Rosene catalyst [ Makromol. Chem., Rapid Commun ., 5, 225 (1984)].

본 발명은 분자량 분포가 낮아 중합체의 특성이 균일하며 착색과 냄새 및 탄화 알맹이를 포함시키지 않는 고품질의 폴리에틸렌 왁스를 수소를 사용하지 않는 메탈로센 촉매 중합법으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing high-quality polyethylene wax with a low molecular weight distribution, uniform polymer properties, and without coloring, odor, and carbonization by metallocene catalytic polymerization without hydrogen.

본 발명은 알킬알루미늄, 그 중에서도 트리메틸알루미늄 또는 트리에틸알루미늄을 연쇄이동제로 사용하여 폴리에틸렌 왁스를 제조하기 위한 메탈로센 촉매 중합법을 제공한다.The present invention provides a metallocene catalytic polymerization method for producing polyethylene wax using alkylaluminum, inter alia trimethylaluminum or triethylaluminum, as a chain transfer agent.

트리메틸알루미늄은 메탈로센 촉매의 조촉매인 알루미녹센의 제조원료로서 많은 경우 알루미녹센 내에 2 내지 40 몰%가 미반응물로 잔류되어 포함되는데 잔류농도는 알루미녹센의 제조방식에 의하여 변화될 수 있다. 많은 경우에 이러한 알루미녹센에 포함된 잔류 트리메틸알루미늄은 알루미녹센이 중합의 조촉매로 사용되기 전에 감압증류 등의 방법으로 제거되지만, 트리메틸알루미늄에 의한 반응기 내의 불순물 제거 효과 등으로 알루미녹센에 포함된 상태로 중합 반응기내에 그대로 투여되기도 한다. 이러한 트리메틸알루미늄 및 알루미녹센에 의한 에틸렌 중합체의 연쇄이동 반응은 많은 연구자에 의하여 인식되어 보고되어 있으나, 이 연쇄이동 반응은 메탈로센 촉매 중합에 있어 대부분 β-수소이탈반응에 비하여 미미하게 진행되는 것으로 보고되어 있어, 메탈로센 촉매 중합에 있어 폴리에틸렌의 분자량을 통제하는 주요 연쇄이동 반응은 β-수소이탈반응인 것으로 알려져 왔다[J. Am. Chem. Soc., 114, 1025(1992);Macromol. Rapid Commun, 18, 715(1997);J. Polym. Sci., Polym. Chem., 26, 3089(1988);J. Polym. Sci., Polym. Chem., 28, 15(1990)].Trimethylaluminum is a raw material for the production of aluminoxane, a co-catalyst of a metallocene catalyst, and in many cases, 2 to 40 mole% of unreacted material is contained in the aluminoxane. The residual concentration may be changed by the method of manufacturing the aluminoxane. In many cases, the residual trimethylaluminum contained in such aluminoxane is removed by distillation under reduced pressure before aluminoxane is used as a cocatalyst of polymerization, but is contained in aluminoxen due to the effect of removing impurities in the reactor by trimethylaluminum. It may also be administered as it is in the polymerization reactor. The chain transfer reaction of the ethylene polymer by trimethylaluminum and aluminoxane has been recognized and reported by many researchers, but this chain transfer reaction is inferior to the β-hydrogen dehydrogenation reaction in the metallocene catalytic polymerization. As reported, the main chain transfer reaction controlling the molecular weight of polyethylene in metallocene catalyzed polymerization has been known to be β-hydrogenation reaction [ J. Am. Chem. Soc. 114, 1025 (1992); Macromol. Rapid Commun , 18, 715 (1997); J. Polym. Sci., Polym. Chem. , 26, 3089 (1988); J. Polym. Sci., Polym. Chem. , 28, 15 (1990).

이러한 알루미늄에 의한 연쇄이동 반응은 1,5-헥사디엔의 고리화 중합반응에서 중요하게 진행된다는 것이 매우 드문 예로서 보고되어 있을 뿐, 트리메틸알루미늄과 같은 트리알킬알루미늄을 연쇄이동제로 사용하는 폴리에틸렌 왁스의 제조에 관한 연구보고나 특허출원은 전무한 상황이다.It has been reported very rarely that such chain transfer reaction by aluminum is important in the cyclization polymerization of 1,5-hexadiene, and the polyethylene wax using trialkylaluminum such as trimethylaluminum as a chain transfer agent There are no research reports or patent applications on manufacturing.

본 발명은 치환된 시클로펜타디에닐 배위자를 갖는 특정구조의 메탈로센 촉매를 사용하여 에틸렌을 중합할 때 40 ∼ 180℃의 낮은 중합온도에서도 알킬알루미늄을 연쇄이동제로 사용하여 폴리에틸렌 중합체의 분자량을 효과적으로 제어할수 있다는 사실로부터 고안된 것으로, 수소를 사용하지 않는 메탈로센 촉매에 의한 폴리에틸렌 왁스의 제조방법이며, 중합 메카니즘상의 통상적인 반응 후처리과정(work-up)을 거쳐 포화된 구조의 폴리에틸렌 왁스를 얻을 수 있게 된다.In the present invention, when the ethylene is polymerized using a specific structure of a metallocene catalyst having a substituted cyclopentadienyl ligand, an alkylaluminum is used as a chain transfer agent even at a low polymerization temperature of 40 to 180 ° C. to effectively use the molecular weight of the polyethylene polymer. Designed from the fact that it can be controlled, it is a method for producing polyethylene wax using a metallocene catalyst which does not use hydrogen, and a polyethylene wax having a saturated structure is obtained through a conventional reaction work-up on a polymerization mechanism. It becomes possible.

도 1 은 실시예 1에 의해 중합 방법으로 제조된 폴리에틸렌 왁스의 수소원자핵자기 공명분광분석 스펙트럼이고,1 is a hydrogen atom nuclear magnetic resonance spectroscopy spectrum of the polyethylene wax prepared by the polymerization method according to Example 1,

도 2는 실시예 1에 의해 중합 방법으로 제조된 폴리에틸렌 왁스의 탄소원자핵자기 공명분광분석 스펙트럼이다.Figure 2 is a carbon atom nuclear magnetic resonance spectroscopy spectrum of polyethylene wax prepared by the polymerization method according to Example 1.

본 발명은 에틸렌 단량체를 단일 중합하거나 또는 에틸렌 단량체와 α-올레핀 단량체를 공중합하여 폴리에틸렌 왁스를 제조하는 방법에 있어서,The present invention provides a method for producing polyethylene wax by homopolymerizing ethylene monomer or copolymerizing ethylene monomer and α-olefin monomer.

상기 중합반응 촉매계에는 다음 화학식 1로 표시되는 메탈로센 촉매가 포함되고, 중합의 연쇄이동제로는 알킬알루미늄을 사용하여 포화된 말단기 구조를 가지는 폴리에틸렌 왁스를 제조하는 방법을 그 특징으로 한다.The polymerization catalyst system includes a metallocene catalyst represented by the following Chemical Formula 1, and a method of preparing polyethylene wax having a saturated end group structure using alkyl aluminum as a chain transfer agent of polymerization is characterized by the above.

화학식 1Formula 1

(C5H5-mRm)2MX1X2 (C 5 H 5-m R m ) 2 MX 1 X 2

상기 화학식 1에서 :In Formula 1 above:

(C5H5-mRm)은 시클로펜타디에닐 골격의 배위자를 나타내는 것으로서, 구체적으로는 시클로펜타디에닐의 5개 골격탄소 중 최소한 1개 이상은 수소가 아닌 탄소 및 실리콘과 결합된 치환된 구조를 지칭하여 알킬 및 아릴 치환 시클로펜타디에닐, 알킬 및 아릴 치환 인데닐, 알킬 및 아릴 치환 푸로레닐을 표시하며, 여기서 R은 C1∼C20의 알킬기 및 아릴기, 실리콘 원자가 함유된 알킬기 및 알릴기이며, 또한 서로 다른 시클로펜타디에닐 골격에 R이 서로 결합하여 연결된(bridged) 배위자 구조이어도 무방하고; m은 1 내지 5의 정수이고; M은 4B 또는 5B족 전이금속, 바람직하게는 4B족 전이금속이고; X1및 X2는 서로 같거나 다른 것으로서 중심금속(M)에 배위된 시클로펜타디에닐 골격의 배위자 이외의 배위자를 나타내는 것으로 C1∼C11의 알킬기, 아릴기, 알콕시기, 아민기, 할로겐 원자 또는 수소원자를 나타낸다.(C 5 H 5-m R m ) represents the ligand of the cyclopentadienyl skeleton, specifically, at least one of the five skeletal carbons of cyclopentadienyl is substituted with carbon and silicon other than hydrogen Refers to an alkyl and aryl substituted cyclopentadienyl, alkyl and aryl substituted indenyl, alkyl and aryl substituted furorenyl, wherein R represents an alkyl group and an aryl group containing C 1 to C 20 and an alkyl group containing silicon atoms And an allyl group, and may have a ligand structure in which R is bridged to each other to a different cyclopentadienyl skeleton; m is an integer from 1 to 5; M is a Group 4B or 5B transition metal, preferably a Group 4B transition metal; X 1 and X 2 , which are the same as or different from each other, represent a ligand other than the ligand of the cyclopentadienyl skeleton coordinated to the central metal (M), and a C 1 to C 11 alkyl group, aryl group, alkoxy group, amine group, halogen Represents an atom or a hydrogen atom.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 메탈로센 촉매를 사용하는 에틸렌 중합법을 사용하여 분자량을 통제하는 연쇄이동제로 알킬알루미늄을 사용하여 포화된 분자구조와 좁은 분자량 분포를 갖는 폴리에틸렌 왁스를 제조하는 방법에 그 특징이 있다.The present invention is characterized by a method for producing polyethylene wax having a saturated molecular structure and a narrow molecular weight distribution using alkylaluminum as a chain transfer agent controlling molecular weight using an ethylene polymerization method using a metallocene catalyst.

본 발명은 알루미늄에 의한 연쇄이동 효과를 활성화하여 낮은 분자량의 폴리에틸렌 왁스를 용이하게 합성하기 위하여 고안된 것으로서 특정 형태의 시클로펜타디에닐 골격의 배위자를 갖는 메탈로센 촉매와 알루미녹센 또는 유기보레이트의 조촉매 그리고 연쇄이동제로 트리메틸알루미늄 또는 트리에틸알루미늄을 사용하여 50∼180℃의 중합온도에서 중합하여 제조함을 그 구성요건으로 한다.The present invention is designed to facilitate the synthesis of low molecular weight polyethylene wax by activating the chain transfer effect by aluminum, and is a co-catalyst of a metaloxene catalyst having a ligand of a specific form of cyclopentadienyl skeleton and aluminoxene or organic borate. In addition, using the trimethylaluminum or triethylaluminum as a chain transfer agent, the polymerization is carried out at a polymerization temperature of 50 to 180 DEG C to make the composition requirement.

트리메틸알루미늄 또는 트리에틸알루미늄 등의 연쇄이동제에 의한 알루미늄 연쇄이동 효과는 β-어고스틱 상호작용(β-agostic interaction)의 입체 장애적 억제로부터 유도될 수 있는데, 메탈로센 촉매의 중심금속이 취하는 β-수소와의 β-어고스틱 상호작용은 메탈로센 촉매의 에틸렌 중합에 있어 에틸렌 단량체 삽입반응과 β-수소이탈반응의 가장 중요한 반응 중간체로 인식되고 있다[Organometallics, 14, 746(1995)]. 이러한 β-어고스틱 상호작용은 입체화학적 견지에서 메탈로센 촉매의 중심금속과 결합한 성장 고분자 사슬의 β-탄소와 β-수소의 σ결합이 메탈로센 촉매의 두 시클로펜타디에닐 배위자가 이루고 있는 평면의 가운데 적도면(equtorial plane)에 놓여져야 하게 되는데, 이 때 β-탄소에 연결된 성장 고분자 사슬은 이 적도면에 수직하게 위치하게 됨으로써 시클로펜타디에닐 배위자와 입체장애적 상호작용(steric interaction)을 일으키게 되고 이 β-어고스틱 상호작용을 통하여 전자적 안정화를 취하려는 중심금속을 포함하는 메탈로센 화합물을 열역학적으로 불안정하게 한다. 그러나 비스(시클로펜타디에닐)지르코늄 디클로라이드 촉매처럼 치환기가 없는 시클로펜타디에닐 골격구조를 배위자로 하는 메탈로센 촉매는 이러한 β-어고스틱 상호작용에서 상기한 입체 장애적 상호작용이 크지 않아 충분한 전자적 안정화를 취함으로써 트리메틸알루미늄과 같은 알킬알루미늄 화합물에 의한 연쇄이동 효과가 크게 나타나지 않는다.The effect of aluminum chain transfer by chain transfer agents such as trimethylaluminum or triethylaluminum may be derived from steric hindrance inhibition of β-agostic interaction, Β-agotic interaction with hydrogen has been recognized as the most important reaction intermediate of ethylene monomer insertion and β-hydrogen reaction in ethylene polymerization of metallocene catalysts [Organometallics, 14, 746 (1995)]. In the stereochemical view, the β-agotic interaction is characterized by the formation of two cyclopentadienyl ligands of the metallocene catalyst by the σ bond of the β-carbon and β-hydrogen of the growth polymer chain bonded to the central metal of the metallocene catalyst. It must be placed in the middle equator plane of the plane, where the growth polymer chains linked to β-carbons are placed perpendicular to this equator plane, causing steric interaction with the cyclopentadienyl ligand. And through this β-agotic interaction, the metallocene compound containing the central metal to take electronic stabilization is thermodynamically unstable. However, metallocene catalysts having a substituent-free cyclopentadienyl skeleton, such as bis (cyclopentadienyl) zirconium dichloride catalysts, are not sufficient in such β-agotic interactions to provide sufficient By taking electronic stabilization, the effect of chain transfer by alkylaluminum compounds such as trimethylaluminum is not large.

그러므로 본 발명에서는 이러한 시클로펜타디에닐 골격구조의 배위자에 의한 입체 장애적 상호작용을 크게 하기 위하여 보다 많은 치환기를 갖는 시클로펜타디에닐 골격구조를 배위자로 갖는 메탈로센 촉매가 유효하며, 최소한 1개 이상의 치환기를 포함하는 치환된 시클로펜타디에닐 배위자를 갖는 메탈로센 촉매를 사용한다.Therefore, in the present invention, a metallocene catalyst having a cyclopentadienyl skeleton structure having more substituents as a ligand is effective to increase steric hindrance interaction by the ligand of the cyclopentadienyl skeleton structure, and at least one A metallocene catalyst having a substituted cyclopentadienyl ligand containing the above substituents is used.

상기한 화학식 1로 표시되는 메탈로센 촉매의 대표적인 일부예를 들면 다음과 같다. 다음의 대표적인 메탈로센 촉매의 예에서 지르코늄을 대신하여 티타늄, 하프늄 등의 주기율표 4B 또는 5B족 전이금속 원자로 치환된 메탈로센 화합물을 사용할 수 있으나, 바람직하게는 지르코늄 또는 티타늄이 중심금속으로 포함되는 메탈로센 화합물이다. 또한, 각각의 화합물에서 디클로라이드 대신에 메틸클로라이드, 디메틸, 디메틸아민 등으로 치환된 화합물을 사용할 수 있다.Representative examples of the metallocene catalyst represented by Chemical Formula 1 are as follows. In the following representative metallocene catalysts, metallocene compounds substituted with periodic table 4B or 5B transition metal atoms such as titanium and hafnium may be used instead of zirconium, but preferably zirconium or titanium is included as a core metal. Metallocene compound. It is also possible to use compounds substituted with methyl chloride, dimethyl, dimethylamine and the like instead of dichloride in each compound.

비스(메틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (methylcyclopentadienyl) zirconium dichloride,

비스(에틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (ethylcyclopentadienyl) zirconium dichloride,

비스(프로필시클로펜타디에닐)지르코늄 디클로라이드,Bis (propylcyclopentadienyl) zirconium dichloride,

비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (n-butylcyclopentadienyl) zirconium dichloride,

비스(이소부틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (isobutylcyclopentadienyl) zirconium dichloride,

비스(페닐시클로펜타디에닐)지르코늄 디클로라이드,Bis (phenylcyclopentadienyl) zirconium dichloride,

비스(디메틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (dimethylcyclopentadienyl) zirconium dichloride,

비스(트리메틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (trimethylcyclopentadienyl) zirconium dichloride,

비스(테트라메틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (tetramethylcyclopentadienyl) zirconium dichloride,

비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (pentamethylcyclopentadienyl) zirconium dichloride,

비스(메틸에틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (methylethylcyclopentadienyl) zirconium dichloride,

비스(디에틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (diethylcyclopentadienyl) zirconium dichloride,

비스(트리에틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (triethylcyclopentadienyl) zirconium dichloride,

비스(디부틸시클로펜타디에닐)지르코늄 디클로라이드,Bis (dibutylcyclopentadienyl) zirconium dichloride,

비스(인데닐)지르코늄 디클로라이드,Bis (indenyl) zirconium dichloride,

비스(메틸인데닐)지르코늄 디클로라이드,Bis (methylindenyl) zirconium dichloride,

비스(디메틸인데닐)지르코늄 디클로라이드,Bis (dimethylindenyl) zirconium dichloride,

비스(트리메틸인데닐)지르코늄 디클로라이드,Bis (trimethylindenyl) zirconium dichloride,

비스(4, 5, 6, 7-테트라히드로인데닐)지르코늄 디클로라이드,Bis (4, 5, 6, 7-tetrahydroindenyl) zirconium dichloride,

에틸렌비스(메틸시클로펜타디에닐)지르코늄 디클로라이드,Ethylenebis (methylcyclopentadienyl) zirconium dichloride,

에틸렌비스(디메틸시클로펜타디에닐)지르코늄 디클로라이드,Ethylenebis (dimethylcyclopentadienyl) zirconium dichloride,

에틸렌비스(트리메틸시클로펜타디에닐)지르코늄 디클로라이드,Ethylenebis (trimethylcyclopentadienyl) zirconium dichloride,

에틸렌비스(인데닐)지르코늄 디클로라이드,Ethylenebis (indenyl) zirconium dichloride,

에틸렌비스(메틸인데닐)지르코늄 디클로라이드,Ethylenebis (methylindenyl) zirconium dichloride,

에틸렌비스(디메틸인데닐)지르코늄 디클로라이드,Ethylenebis (dimethylindenyl) zirconium dichloride,

에틸렌비스(4, 5, 6, 7-테트라히드로인데닐)지르코늄 디클로라이드,Ethylenebis (4, 5, 6, 7-tetrahydroindenyl) zirconium dichloride,

디메틸실릴렌비스(메틸시클로펜타디에닐)지르코늄 디클로라이드,Dimethylsilylenebis (methylcyclopentadienyl) zirconium dichloride,

디메틸실릴렌비스(디메틸시클로펜타디에닐)지르코늄 디클로라이드,Dimethylsilylenebis (dimethylcyclopentadienyl) zirconium dichloride,

디메틸실릴렌비스(트리메틸시클로펜타디에닐)지르코늄 디클로라이드,Dimethylsilylenebis (trimethylcyclopentadienyl) zirconium dichloride,

디메틸실릴렌비스(인데닐)지르코늄 디클로라이드,Dimethylsilylenebis (indenyl) zirconium dichloride,

디메틸실릴렌비스(메틸인데닐)지르코늄 디클로라이드,Dimethylsilylenebis (methylindenyl) zirconium dichloride,

디메틸실릴렌비스(디메틸인데닐)지르코늄 디클로라이드,Dimethylsilylenebis (dimethylindenyl) zirconium dichloride,

디메틸실릴렌비스(4, 5, 6, 7-테트라히드로인데닐)지르코늄 디클로라이드.Dimethylsilylenebis (4, 5, 6, 7-tetrahydroindenyl) zirconium dichloride.

본 발명의 촉매계는 상기 화학식 1로 표시되는 메탈로센 주촉매와 이와 배합되어 사용되는 조촉매로 구성된다. 상기 조촉매로는 알루미녹센 화합물과 유기보레이트 화합물이 사용될 수 있으며 알루미녹센 화합물은 -(-R1-Al-O)n-로 나타내어지는 환형화합물, R2-(-R3-Al-O-)n-Al(R4)2로 나타내어지는 선형화합물, 또는 클러스터 형태의 올리고머 혼합물이다. 여기서 R1, R2, R3및 R4는 서로 같거나 다른 것으로서 탄소수 1∼5의 알킬기이며, n은 1∼25의 정수이다. 본 발명이 조촉매로 사용하는 알루미녹센 화합물은 당해 기술분야에서 공지된 방법을 이용하여 수화물 및 결정수 또는 증류수의 형태로 물을 트리메틸알루미늄과 반응시켜 제조할 수있는데, 일반적으로 제조시에 환형화합물과 선형 화합물 및 클러스터 형태의 올리고머성 혼합물로 얻어진다. 본 발명이 또다른 조촉매로 사용하는 유기 보레이트 화합물은 (R')4-B-R'로 나타내어지며, 여기서 R'은 펜타푸로로페닐보레이트와 같은 불소치환된 방향족 화합물이고, R'는 사급 암모늄염이거나 안정한 탄소 양이온과 같은 이온쌍을 나타낸다.The catalyst system of the present invention comprises a metallocene main catalyst represented by Chemical Formula 1 and a cocatalyst used in combination therewith. As the cocatalyst, an aluminoxen compound and an organic borate compound may be used, and the aluminoxen compound is a cyclic compound represented by-(-R 1 -Al-O) n- , R 2 -(-R 3 -Al-O- ) n -Al (R 4 ) 2 is a linear compound, or a mixture of oligomers in the form of a cluster. Wherein R 1 , R 2 , R 3 and R 4 are the same as or different from each other and are an alkyl group having 1 to 5 carbon atoms, and n is an integer of 1 to 25. The aluminoxen compound used as a cocatalyst of the present invention can be prepared by reacting water with trimethylaluminum in the form of a hydrate and crystal water or distilled water using a method known in the art. And oligomeric mixtures in the form of linear compounds and clusters. The organic borate compound used by the present invention as another cocatalyst is represented by (R ') 4 -B-R', where R 'is a fluorine-substituted aromatic compound such as pentapurophenylborate, and R' is quaternary. Ionic pairs such as ammonium salts or stable carbon cations.

본 발명의 촉매계에 포함되는 조촉매는 상기한 알루미녹센 화합물 및 유기보레이트 화합물 이외에도 공지된 올레핀 중합용 메탈로센 촉매의 조촉매 중에서 선택된 어느 하나 또는 둘 이상을 함께 사용할 수도 있다.As the cocatalyst included in the catalyst system of the present invention, in addition to the aluminoxane compound and the organic borate compound, any one or two or more selected from the cocatalysts of the known metallocene catalyst for olefin polymerization may be used.

연쇄이동제로 사용하는 알킬알루미늄은 메탈로센 촉매 1 몰당 100 몰 내지 100,000 몰 범위에서 사용될 수 있으며, 상기 범위 미만의 적은 양이 사용되는 경우에는 폴리에틸렌 왁스 제조를 위한 충분한 중합도 제어효과를 볼 수 없는 문제가 있으며, 반대로 상기에서 기술한 범위를 초과하는 과량의 양을 사용하는 경우에는 중합활성도가 지나치게 낮아지는 문제가 유발될 수 있다.Alkyl aluminum used as a chain transfer agent may be used in the range of 100 mol to 100,000 mol per mol of the metallocene catalyst, and when a small amount less than the above range is used, sufficient polymerization degree control effect for producing polyethylene wax may not be obtained. On the contrary, if an excessive amount exceeding the above-described range is used, a problem of excessively low polymerization activity may be caused.

상기와 같은 촉매계는 실리카와 같은 담체화합물에 담지시켜서 사용할 수 있다.Such a catalyst system can be used by being supported on a carrier compound such as silica.

이상에서 설명한 바와 같은 촉매계를 사용하여 폴리에틸렌계 공중합체 왁스를 제조하고자 한다면, 에틸렌과 α-올레핀을 공단량체로 사용하여 함께 반응기에 투입시켜 중합하여 얻을 수 있다. 상기한 α-올레핀의 구체적 예로는 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센, 3-메틸-1-펜텐, 시클로펜텐, 노르보르넨, 5-비닐-2-노르보르넨, 1,4-헥사디엔, 4-메틸-1,4헥사디엔, 5-메틸-1,4-헥사디엔, 5-메틸-1,5-헵타디엔, 5-메틸-1,4-헵타디넨, 6-메틸-1,7-옥타디엔, 7-메틸-1,6-옥타디엔, 스티렌, 디비닐벤젠, 알릴벤젠 등이다.If the polyethylene copolymer wax is to be prepared using the catalyst system as described above, ethylene and α-olefin may be used as a comonomer to be introduced into the reactor and polymerized. Specific examples of the α-olefins mentioned above include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-pentene, cyclopentene, norbornene, 5-vinyl- 2-norbornene, 1,4-hexadiene, 4-methyl-1,4hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,5-heptadiene, 5-methyl-1 , 4-heptadinene, 6-methyl-1,7-octadiene, 7-methyl-1,6-octadiene, styrene, divinylbenzene, allylbenzene and the like.

중합온도는 분자량 제어에 큰 영향을 미친다. 중합온도가 낮을 수록 큰 활성화 에너지가 요구되는 연쇄이동반응보다는 낮은 활성화 에너지가 요구되는 단량체 삽입반응이 상대적으로 강화되는 효과를 갖게 되어 분자량이 증가하게 되므로, 낮은 중합도를 요하는 폴리에틸렌 왁스에는 적절하지 않게 된다. 그러므로 본 발명에서는 상온이상의 온도에서 중합이 이루어지는 것이 바람직하며, 더욱 바람직하게는 40℃∼180℃의 온도 범위이며, 더욱 더 바람직하게는 40∼150℃의 온도 범위이다. 중합반응온도가 이보다 낮으면 얻어지는 중합체의 분자량이 필요이상으로 증가할 수 있으며 그 이상으로 높을 경우에는 중합활성도가 지나치게 낮아지는 문제가 있을 수 있다.The polymerization temperature has a great influence on the molecular weight control. The lower the polymerization temperature, the more effective the monomer insertion reaction, which requires lower activation energy than the chain transfer reaction, which requires a larger activation energy, and thus the higher molecular weight. Therefore, it is not suitable for polyethylene wax requiring low polymerization degree. do. Therefore, in the present invention, the polymerization is preferably performed at a temperature above room temperature, more preferably in the temperature range of 40 ° C to 180 ° C, and even more preferably in the temperature range of 40 to 150 ° C. If the polymerization temperature is lower than this, the molecular weight of the resulting polymer may increase more than necessary, and if it is higher than this, there may be a problem that the polymerization activity is too low.

또한, 본 발명은 저온·저압 중합조건을 특징으로 하는 바, 중합 압력이 700 ∼ 2,000 기압에 이르는 고압 조건하에 중합이 이루어지는 고압 라디칼 중합에 비해서 휠씬 낮은 압력의 에틸렌 중합이 가능한, 메탈로센 촉매 중합의 특징인 상압 부근의 저압 중합 조건이 그대로 적용될 수 있다.In addition, the present invention is characterized by low-temperature and low-pressure polymerization conditions, metallocene catalytic polymerization capable of ethylene polymerization at a much lower pressure than the high-pressure radical polymerization that the polymerization is carried out under high pressure conditions of the polymerization pressure of 700 to 2,000 atm. Low pressure polymerization conditions near the normal pressure, which is a characteristic of the, may be applied as it is.

이와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 다음의 실시예에 한정되는 것은 아니다.Such a present invention will be described in more detail based on the following examples, but the present invention is not limited to the following examples.

다음의 실시예에서 얻어진 폴리에틸렌 왁스의 분자량과 구조를 확인하기 위해 제조된 중합체의 무게를 정량한 후 핵자기 공명분광분석을 수행하였고, 분자량분포 분석을 위하여 겔투과 크로마토그라피 분석을 수행하였다. 수소원자 핵자기 공명분광분석과 탄소원자핵자기 공명분광분석은 중수소로 치환된 테트라클로로에탄(C2D2Cl4) 용매를 분석용매로 사용하였고, 110℃에서 500 MHz 핵자기 공명분광분석기를 이용하여 수행되었으며, 겔투과 크로마토그라피 분석은 135℃의 1,2,4-트리클로로벤젠 용매하에서 폴리스티렌 기준 물질을 기준한 값으로 검량선을 작성하여 고온 겔투과 크로마토그라피 분석기로 측정되었다.To determine the molecular weight and structure of the polyethylene wax obtained in the following examples, the weight of the polymer was quantified, followed by nuclear magnetic resonance spectroscopy, and gel permeation chromatography analysis was performed for molecular weight distribution analysis. Hydrogen Atomic Magnetic Resonance Spectroscopy and Carbon Atomic Magnetic Resonance Spectroscopy were carried out using a deuterium-substituted tetrachloroethane (C 2 D 2 Cl 4 ) solvent as an analytical solvent and a 500 MHz nuclear magnetic resonance spectrometer at 110 ° C. Gel permeation chromatography analysis was performed with a high temperature gel permeation chromatography analyzer by preparing a calibration curve to a value based on polystyrene reference material in a solvent of 1,2,4-trichlorobenzene at 135 ° C.

실시예 1Example 1

±0.5℃의 오차범위를 갖는 80℃로 조절된 항온조와 항온조에 설치할 수 있는 100 ㎖의 슈렝크튜브(schlenk tube)가 장치된 플라스크를 장치하였다. 슈렝크 튜브를 이용하여 상온하에서 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체한 후 정제된 톨루엔 43 ㎖를 가하였다.A flask equipped with a 100 ml schlenk tube that could be installed in a thermostat and a thermostat adjusted to 80 ° C with an error range of ± 0.5 ° C was installed. Using a Schlenk tube, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas at room temperature, followed by 43 ml of purified toluene.

이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖와 2 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 1.6 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이후 반응기를 항온조에 장치하여 플라스크내 중합 용액의 온도를 80℃로 조절하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol 몰이 용해된 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드-톨루엔 용액 2 ㎖를 가하여 중합을 개시하였다. 이렇게 한 시간동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성 메탄올 용액에 적하하여 중합물을 침전시킨 후 여과막을 이용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 0.75 g을 얻었다.2.4 mL of methylaluminoxen-toluene solution containing 3 mmol of aluminum and 1.6 mL of trimethylaluminum-toluene solution containing 2 mmol of aluminum were added to the reactor, and the mixture was stirred at room temperature for 3 minutes. The reactor was then placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., and bis (pentamethylcyclopentadienyl) zirconium dichloride-toluene in which 2.5 mol mol was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. 2 ml of solution was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped, the polymer was dropped in an acidic methanol solution to precipitate the polymer, the polymer was separated using a filtration membrane, washed several times with methanol solvent, washed, and then dried at 50 ° C. in a vacuum drying oven. 0.75 g of polyethylene wax of saturated structure was obtained by drying at.

이 중합체를 중수소로 치환된 테트라클로로에탄을 분석용매로 사용하여 110℃에서 관측한 수소핵자기 공명분광분석 스펙트럼과 탄소 핵자기 공명분광분석 스펙트럼을 첨부도면 도 1과 도 2에 각각 나타내었다.Hydrogen nuclear magnetic resonance spectroscopy spectra and carbon nuclear magnetic resonance spectroscopy spectra observed at 110 ° C. using tetrachloroethane substituted with deuterium as the analytical solvent are shown in FIGS. 1 and 2, respectively.

도 1의 수소원자핵자기 공명분광분석 스펙트럼에서 관측되는 피크는 폴리에틸렌 왁스의 알킬골격기에 해당하는 수소원자핵의 1.3 ppm 피크와 포화된 말단 메틸기에 해당하는 수소원자핵의 0.9 ppm 피크만을 관측할 수 있을 뿐, 메탈로센 촉매중합에 있어 흔히 일어나는 β-수소이탈반응의 생성물인 비닐, 비닐리덴, 비닐렌 불포화기의 관측위치인 4.6∼5.4 ppm에서 아무런 피크를 관측할 수 없음을 알 수 있다.The peaks observed in the hydrogen nuclear nuclear magnetic resonance spectroscopy spectrum of FIG. 1 can only observe the 1.3 ppm peak of the hydrogen atom corresponding to the alkyl skeleton of polyethylene wax and the 0.9 ppm peak of the hydrogen atom corresponding to the saturated terminal methyl group. It can be seen that no peak can be observed at 4.6 to 5.4 ppm, which are the locations of vinyl, vinylidene and vinylene unsaturated groups, which are products of β-hydrogen dehydrogenation reactions, which occur frequently in the metallocene catalyst polymerization.

또한, 도 2의 탄소원자핵자기 공명분광분석 스펙트럼에서 관측되는 피크는 74.0 ppm에서의 분석용매로 사용한 중수소 치환 테트라클로로에탄에 의한 용매 피크 이외에 폴리에틸렌 왁스의 알킬 골격기에 해당하는 탄소원자핵의 29.6 ppm의 주피크와 13.8 ppm에서의 말단 메틸기 탄소원자핵의 피크, 22.5 ppm과 31.9 ppm의 말단 메틸기로부터 α-위치와 β-위치로 인접한 메틸렌 탄소원자핵의 피크를 관측할 수 있을 뿐, 110∼150 ppm 사이에서 관측되는 불포화 결합기에 의한 탄소원자핵의 피크들을 관측할 수 없었는 바, 이로써 포화된 구조의 폴리에틸렌 왁스가 제조되었음을 알 수 있다.In addition, the peak observed in the carbon atom nuclear magnetic resonance spectroscopy spectra of FIG. 2 is 29.6 ppm of the carbon atom corresponding to the alkyl skeleton group of polyethylene wax in addition to the solvent peak by deuterium substituted tetrachloroethane used as the analytical solvent at 74.0 ppm. Peaks and peaks of terminal methyl group carbon atoms at 13.8 ppm, and peaks of adjacent methylene carbon atoms at α- and β-positions from terminal methyl groups at 22.5 ppm and 31.9 ppm, only between 110 and 150 ppm The peaks of the carbon atom nuclei due to the unsaturated bond groups could not be observed, indicating that a polyethylene wax having a saturated structure was produced.

이 폴리에틸렌 합성왁스의 불포화 말단기 생성비율은 수소원자핵자기 공명분광분석 스펙트럼의 피크정량분석으로부터 계산될 수 있는데, 4.6∼5.4 ppm 위치의 불포화 결합기에 해당하는 피크와 0.9 ppm 위치의 말단 메틸기에 해당하는 피크를 적분하여 다음 수학식 1에 넣어 계산할 수 있다.The unsaturated end group generation ratio of this polyethylene synthetic wax can be calculated from the peak quantitative analysis of the hydrogen atom nuclear magnetic resonance spectroscopy spectrum, which corresponds to the peak corresponding to the unsaturated bond group at 4.6 to 5.4 ppm and the terminal methyl group at 0.9 ppm. Integrating the peak can be calculated by putting the following equation (1).

상기 수학식 1에서 : Au는 수소원자핵자기 공명분광분석 스펙트럼의 4.6∼5.4 ppm에 해당하는 불포화 결합기에 의한 피크 적분 면적이며; As는 0.9 ppm에 해당하는 말단 메틸기에 의한 피크 적분 면적이다.In the above Equation 1: Au is the peak integral area by the unsaturated bond group corresponding to 4.6 to 5.4 ppm of the hydrogen atom nuclear magnetic resonance spectroscopy spectrum; As is the peak integral area by the terminal methyl group corresponding to 0.9 ppm.

상기한 수학식 1로부터 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성 비율은 2 %이다.The unsaturated terminal group generation rate of the polyethylene wax obtained from said Formula (1) is 2%.

또한, 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 각각 1,900 Daltons과 1.3으로 수소를 사용함 없이 좁은 분자량 분포를 갖는 저분자량의 폴리에틸렌 왁스가 일반적 중합 조건하에서 효과적으로 제조 되었음을 알 수 있다.In addition, the weight average molecular weight and the polymerization dispersion degree of polyethylene wax determined from gel permeation chromatography using 1,2,4-trichlorobenzene solvent at 135 ° C. were 1,900 Daltons and 1.3, respectively. It can be seen that molecular weight polyethylene wax was effectively prepared under general polymerization conditions.

실시예 2Example 2

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를탈산소 및 탄수분된 에틸렌 가스로 대체하고 정제된 톨루엔을 40.5 ㎖ 가하였다. 이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖와 7 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 5.6 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이 후 반응기를 항온조에 장치하여 플라스크 내 중합용액의 온도를 80℃로 조절하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol이 용해된 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드-톨루엔 용액 2 ㎖를 가하여 중합을 개시하였다. 이렇게 한시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성 메탄올 용액에 적하하여 중합물을 침전시킨 후 여과막을 사용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 0.5 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and carbohydrated ethylene gas in the same manner as in Example 1, and 40.5 mL of purified toluene was added thereto. 2.4 mL of methylaluminoxen-toluene solution containing 3 mmol of aluminum and 5.6 mL of trimethylaluminum-toluene solution containing 7 mmol of aluminum were added to the reactor, and the mixture was stirred at room temperature for 3 minutes. The reactor was then placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., while 2.5 μmol of bis (pentamethylcyclopentadienyl) zirconium dichloride- was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. 2 ml of toluene solution was added to initiate the polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped, the polymer was dropped in an acidic methanol solution to precipitate the polymer, the polymer was separated using a filtration membrane, washed several times with a methanol solvent, washed and washed in a 50 ° C. vacuum drying oven. It dried and 0.5g of polyethylene wax of saturated structure was obtained.

이 중합체의 수소원자핵자기 공명분광분석 스텍트럼의 피크정량분석결과를 상기 실시예 1의 수학시 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성비율은 1%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 1,300 Daltons과 1.3이었다.The peak generation rate of the polyethylene wax obtained by applying the peak quantitative analysis result of the hydrogen atom nuclear magnetic resonance spectroscopic analysis spectrum of this polymer to Mathematics 1 of Example 1 was 1%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed by the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 1,300 Daltons and 1.3.

실시예 3Example 3

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크 내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔을 38.5 ㎖ 가하였다. 이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖와 7 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 5.6 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이후 반응기를 항온조에 장치하여 플라스크내 중합용액의 온도를 80℃로 조절하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol이 용해된 에틸렌비스(인데닐)지르코늄 디클로라이드-톨루엔 용액 3.5 ㎖를 가하여 중합을 개시하였다. 이렇게 한 시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성메탄올 용액에 적하하여 침전물을 침전시킨 후 여과막을 사용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 3.2 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 38.5 mL of purified toluene was added thereto. 2.4 mL of methylaluminoxen-toluene solution containing 3 mmol of aluminum and 5.6 mL of trimethylaluminum-toluene solution containing 7 mmol of aluminum were added to the reactor, and the mixture was stirred at room temperature for 3 minutes. The reactor was then placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., and 3.5 ml of ethylene bis (indenyl) zirconium dichloride-toluene solution in which 2.5 μmol was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. Was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped and the polymer was dropped in an acid methanol solution to precipitate a precipitate. The polymer was separated using a filtration membrane, washed several times with a methanol solvent, washed, and dried at 50 ° C. in a vacuum drying oven. Dried to obtain 3.2 g of a polyethylene wax of saturated structure.

이 중합체의 수소원자핵자기 공명분광분석 스펙트럼의 피크정량 분석결과를 상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화말단기 생성비율은 7%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 6,800 Daltons과 1.6이었다.The yield ratio of unsaturated terminal groups in the polyethylene wax obtained by applying the peak quantitative analysis results of the hydrogen atom nuclear magnetic resonance spectroscopic analysis spectrum of this polymer to Equation 1 of Example 1 was 7%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed from the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 6,800 Daltons and 1.6.

실시예 4Example 4

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크 내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔을 38 ㎖ 가하였다. 이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖와 7 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 5.6 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이 후 반응기를 항온조에 장치하여 플라스크내 중합용액의 온도를 80℃로 조절하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol이 용해된 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드-톨루엔 용액 4 ㎖를 가하여 중합을 개시하였다. 이렇게 한 시간동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성메탄올 용액에 적하하여 침전물을 침전시킨 후 여과막을 사용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 합성왁스 3.6g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 38 ml of purified toluene was added. 2.4 mL of methylaluminoxen-toluene solution containing 3 mmol of aluminum and 5.6 mL of trimethylaluminum-toluene solution containing 7 mmol of aluminum were added to the reactor, and the mixture was stirred at room temperature for 3 minutes. Thereafter, the reactor was placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., and 2.5 μmol of bis (n-butylcyclopentadienyl) zirconium dichloride was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. 4 ml of toluene solution was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped and the polymer was dropped in an acid methanol solution to precipitate a precipitate. The polymer was separated using a filtration membrane, washed several times with methanol solvent, washed, and then dried at 50 ° C. in a vacuum drying oven. 3.6 g of polyethylene synthetic wax having a saturated structure was obtained by drying at.

상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성비율은 12%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 5,700 Daltons과 1.4이었다.The unsaturated end group generation ratio of the polyethylene wax obtained by applying to formula (1) of Example 1 was 12%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed from the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 5,700 Daltons and 1.4.

실시예 5Example 5

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔 40.8 ㎖을 가하였다. 이 반응기에 2 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 1.6 ㎖와 2.5 μmol이 용해된 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드-톨루엔 용액 2 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이 후 반응기를 항온조에 장치하여 플라스크 내 중합 용액의 온도를 80℃로 조절하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 3 μmol의 4급 푸로로페닐 보레이트-디메틸아닐리늄염이 용해된 톨루엔 용액 5.6㎖를 가하여 중합을 개시하였다. 이렇게 한시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성 메탄올 용액에 적하하여 중합물을 침전시킨 후 여과막을 사용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 0.3 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 40.8 ml of purified toluene was added thereto. 1.6 ml of trimethylaluminum-toluene solution containing 2 mmol of aluminum and 2 ml of bis (pentamethylcyclopentadienyl) zirconium dichloride-toluene solution containing 2.5 mmol of aluminum were added to the reactor, and the mixture was stirred at room temperature for 3 minutes. The reactor was then placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., toluene in which 3 μmol of quaternary furophenyl borate-dimethylanilinium salt was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. 5.6 ml of solution was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped, the polymer was dropped in an acidic methanol solution to precipitate the polymer, the polymer was separated using a filtration membrane, washed several times with a methanol solvent, washed and washed in a 50 ° C. vacuum drying oven. 0.3 g of polyethylene wax of saturated structure was obtained by drying.

이 중합체의 수소원자핵자기 공명분광분석 스텍트럼의 피크정량분석결과를 상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성비율은 3%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 2,800 Daltons과 1.5이었다.The peak generation ratio of the polyethylene wax obtained by applying the peak quantitative analysis result of the hydrogen atom nuclear magnetic resonance spectroscopic analysis spectrum of this polymer to Equation 1 of Example 1 was 3%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed by the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 2,800 Daltons and 1.5.

실시예 6Example 6

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔 36 ㎖와 정제된 알릴벤젠 4 ㎖를 가하였다. 이 반응기에 1.5 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 1.2 ㎖와 6 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 4.8 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이 후 반응기를 항온조에 장치하여 플라스크내 중합용액의 온도룰 80℃로 조절하고, 1.2 bar의일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol이 용해된 에틸렌비스(인데닐)지르코늄 디클로라이드-톨루엔 용액 4 ㎖를 가하여 중합을 개시하였다. 이렇게 한 시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성 메탄올 용액에 적하하여 침전물을 침전시킨 후 여과막을 이용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 3.2 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 36 ml of purified toluene and 4 ml of purified allylbenzene were added. 1.2 mL of methylaluminoxen-toluene solution containing 1.5 mmol of aluminum and 4.8 mL of trimethylaluminum-toluene solution containing 6 mmol of aluminum were added to the reactor and stirred at room temperature for 3 minutes. Thereafter, the reactor was placed in a thermostatic chamber to adjust the temperature of the polymerization solution in the flask to 80 ° C., and 2.5 μmol of ethylene bis (indenyl) zirconium dichloride-toluene solution 4 was supplied while supplying ethylene gas at a constant pressure of 1.2 bar. Ml was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped and the polymer was dropped in an acidic methanol solution to precipitate a precipitate. The polymer was separated using a filtration membrane, washed several times with methanol solvent, washed, and then dried at 50 ° C. in a vacuum drying oven. Dried to obtain 3.2 g of a polyethylene wax of saturated structure.

상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성비율은 4%이었다. 또한 이 중합체에 포함된 공중합 단량체(알릴벤젠)의 공중합 참여율은 수소원자핵자기 공명분광분석 스펙트럼에서 알릴벤젠의 벤젠고리 수소 원자핵에 의한 7.0∼7.5 ppm 피크를 정량화하여 1.3 ppm 부근의 에틸렌 골격 구조에 의한 피크의 면적비에 대비하여 계산될 수 있는데 얻어진 값은 12.3몰%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 4,600 Daltons과 1.3이었다.The unsaturated end group generation ratio of the polyethylene wax obtained by applying to formula (1) of Example 1 was 4%. Copolymerization rate of the copolymerized monomer (allylbenzene) contained in this polymer was quantified from the peak of 7.0-7.5 ppm by the benzene ring hydrogen nucleus of allylbenzene in the hydrogen atomic nucleus magnetic resonance spectroscopy spectrum. It can be calculated relative to the area ratio of the peaks, which was 12.3 mol%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed from the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 4,600 Daltons and 1.3.

실시예 7Example 7

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔 24 ㎖와 정제된 알릴벤젠 4 ㎖를 가하였다. 이 반응기에 1.5 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 1.2 ㎖와 21 mmol의 알루미늄 함량이 포함된 트리메틸알루미늄-톨루엔 용액 16.8 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이후 반응기를 항온조에 장치하여 플라스크내 중합용액의 온도를 80℃로 조절하고 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서 2.5 μmol이 용해된 에틸렌비스(인데닐)지르코늄 디클로라이드-톨루엔 용액 4 ㎖를 가하여 중합을 개시하였다. 이렇게 한시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성 메탄올 용액에 적하하여 침전물을 침전시킨 후 여과막을 이용하여 중합물을 분리하고 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 포화된 구조의 폴리에틸렌 왁스 2.5 g을 얻었다.The flask in Example 1 was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 24 ml of purified toluene and 4 ml of purified allylbenzene were added. 1.2 ml of methylaluminoxen-toluene solution containing 1.5 mmol of aluminum and 16.8 ml of trimethylaluminum-toluene solution containing 21 mmol of aluminum were added to the reactor and stirred at room temperature for 3 minutes. The reactor was then placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., and 4 ml of ethylene bis (indenyl) zirconium dichloride-toluene solution in which 2.5 μmol was dissolved while supplying ethylene gas at a constant pressure of 1.2 bar. Was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped and the polymer was dropped in an acidic methanol solution to precipitate a precipitate. The polymer was separated using a filtration membrane, washed several times with methanol solvent, washed and dried in a vacuum drying oven at 50 ° C. To obtain 2.5 g of polyethylene wax having a saturated structure.

상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌 왁스의 불포화 말단기 생성비율은 2%이었다. 또한 이중합체에 포함된 공중합 단량체(알릴벤젠)의 공중합 참여율은 수소원자핵자기 공명분광분석 스펙트럼의 결과로부터 9.8몰%임을 확인하였다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 3,800 Daltons과 1.3이었다.The unsaturated end group generation ratio of the polyethylene wax obtained by applying to formula (1) of Example 1 was 2%. In addition, it was confirmed that the copolymerization participation rate of the copolymerization monomer (allylbenzene) included in the dipolymer was 9.8 mol% from the result of the hydrogen atom nuclear magnetic resonance spectroscopy spectrum. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed by the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 3,800 Daltons and 1.3.

비교예 1Comparative Example 1

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔 45.6 ㎖를 가하였다. 이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖를 가하여 20℃에서 3분간 휘저어주었다. 반응기의 온도를 20℃에서 조절된 상태로 유지하고, 1.2 bar의 일정한 압력으로 에틸렌 가스를 공급하면서, 2.5 μmol이 용해된 비스(펜타메틸시클로펜타디에닐)지르크늄 디클로라이드-톨루엔 용액 2 ㎖를 가하여 중합을 개시하였다. 이렇게 한 시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 폴리에틸렌 중합체 0.9 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 45.6 ml of purified toluene was added thereto. 2.4 ml of methylaluminoxane-toluene solution containing 3 mmol of aluminum was added to the reactor, and the mixture was stirred at 20 ° C. for 3 minutes. 2 mL of bis (pentamethylcyclopentadienyl) zirconium dichloride-toluene solution in which 2.5 μmol was dissolved while maintaining the temperature of the reactor at 20 ° C. and supplying ethylene gas at a constant pressure of 1.2 bar. Was added to initiate polymerization. After the polymerization was performed for 1 hour, the supply of ethylene gas was stopped, the polymer was washed several times with an acid methanol solvent, washed, and dried in a vacuum drying oven at 50 ° C. to obtain 0.9 g of a polyethylene polymer.

얻어진 폴리에틸렌 중합체의 수소원자핵자기 공명분광분석 스펙트럼은 이중합체의 높은 분자량에 기인하여 정량화 할만한 크기의 말단기를 보여주지 않으므로 불포화 결합기의 생성 비율은 계산 할 수 없었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 280,000 Daltons과 7.8이었다.Hydrogen-nuclear magnetic resonance spectroscopy spectra of the obtained polyethylene polymer showed no end groups of quantifiable size due to the high molecular weight of the dimer, and thus the formation rate of unsaturated bond groups could not be calculated. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed from the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 280,000 Daltons, and 7.8.

비교예 2Comparative Example 2

상기 실시예 1의 플라스크에 실시예 1과 같은 방법으로 플라스크내의 기체를 탈산소 및 탈수분된 에틸렌 가스로 대체하고 정제된 톨루엔 40 ㎖와 정제된 알릴벤젠 4 ㎖를 가하였다. 이 반응기에 3 mmol의 알루미늄 함량이 포함된 메틸알루미녹센-톨루엔 용액 2.4 ㎖를 가하여 상온에서 3분간 휘저어 주었다. 이 후 반응기를 항온조에 장치하여 플라스크내 중합용액의 온도를 80℃로 조절하고, 2.5 μmol이 용해된 에틸렌비스(인데닐)지르코늄 디클로라이드-톨루엔 용액 4.4 ㎖를 가하여 중합을 개시하였다. 이렇게 한시간 동안 중합시킨 후 에틸렌 가스의 공급을 중단하고 중합물을 산성메탄올 용액에 적하하여 침전물을 침전시킨 후 여과막을 사용하여 중합물을 분리한 후 메탄올 용매로 수회 세척하여 씻어주고 50℃의 진공건조 오븐에서 건조하여 불포화 말단기를 갖는 폴리에틸렌 3.5 g을 얻었다.In the flask of Example 1, the gas in the flask was replaced with deoxygenated and dehydrated ethylene gas in the same manner as in Example 1, and 40 ml of purified toluene and 4 ml of purified allylbenzene were added. 2.4 ml of methylaluminoxen-toluene solution containing 3 mmol of aluminum was added to the reactor, and the mixture was stirred at room temperature for 3 minutes. Thereafter, the reactor was placed in a thermostat to adjust the temperature of the polymerization solution in the flask to 80 ° C., and 4.4 ml of an ethylene bis (indenyl) zirconium dichloride-toluene solution in which 2.5 μmol was dissolved was added to initiate polymerization. After the polymerization for 1 hour, the supply of ethylene gas was stopped and the polymer was dropped in an acid methanol solution to precipitate a precipitate. The polymer was separated using a filtration membrane, washed several times with a methanol solvent, washed and washed in a 50 ° C. vacuum drying oven. It dried and 3.5g of polyethylene which has unsaturated terminal group was obtained.

상기 실시예 1의 수학식 1에 적용하여 얻어진 폴리에틸렌의 불포화 말단기 생성비율은 67%이었다. 또한 135℃의 1,2,4-트리클로로벤젠 용매를 사용한 겔투과 크로마토그라피로부터 확인한 이 폴리에틸렌 왁스의 중량평균분자량과 중합 분산도는 17,000 Daltons과 2.2이었다.The unsaturated terminal group generation ratio of the polyethylene obtained by applying to formula (1) of Example 1 was 67%. In addition, the weight average molecular weight and the polymerization dispersion degree of this polyethylene wax which were confirmed by the gel permeation chromatography using the 1,2, 4- trichlorobenzene solvent of 135 degreeC were 17,000 Daltons, and 2.2.

이상의 실시예에서는 지르코늄계 메탈로센 촉매에 대해서만 구체적으로 예시하고 있지만, 타이타늄계의 메탈로센 촉매를 사용하여도 동일한 효과를 얻을 수 있으며, 그 뿐만 아니라 공중합 단량체의 종류 및 농도, 용매의 변화, 촉매와 조촉매의 종류 및 농도, 촉매계의 담지화 방법 등을 활용하여서도 다양한 결과를 성취할 수 있다.In the above examples, the zirconium-based metallocene catalyst is specifically illustrated, but the same effect can be obtained by using a titanium-based metallocene catalyst, as well as the type and concentration of the copolymerized monomer, the change of the solvent, Various results can also be achieved by utilizing the type and concentration of catalyst and cocatalyst, and the method of supporting the catalyst system.

이상의 실시예 및 비교예로부터 알 수 있듯이, 본 발명은 특정구조의 메탈로센 촉매를 중합 촉매로 사용하고 중합의 연쇄이동제로 알킬알루미늄을 사용하여, 열산화 안정성 등을 크게 악화시키는 말단 불포화기의 생성을 최대한 억제시켜 포화된 말단기 구조의 폴리에틸렌 왁스를 온화한 중합 조건하에서도 효과적으로 제조하고 있다. 본 발명에 따른 제조방법에 의해 얻어진 폴리에틸렌 왁스의 분자량 분포는 메탈로센 촉매의 특징인 중합 분산도 3이하의 균일한 분자량 분포를 갖는다.As can be seen from the above examples and comparative examples, the present invention uses a metallocene catalyst having a specific structure as a polymerization catalyst and an alkylaluminum as a chain transfer agent of the polymerization, and thus, a terminal unsaturated group which greatly deteriorates thermal oxidation stability and the like. By suppressing the production as much as possible, polyethylene wax having a saturated end group structure is effectively produced even under mild polymerization conditions. The molecular weight distribution of the polyethylene wax obtained by the production method according to the present invention has a uniform molecular weight distribution of 3 or less in terms of polymerization dispersion degree which is characteristic of the metallocene catalyst.

Claims (8)

에틸렌 단량체를 단일 중합하거나 또는 에틸렌 단량체와 α-올레핀 단량체를 공중합하여 폴리에틸렌 왁스를 제조하는 방법에 있어서,In a method of producing a polyethylene wax by homopolymerizing an ethylene monomer or copolymerizing an ethylene monomer with an α-olefin monomer, 상기 중합반응 촉매계에는 다음 화학식 1로 표시되는 메탈로센 촉매가 포함되고, 중합의 연쇄이동제로는 알킬알루미늄을 사용하여 제조하는 것을 특징으로 하는 포화된 말단기 구조를 가지는 폴리에틸렌 왁스의 제조방법.The polymerization catalyst system comprises a metallocene catalyst represented by the following formula (1), a method for producing a polyethylene wax having a saturated end group structure, characterized in that the chain transfer agent is prepared using alkyl aluminum. 화학식 1Formula 1 (C5H5-mRm)2MX1X2 (C 5 H 5-m R m ) 2 MX 1 X 2 상기 화학식 1에서 :In Formula 1 above: (C5H5-mRm)은 시클로펜타디에닐 골격의 배위자를 나타내는 것으로서, 구체적으로는 시클로펜타디에닐의 5개 골격탄소 중 최소한 1개 이상은 수소가 아닌 탄소 및 실리콘과 결합된 치환된 구조를 지칭하여 알킬 및 아릴 치환 시클로펜타디에닐, 알킬 및 아릴 치환 인데닐, 알킬 및 아릴 치환 푸로레닐을 표시하며, 여기서 R은 C1∼C20의 알킬기 및 아릴기, 실리콘 원자가 함유된 알킬기 및 알릴기이며, 또한 서로 다른 시클로펜타디에닐 골격에 R이 서로 결합하여 연결된(bridged) 배위자 구조이어도 무방하고; m은 1 내지 5의 정수이고; M은 4B 또는 5B족 전이금속이고; X1및 X2는 서로 같거나 다른 것으로서 중심금속(M)에 배위된 시클로펜타디에닐 골격의 배위자 이외의 배위자를 나타내는 것으로 C1∼C11의 알킬기, 아릴기, 알콕시기, 아민기, 할로겐 원자 또는 수소원자를 나타낸다.(C 5 H 5-m R m ) represents the ligand of the cyclopentadienyl skeleton, specifically, at least one of the five skeletal carbons of cyclopentadienyl is substituted with carbon and silicon other than hydrogen Refers to an alkyl and aryl substituted cyclopentadienyl, alkyl and aryl substituted indenyl, alkyl and aryl substituted furorenyl, wherein R represents an alkyl group and an aryl group containing C 1 to C 20 and an alkyl group containing silicon atoms And an allyl group, and may have a ligand structure in which R is bridged to each other to a different cyclopentadienyl skeleton; m is an integer from 1 to 5; M is a 4B or 5B transition metal; X 1 and X 2 , which are the same as or different from each other, represent a ligand other than the ligand of the cyclopentadienyl skeleton coordinated to the central metal (M), and a C 1 to C 11 alkyl group, aryl group, alkoxy group, amine group, halogen Represents an atom or a hydrogen atom. 제 1 항에 있어서, 상기 메탈로센 촉매의 중심금속(M)이 지르코늄(Zr) 또는 티타늄(Ti)인 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method of claim 1, wherein the center metal (M) of the metallocene catalyst is zirconium (Zr) or titanium (Ti). 제 1 항에 있어서, 상기 촉매계에는 메탈로센 촉매 이외에도 알루미녹센 및 유기보레이트 중에서 선택된 조촉매가 함유되는 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method of claim 1, wherein the catalyst system contains a co-catalyst selected from aluminoxane and organic borate in addition to the metallocene catalyst. 제 1 항에 있어서, 상기 연쇄이동제로서 알킬알루미늄이 트리메틸알루미늄 또는 트리에틸알루미늄인 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method of claim 1, wherein the alkyl aluminum is trimethylaluminum or triethylaluminum as the chain transfer agent. 제 1 항에 있어서, 상기 연쇄이동제는 메탈로센 촉매 1 mole에 대하여 100 내지 100,000 mole 사용하는 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method of claim 1, wherein the chain transfer agent is a polyethylene wax production method, characterized in that 100 to 100,000 mole per 1 mole of the metallocene catalyst. 제 1 항에 있어서, 상기 중합반응온도가 40 ∼ 150℃ 범위인 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method for producing polyethylene wax according to claim 1, wherein the polymerization temperature is in the range of 40 to 150 ° C. 제 1 항에 있어서, 상기 α-올레핀 공중합 단량체가 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센, 3-메틸-1-펜텐, 시클로펜텐, 노르보르넨, 5-비닐-2-노르보르넨, 1,4-헥사디엔, 4-메틸-1,4-헥사디엔, 5-메틸-1.4-헥사디엔, 5-메틸-1,5-헵타디엔, 5-메틸-1.4-헵타디엔, 6-메틸-1,7-옥타디엔, 7-메틸-1,6-옥타디엔, 스타이렌, 디비닐벤젠 및 알릴벤젠 중에서 선택된 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The method of claim 1, wherein the α-olefin copolymer monomer is propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-pentene, cyclopentene, norbornene, 5-vinyl-2-norbornene, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1.4-hexadiene, 5-methyl-1,5-heptadiene, 5- A process for producing polyethylene wax, characterized in that selected from methyl-1.4-heptadiene, 6-methyl-1,7-octadiene, 7-methyl-1,6-octadiene, styrene, divinylbenzene and allylbenzene. 제 1 항 내지 제 6 항중 어느 한 항에 있어서, 상기 폴리에틸렌 왁스는 중량평균분자량이 500 ∼ 20,000 Daltons 이고, 중합 분산도가 1∼3의 좁은 분자량 분포를 가지며, 불포화 말단기의 생성비율이 50% 이하(전체 말단기 기준으로는 25% 이하)인 것을 특징으로 하는 폴리에틸렌 왁스의 제조방법.The polyethylene wax according to any one of claims 1 to 6, wherein the polyethylene wax has a weight average molecular weight of 500 to 20,000 Daltons, has a narrow molecular weight distribution of 1 to 3 polymerization dispersion degree, and a production rate of unsaturated terminal groups is 50%. A method for producing polyethylene wax, which is below (25% or less based on total terminal groups).
KR1019990014914A 1999-04-26 1999-04-26 Method for preparing polyethylene wax by using metallocene catalyst KR100310933B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990014914A KR100310933B1 (en) 1999-04-26 1999-04-26 Method for preparing polyethylene wax by using metallocene catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990014914A KR100310933B1 (en) 1999-04-26 1999-04-26 Method for preparing polyethylene wax by using metallocene catalyst

Publications (2)

Publication Number Publication Date
KR20000067267A KR20000067267A (en) 2000-11-15
KR100310933B1 true KR100310933B1 (en) 2001-10-17

Family

ID=19582278

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990014914A KR100310933B1 (en) 1999-04-26 1999-04-26 Method for preparing polyethylene wax by using metallocene catalyst

Country Status (1)

Country Link
KR (1) KR100310933B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005861B1 (en) * 2018-05-29 2019-07-31 광운대학교 산학협력단 A method for producing a polyethylene wax having a low molecular weight and a narrow molecular weight distribution by controlling polymerization conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2748210A4 (en) * 2011-08-25 2015-03-25 Hanwha Chemical Corp A process for the preparation of polyethylene wax using metallocene catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005861B1 (en) * 2018-05-29 2019-07-31 광운대학교 산학협력단 A method for producing a polyethylene wax having a low molecular weight and a narrow molecular weight distribution by controlling polymerization conditions

Also Published As

Publication number Publication date
KR20000067267A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
US5627117A (en) Olefin polymerization catalyst and process for olefin polymerization
US5470927A (en) Ionic metallocene catalyst compositions
EP1363955B1 (en) Multinuclear metallocene catalyst
AU675711B2 (en) Supported catalysts for the polymerization of olefins
US5198401A (en) Ionic metallocene catalyst compositions
CA1268754A (en) Supported polymerization catalyst
KR100278426B1 (en) Method for preparing and using monocyclopentadienyl metal complex
EP1015462B1 (en) Bimetallic complexes and polymerization catalysts therefrom
KR960015192B1 (en) Catalyst and polymerization process of using the catalysts
EP0528041B1 (en) Novel transition metal compound and process for polymerizing olefin by using the same
JP5589087B2 (en) Catalyst components for the polymerization of olefins with guanidinato ligands.
US7223824B2 (en) Multinuclear transition metal compound and catalyst system including the same
JP4234327B2 (en) Polymerization process using improved bulky ligand metallocene-type catalyst system
EP0366290B1 (en) Process for producing olefin polymers
JP2005511802A (en) Method for producing Ziegler-Natta / metallocene mixed catalyst
US6303718B1 (en) Composition based on fluorine-containing metal complexes
KR100310933B1 (en) Method for preparing polyethylene wax by using metallocene catalyst
US6683018B1 (en) Method for producing a supported catalyst system
US20050049436A1 (en) Partially fluorinated naphthyl-based borates
KR102065163B1 (en) Transition metal compound and catalytic composition comprising thereof
KR100193152B1 (en) Binary heterometallocene catalyst and preparation method thereof
KR100294653B1 (en) Polyolefin wax containing silane group and its process
US6228958B1 (en) Azaborolinyl metal complexes as olefin polymerization catalysts
EP1451200B1 (en) Process for the preparation of ethylene copolymers
KR102092271B1 (en) Transition metal compound and catalytic composition comprising thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100621

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee