KR100307724B1 - Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor - Google Patents

Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor Download PDF

Info

Publication number
KR100307724B1
KR100307724B1 KR1019990010847A KR19990010847A KR100307724B1 KR 100307724 B1 KR100307724 B1 KR 100307724B1 KR 1019990010847 A KR1019990010847 A KR 1019990010847A KR 19990010847 A KR19990010847 A KR 19990010847A KR 100307724 B1 KR100307724 B1 KR 100307724B1
Authority
KR
South Korea
Prior art keywords
platinum
complex
derivative
formula
saccharide
Prior art date
Application number
KR1019990010847A
Other languages
Korean (ko)
Other versions
KR20000061648A (en
Inventor
송수창
손연수
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019990010847A priority Critical patent/KR100307724B1/en
Publication of KR20000061648A publication Critical patent/KR20000061648A/en
Application granted granted Critical
Publication of KR100307724B1 publication Critical patent/KR100307724B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 일반식(VI)의 당질의 알카리토금속염과 일반식(VII)의 황산백금(II)유도체를 1:1 몰비로 반응시킨 후 부산물인 황산바륨을 제거하여 얻어지는 일반식(I)의 당질-백금(II)착물 복합체의 제조에 관한 것이다.The present invention is obtained by reacting the alkaline earth metal salt of the sugar of formula (VI) with the platinum (II) derivative of formula (VII) in a 1: 1 molar ratio and then removing the by-product barium sulfate. A preparation of the saccharide-platinum (II) complex complex.

다음 일반식(I)로 표시되는 당질-백금(II)착물 복합체.The saccharide-platinum (II) complex complex represented by the following general formula (I).

상기 일반식(I)에서 R은 당질 및 당질유도체로서 글루코스아민(C6H12NO5), 만노스아민(C6H12NO5), β-갈락토스유도체인 N-아미노부틸-O-β-D-갈락토피라노실-(1→ 4)-D-글루콘아미드(C16H33N2O11), α-글루코스유도체인 N-아미노부틸-O-α-D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11), β-글루코스유도체인N-아미노부틸-O-β -D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11)중에서 선택되며, n은 1 또는 2이다.In Formula (I), R is a glucosamine (C 6 H 12 NO 5 ), a mannose amine (C 6 H 12 NO 5 ), a β-galactose derivative, N-aminobutyl-O-β- as a sugar and a sugar derivative. D-galactopyranosyl- (1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), an α-glucose derivative, N-aminobutyl-O-α-D-glucopyranosyl- ( 1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), β-glucose derivative N-aminobutyl-O-β-D-glucopyranosyl- (1 → 4) -D-glu Is selected from conamide (C 16 H 33 N 2 O 11 ), n is 1 or 2.

Description

당질-백금(II)착물 복합체 항암제 및 그 제조방법{Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor}Saccharide-Platinum (II) conjugate anticanser agent and preparing for process therefor}

본 발명은 다음 일반식으로 표시되는 항암효과가 우수한 당질-백금(II)착물 복합체 항암제 및 그 제조방법에 관한 것이다.The present invention relates to a saccharide-platinum (II) complex complex anticancer agent having an excellent anticancer effect represented by the following general formula and a preparation method thereof.

상기 일반식(I)에서 R은 당질 및 당질유도체로서 글루코스아민(C6H12NO5), 만노스아민(C6H12NO5), β-갈락토스유도체인 N-아미노부틸-O-β-D-갈락토피라노실-(1→ 4)-D-글루콘아미드(C16H33N2O11), α-글루코스유도체인 N-아미노부틸-O-α-D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11), β-글루코스유도체인N-아미노부틸-O-β -D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11)중에서 선택되며, n은 1 또는 2이다.In Formula (I), R is a glucosamine (C 6 H 12 NO 5 ), a mannose amine (C 6 H 12 NO 5 ), a β-galactose derivative, N-aminobutyl-O-β- as a sugar and a sugar derivative. D-galactopyranosyl- (1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), an α-glucose derivative, N-aminobutyl-O-α-D-glucopyranosyl- ( 1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), β-glucose derivative N-aminobutyl-O-β-D-glucopyranosyl- (1 → 4) -D-glu Is selected from conamide (C 16 H 33 N 2 O 11 ), n is 1 or 2.

현재 사용되고 있는 항암제중 백금계열 착화합물 유도체인 시스플라틴(cisplatin), 즉 cis-(NH3)PtCl2는 1965년 미국의 로젠버그(B. Rosenburg, Nature, 205, 698(1965))에 의해 항암효과가 알려진 후 1979년 미국 FDA로부터 항암제로 정식허가되어 고환암, 난소암, 방광암, 골수암, 후두암 등 광범위한 암 종류에 대하여 가장 효과적인 화학요법제로 사용되고 있으나 신장독성 등을 포함하는 부작용이 문제점으로 지적되고 있다. 그 이후 부작용이 크게 완화된 카르보플라틴(carboplatin), 즉 cis-(NH3)Pt(CBDC)(CBDC=1,1-cyclobutanedicarboxylate, M.J. Cleare, Biochimie, 60, 835(1978))이 1989년 FDA로부터 신약허가를 받아 제2세대 항암제로 사용되기 시작했지만 항암효과가 시스플라틴에 비해 크게 떨어지는 단점이 있다. 따라서 항암효과가 우수하고 부작용이 적은 제3세대 항암제를 개발하려는 연구가 활발히 진행되고 있다. 제3세대 백금착물 항암제로 갖추어야 할 조건은 시스플라틴 이상의 우수한 항암효과와 카보플라틴에 준하는 낮은 독성 이외에도 시스플라틴 또는 카보플라틴의 내성 암세포에 대해서도 효과가 우수하고 물에 대한 용해도가 적절 해야하며 화학적 안정성이 요구되는 등 여러 가지 까다로운 조건을 만족시켜야 하므로 현재 세계적으로 임상시험중인 화합물은 10여종에 이르고 있으나 아직 상품화에는 성공하지 못하고 있다.Among the currently used anticancer drugs, cisplatin, cislatin (cislatin), cis- (NH 3 ) PtCl 2 , is known to have anticancer effects by B. Rosenburg, Nature, 205, 698 (1965) in 1965. After being approved as an anticancer agent by the US FDA in 1979, it is used as the most effective chemotherapeutic agent for a wide range of cancers such as testicular cancer, ovarian cancer, bladder cancer, bone marrow cancer, and laryngeal cancer, but side effects including kidney toxicity are pointed out as problems. Since then, carboplatin, which has significantly alleviated side effects, is cis- (NH 3 ) Pt (CBDC) (CBDC = 1,1-cyclobutanedicarboxylate, MJ Cleare, Biochimie, 60, 835 (1978)). Although it was used as a second-generation anticancer drug after receiving a new drug license, the anticancer effect is significantly lower than that of cisplatin. Therefore, studies are being actively conducted to develop third generation anticancer drugs with excellent anticancer effects and fewer side effects. In addition to the excellent anticancer effect of cisplatin and low toxicity equivalent to carboplatin, the conditions for the third generation platinum complex anticancer agent should be excellent against cisplatin or carboplatin-resistant cancer cells, have proper solubility in water, and chemical stability. There are more than 10 compounds currently in clinical trials in the world because they have to satisfy various demanding conditions such as required, but they are not successful in commercialization.

당질은 생물계에 있어서 에너지원, 구조물질, 또는 당지질 및 당단백질의 구성성분등으로 중요한 역할을 담당해 왔으며, 최근 들어 당단백질과 당지질의 올리고당 또는 다당이 세포상호간의 정보전달, 세포의 암화 등에 중요한 역할을 담당하고 있다는 사실이 조금씩 밝혀짐에 따라 당질에 관한 연구가 관심을 끌기 시작하였다. 특히 특정세포와 특이적으로 결합하는 당의 종류가 알려지고 있는데, 예를 들면 β-갈락토스(β-galactose) 및 갈락토스아민(galactosamine)은 포유동물의 hepatocyte와, L-퓨코스(L-fucose) 및 만노스(mannose)는 포유동물의 macrophage와, N-아세틸글루코스아민(N-acetylglucosamine)은 조류의 hepatocyte와, 만노스 -6-포스페이트(mannose-6-phosphate)는 사람의 fibroblast와 특이적으로 결합하는 것으로 알려져 있다(Neufeld et al, The biochemistry of glycoprotein and proteoglycans, Plenum, new York, pp. 241(1980)). 이렇게 특정한 당이 특정 세포에 특이하게 결합할 수 있기 때문에 당을 이용하여 목표지향성 약물을 개발하려는 연구도 활발하게 진행되고 있다(Juliano et al, Targeted drug delivery, Springer-Verlag, Berlin, pp. 137(1991)). 이러한 당질의 목표지향성 뿐만 아니라 많은 항암제들(adriamycin, bleomycin)이 당성분을 함유하고 있기 때문에 항암제 분야에서 당은 중요한 역할을 할 것으로 기대되고 있다. 당질-백금(II)착물 복합체에 대한 연구는 수편의 논문이 보고되고 있는 정도인데, 이들 연구는 당질의 목표지향성보다는 주로 아미노당을 백금착물의 아민 리간드로 사용하므로서 백금착물의 물에 대한 용해도를 높이는 목적으로 사용되었다(Serkas et al, Inorganica Chimica Acta, 124, 137(1986), Tsubomura et al, Inorg. Chem. 29, 1622(1990). 그러나 아직까지 당질을 백금(II)착물의 음이온에 결합시킨 항암제의 경우는 거의 찾아볼 수 없다.Glycosaccharides have played an important role as energy sources, structural substances, or components of glycolipids and glycoproteins in living organisms. Recently, oligosaccharides or polysaccharides of glycoproteins and glycolipids play an important role in transferring information between cells and cancerous cells. As it became clear that it was in charge of the study, the study of sugar began to attract attention. In particular, the types of sugars that specifically bind to specific cells are known. For example, β-galactose and galactosamine are known as mammalian hepatocytes, L-fucose and Mannose (mannose) is a mammalian macrophage, N-acetylglucosamine (N-acetylglucosamine) is a hepatocyte of algae, and mannose-6-phosphate (mannose-6-phosphate) specifically binds to human fibroblast Known (Neufeld et al, The biochemistry of glycoprotein and proteoglycans, Plenum, new York, pp. 241 (1980)). Because of the specific binding of specific sugars to specific cells, studies are being actively conducted to develop targeted drugs using sugars (Juliano et al, Targeted drug delivery, Springer-Verlag, Berlin, pp. 137 ( 1991). In addition to the target orientation of these sugars, since many anticancer drugs (adriamycin, bleomycin) contain sugars, sugar is expected to play an important role in the field of anticancer drugs. Studies on the saccharide-platinum (II) complex complex have been reported in several papers. These studies have shown that the solubility of water in platinum complexes is mainly due to the use of amino sugars as amine ligands of the platinum complexes rather than the target orientation of the sugars. Height was used for the purpose (Serkas et al, Inorganica Chimica Acta, 124, 137 (1986), Tsubomura et al, Inorg. Chem. 29, 1622 (1990) .But still saccharides bind to the anion of the platinum (II) complex. There are very few cases of chemotherapy.

본 발명의 목적은 항암활성이 우수한 당질-백금(II)착물 복합체 및 그 제조방법을 제공하는 것이다. 더욱 구체적으로 본 발명의 목적은 백금(II)착물을 당질에 결합시키므로서 당질의 세포 친화성을 통해 쉽게 백금(II)착물이 암세포에 작용하게 하므로서 항암활성이 우수하고 물에 대한 용해도가 좋은 당질-백금(II)착물 복합체를 제공하는 것이다.It is an object of the present invention to provide a sugar-platinum (II) complex complex having excellent anticancer activity and a method for producing the same. More specifically, an object of the present invention is to bind the platinum (II) complex to the carbohydrate, thereby allowing the platinum (II) complex to act on cancer cells easily through the cell affinity of the carbohydrate, thereby providing excellent anticancer activity and good solubility in water. To provide a platinum (II) complex complex.

이 같은 목적을 달성하기 위해 본 발명자들은 당질 및 당질 유도체에 백금(II)착물을 도입하기 위한 스페이서로 +2의 백금(II)이온에 킬레이션이 가능한 디카르복실산 음이온인 글루타민산 또는 아스파트산을 먼저 당질에 도입한 후 백금(II)착물과 반응시키므로서 화학적으로 안정하고 물에 대한 용해도가 좋으며 항암활성이 우수한 당질-백금(II)착물 복합체를 합성할 수 있음을 발견하였다.In order to achieve the above object, the present inventors use a glutamic acid or aspartic acid, which is a dicarboxylic acid anion that can be chelated to +2 platinum (II) ions as a spacer for introducing platinum (II) complexes to saccharides and sugar derivatives. Was first introduced into the sugar and then reacted with the platinum (II) complex to synthesize a sugar-platinum (II) complex complex that is chemically stable, has good solubility in water, and has excellent anticancer activity.

상기와 같은 목적을 달성하기 위하여 본 발명은 일반식(I)로 표시되는 당질-백금(II)착물 복합체의 제조방법을 좀더 구체적으로 설명하면 다음과 같다. 즉 먼저 2당을 문헌의 방법(Kobayashi et al, Polymer J. 17, 567(1985))으로 락톤을 만든 후 디아민알칸과 반응시켜 당질 유도체를 제조하였다. 예를 들면 락토스(lactose)를 산화시킨 후 축합하여 일반식(II)의 락토노락톤(lactonolactone)을 만든 후 디메칠술폭시드(DMSO)를 용매로 60℃에서 과량의 1,4-디아미노부탄과 2시간 동안 반응시킨다. 반응용액을 진공하에서 증발시켜 농축한 후 과량의 클로로포름에 침전시킨다. 침전물을 여과하고 건조하여 일반식(Ⅲ)의 N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드를 얻는다.In order to achieve the above object, the present invention will be described in more detail with respect to the preparation method of the saccharide-platinum (II) complex complex represented by the general formula (I) as follows. That is, disaccharides were prepared by first preparing disaccharides by reacting disaccharide with diamine alkanes using bisaccharides (Kobayashi et al, Polymer J. 17, 567 (1985)). For example, lactose is oxidized and then condensed to form lactonolactone of formula (II), followed by excess 1,4-diaminobutane at 60 ° C. with dimethyl sulfoxide (DMSO) as a solvent. React for 2 hours. The reaction solution is concentrated by evaporation under vacuum and then precipitated in excess of chloroform. The precipitate is filtered and dried to afford N-aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide of general formula (III).

한편, 백금(II)착물을 도입하기 위한 스페이서로 디카르복실계 아미노산인 글루타메이트 혹은 아스파테이트를 사용하였다. 이 들을 당질에 결합시키기 위해 문헌의 방법(S.Y. Jeong, J. Controlled Release 1, 57(1984))을 이용하여 다음과 같이 아민기에 카르복실산기를 도입하였다. 예를 들면, 디카르복실아미노산의 벤질에스테르와 같은 당량의 숙신산 무수물을 테트라히드로퓨란을 용매로 실온에서 8시간 반응시켜 일반식(IV)의 아미노산 유도체를 얻는다.On the other hand, glutamate or aspartate, which is a dicarboxylic acid amino acid, was used as a spacer for introducing the platinum (II) complex. In order to bind these to the sugars, a carboxylic acid group was introduced into the amine group using the method of the literature (S. Y. Jeong, J. Controlled Release 1, 57 (1984)) as follows. For example, an amino acid derivative of the general formula (IV) is obtained by reacting an equivalent succinic anhydride such as benzyl ester of dicarboxylic amino acid with tetrahydrofuran at room temperature for 8 hours with a solvent.

이렇게 합성한 아미노산 유도체를 디메틸포름아미도(DMF)에 녹인 후 용액을 5℃로 유지시키고 같은 당량의 이소부틸클로로포메이트(IBCF)와 트리부틸아민을 가한다. 반응용액을 5℃에서 15분간 반응시킨 후 0.8당량의 당질 유도체를 넣고 5℃에서 45분간, 상온에서 2시간 반응시킨 후 반응용액을 진공하에서 농축시키고 과량의 에테르에 침전시킨다. 침전물을 여과한 후 건조하여 일반식(V)의 당질유도체를 얻는다. 이 유도체를 4.4% 포름산을 포함하는 메탄올 용매에서 파라듐카본을 촉매로 상온에서 4시간 반응시키면 벤질기가 제거된다. 이 반응용액을 농축한 후 과량의 에테르에 침전시켜 정제한 후 생성물을 다시 메탄올에 녹인후 같은 당량의 수산화바륨을 메탄올에 녹인 용액을 적가하여 침전물을 얻는다. 이 침전물을 여과, 건조하여 일반식(VI)의 당질유도체를 얻는다. 한편 일반식(VII)의 디시클로헥산아민백금황산염을 문헌의 방법(Harrison et al, Inorg Chim Acta, 46, 15(1980))으로 제조한다. 일반식(VI)의 당질유도체를 증류수에 녹인 후 같은 당량의 디시클로헥산아민황산염 수용액을 가한 후 상온에서 4시간 반응시킨다. 반응 후 생긴 침전물(BaSO4)을 여과하여 제거한 후 여과액을 동결 건조하여 엷은 노란색을 띤 일반식(I)의 당질-백금(II)착물 복합체를 얻는다. 반응식에서 R과 n은 위에서 정의한 것과 같다.The synthesized amino acid derivative was dissolved in dimethylformamido (DMF), the solution was kept at 5 ° C, and the same equivalent isobutylchloroformate (IBCF) and tributylamine were added. After the reaction solution was reacted at 5 ° C. for 15 minutes, 0.8 equivalent of saccharide derivative was added thereto, and the reaction solution was reacted at 5 ° C. for 45 minutes at room temperature for 2 hours. The reaction solution was concentrated in vacuo and precipitated in excess ether. The precipitate is filtered and then dried to obtain a saccharide derivative of formula (V). Benzyl groups are removed by reacting this derivative at room temperature with a catalyst of palladium carbon in a methanol solvent containing 4.4% formic acid for 4 hours. The reaction solution is concentrated, precipitated in excess ether, purified, and the product is dissolved in methanol again. A solution of the same amount of barium hydroxide dissolved in methanol is added dropwise to obtain a precipitate. This precipitate is filtered and dried to obtain a saccharide derivative of formula (VI). Meanwhile, dicyclohexaneamine platinum sulfate of formula (VII) is prepared by the method of literature (Harrison et al, Inorg Chim Acta, 46, 15 (1980)). After dissolving the saccharide derivative of the general formula (VI) in distilled water, the same equivalent solution of dicyclohexaneamine sulfate is added and reacted at room temperature for 4 hours. The precipitate formed after the reaction (BaSO 4 ) is filtered off and the filtrate is lyophilized to obtain a light yellowish saccharide-platinum (II) complex complex of general formula (I). In the scheme, R and n are as defined above.

다음에 실시예를 들어 본 발명을 더욱 상세히 설명하나 본 발명의 범위는 특허청구의 범위를 벗어나지 않는 한 이들 실시예로 한정하지 않는다.본 발명의 화합물에 대한 탄소, 수소, 질소 및 백금의 원소분석은 Perkin-Elmer C, H, N 분석기 및 Polyscan 61E ICP에 의해 수행하였다. 한편, 수소 및 백금 핵자기 공명 스펙트럼은 Varian Gemini-300을 사용하여 측정하였다.실시예1β-갈락토스-백금(II)착물 복합체 C6H10(NH2)2Pt[(OOC)2C33H43N3O13]의 제조(R = C16H33N2O11, n=2)락토노락톤(lactonolactone) 20g을 디메칠술폭시드(DMSO) 100ml에 녹인 후 60℃에서 과량(70g)의 1,4-디아미노부탄과 2시간 동안 반응시켜 N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드를 제조하였다. 2.5g의 2-카르복시에탄아미도벤질글루타메이트(5.99mmmol)를 20ml의 DMF에 녹인 후 용액을 5℃로 유지시키고 0.62ml의 이소부틸클로로포메이트(IBCF)와 트리부틸아민 1.5ml을 가한다. 반응용액을 5℃에서 15분간 반응시킨 후 1.75g의 N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드(4.08mmol)를 넣고 5℃에서 45분간, 상온에서 2시간 반응시킨 후 반응용액을 진공하에서 농축시킨 다음 500ml의 디에틸에테르에 부어 침전시킨다. 침전물을 여과한 후 건조하여 일반식(Ⅴ)의 갈락토실 유도체 2.95g을 얻었다. 이 유도체 1.2g을 4.4% 포름산을 포함하는 메탄올 50ml에 녹인 다음 파라듐카본 0.7g을 가한 후 상온에서 4시간 반응시켜 벤질기를 제거한다. 반응용액을 농축한 후 과량의 에테르에 침전시킨 후 여과, 건조하여 생성물 0.7g을 얻었다. 이 생성물을 다시 메탄올에 녹인 후 수산화바륨 0.42g을 메탄올에 녹인 용액을 적가하여 침전물을 얻었다. 이 침전물을 여과, 건조하여 일반식(Ⅵ)의 갈락토실 유도체 0.82g을 얻었다. 일반식(Ⅵ)의 갈락토실 유도체 0.2g(0.24mmol)을 증류수에 녹인 후 디시클로헥산아민황산염 0.1g(0.24mmol)을 녹인 수용액을 가하여 상온에서 4시간 반응시켰다. 반응 후 생긴 침전물(BaSO4)을 여과하여 제거한 후 여과액을 동결 건조하여 β-갈락토스-백금(Ⅱ)착물 복합체, C6H10(NH2)2Pt [(OOC)2C33H43N3O13] 를 0.21g(총수율71.7%)얻었다.조성식 : C40H55N5O15Pt·3H2O원소분석치 : C, 34.35 ; H, 5.95 ; N, 6.15 ; Pt, 18.56이론치 : C, 36.54 ; H, 6.03 ; N, 6.87 ; Pt, 19.15수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons,-NHCH2 CH 2 CH 2 CH2NH-),δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons,L-glutamate C-2, C-3 protons),δ 2.4-2.7 (m, 4H, -C(O)CH 2 CH 2 CO-),δ 3.1-3.4 (m, 4H,-NHCH 2 CH2CH2 CH 2 NH-),δ 3.4-4.3 (b, 13H, O-β-D-galactopyranosyl-(1→4)-D-gluconamideprotons, L-glutamate C-1 proton),δ 4.6 (m, 1H, O-β-D-galactopyranosyl C-1 proton)실시예2α-글루코스-백금(Ⅱ)착물 복합체 [C6H10(NH2)2Pt(OOC)2C33H43N3O13] 의 제조(R=C16H33N2O11, n=2)락토노락톤 대신 말토노락톤 20g과, N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드 대신 N-아미노부틸-O-α-D-글루코피라노실-(1→4)-D-글루콘아미드 0.43g을 사용하여 실시예1과 같은 방법으로 최종 α-글루코스-백금(Ⅱ)착물 복합체 0.68g(총수율 67.4%)을 얻었다.조성식 : C40H55N5O15Pt·4H2O원소분석치 : C, 35.21 ; H, 5.84 ; N, 6.28 ; Pt, 18.20이론치 : C, 35.90 ; H, 6.12 ; N, 6.75 ; Pt, 18.81수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons,-NHCH2 CH 2 CH 2 CH2NH-),δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons,L-glutamate C-2, C-3 protons),δ 2.4-2.7 (m, 4H, -C(O)CH 2 CH 2 CO-),δ 3.1-3.4 (m, 4H, -NHCH 2 CH2CH2 CH 2 NH-),δ 3.4-4.3 (b, 13H, O-α-D-glucopyranosyl-(1→4)-D-gluconamideprotons, L-glutamate C-1 proton),δ 5.2 (m, 1H, O-α-D-glucopyranosyl C-1 proton)실시예3β-글루코스-백금(Ⅱ)착물 복합체 [C6H10(NH2)2Pt(OOC)2C33H43N3O13] 의 제조(R=C16H33N2O11, n=2)락토노락톤 대신 셀로비오노락톤 15g과, N-아미노부틸-O-β-D-갈락토피라노실-(1→ 4)-D-글루콘아미드 대신 N-아미노부틸-O-β-D-글루코피라노실-(1→4)-D-글루콘아미드 0.40g을 사용하여 실시예1과 같은 방법으로 최종 β-글루코스-백금(Ⅱ)착물 복합체 0.32g(총수율 35.5%)를 얻었다.조성식 : C40H55N5O15Pt·3H2O원소분석치 : C, 34.35 ; H, 6.36 ; N, 7.28 ; Pt, 18.51이론치 : C, 36.54 ; H, 6.03 ; N, 6.87 ; Pt, 19.15수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons,-NHCH2 CH 2 CH 2 CH2NH-),δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons,L-glutamate C-2, C-3 protons),δ 2.4-2.7 (m, 4H,-C(O)CH 2 CH 2 CO-),δ 3.1-3.4 (m, 4H, -NHCH 2 CH2CH2 CH 2 NH-),δ 3.4-4.3 (b, 13H, O-β-D-glucopyranosyl-(1→4)-D-gluconamideprotons, L-glutamate C-1 proton),δ 4.5 (m, 1H, O-β-D-glucopyranosyl C-1 proton)실시예4α-글루코스-백금(Ⅱ)착물 복합체 [C6H10(NH2)2Pt(OOC)2C32H41N3O13] 의 제조 (R=C16H33N2O11, n=1)백금(Ⅱ)을 도입하기 위한 스페이서로 글루타메이트유도체 대신에 아스파테이트유도체를 사용하고 N-아미노부틸-O-α-D-글루코피라노실-(1→4)-D-글루콘아미드 0.38g과 2-카르복시에탄아미도벤질아스파테이트 0.54g을 사용하여 실시예1과 같은 방법으로 최종 α-글루코스-백금(Ⅱ)착물 복합체 0.33g(총수율 38.9%)를 얻었다.조성식 : C39H53N5O15Pt·4H2O원소분석치 : C, 34.35 ; H, 6.36 ; N, 7.28 ; Pt, 18.51이론치 : C, 35.23 ; H, 6.01 ; N, 6.85 ; Pt, 19.07수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons,-NHCH2 CH 2 CH 2 CH2NH-),δ 2.1 (b, 2H, diaminocyclohexane C-3, C-6 protons),δ 2.3-2.7 (m, 6H, diaminocyclohexane C-1, C-2 protons,-C(O)CH 2 CH 2 CO-),δ 3.1-3.4 (m, 4H, -NHCH 2 CH2CH2 CH 2 NH-),δ 3.4-4.3 (b, 13H, O-α-D-glucopyranosyl-(1→4)-D-gluconamideprotons, L-glutamate C-1 proton),δ 5.2 (m, 1H, O-α-D-glucopyranosyl C-1 proton)실시예5글루코스아민-백금(Ⅱ)착물 복합체 [C6H10(NH2)2Pt(OOC)2C23H25N2O7] 의 제조(R=C6H12NO5, n=2)N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드 대신 글루코스아민염산염 0.5 g과 트리에틸아민 0.78 ml을 사용하여 실시예1과 같은 방법으로 최종 글루코스아민-백금(Ⅱ)착물 복합체 0.78g(총수율 46.7%)을 얻었다.조성식 : C30H34N4O9Pt·3H2O원소분석치 : C, 34.12 ; H, 5.04 ; N, 6.78 ; Pt, 24.04이론치 : C, 32.99 ; H, 5.27 ; N, 7.33 ; Pt, 25.51수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 2H, diaminocyclohexane C-3, C-6 protons),δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons,L-glutamate C-2, C-3 protons),δ 2.4-2.7 (m, 4H, -C(O)CH 2 CH 2 CO-),δ 3.4-4.1 (b, 7H, D-glucosamine protons, L-glutamate C-1 proton),δ 5.2 (m, 1H, D-glucosamine C-1 proton)실시예6만노스아민-백금(Ⅱ)착물 복합체 [C6H10(NH2)2Pt(OOC)2C23H25N2O7] 의 제조 (R=C6H12NO5, n=2)N-아미노부틸-O-β-D-갈락토피라노실-(1→4)-D-글루콘아미드 대신 만노스아민염산염 0.43g과 트리에틸아민 0.78ml을 사용하여 실시예1과 같은 방법으로 최종 만노스아민-백금(Ⅱ)착물 복합체 0.56g(총수율 42.1%)을 얻었다.조성식 : C30H34N4O9Pt·4H2O원소분석치 : C, 33.47 ; H, 5.12 ; N, 6.34 ; Pt, 22.18이론치 : C, 32.15 ; H, 5.40 ; N, 7.14 ; Pt, 24.86수소 핵자기 공명 스펙트럼(D2O, ppm) :δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons),δ 1.5-1.7 (m, 2H, diaminocyclohexane C-3, C-6 protons),δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons,L-glutamate C-2, C-3 protons),δ 2.4-2.7 (m, 4H, -C(O)CH 2 CH 2 CO-),δ 3.4-4.1 (b, 7H, D-mannosamine protons, L-glutamate C-1 proton),δ 4.7 (m, 1H, D-mannosamine C-1 proton)항암활성시험의예본 발명의 당질-백금(Ⅱ)착물 복합체들에 대한 항암활성시험을 폐암(A549), 난소암(SK-OV-3), 피부암(SK-Mel-2), 중추신경계암(XF-498), 및 대장암(HCT-15)등의 인체 암세포주와 설치류의 백혈병세포주(L1210)을 이용한 생체외시험 및 쥐를 사용한 생체내시험을 통해 검색하였다. 생체외시험에서는 각 암세포주를 RPMI 1640배양액에 배양시킨 후 항암제 농도가 다른 용액을 세포용액에 가하여 각 암세포성장을 50% 억제하는 화합물의 농도(ED50)를 구하였다. 생체내시험에서는 6내지 8주령의 실험용쥐(BDFI mouse) 8마리를 1군으로 하여 마우스당 106개의 마우스 백혈병세포 L1210을 복강에 이식한 후 이들에게 당질-백금(Ⅱ)착물 복합체를 0.9% 생리식염수에 녹여 필요에 따라 10-30mg/kg을 복강주사로 제 1,5,9일 투여한 후 평균생명연장효과(T/C, %)를 관찰하였다. 결과는 표1 및 표2와 같다. 본 발명의 당질-백금착물 복합체들의 항암활성이 기존의 상품화된 시스플라틴이나 카보플라틴보다 매우 우수함을 알 수 있다.표1 당질-백금(Ⅱ)착물 복합체의 각종 암세포에 대한 생체외항암활성표2 당질-백금(Ⅱ)착물 복합체의 백혈병 세포주(L1210)에 대한 생체내항암활성 *T/C(%)=125이상이면 항암효과가 있는 것으로 판단함. The present invention will be described in more detail with reference to the following Examples, but the scope of the present invention is not limited to these Examples unless the scope of the claims is claimed. Elemental Analysis of Carbon, Hydrogen, Nitrogen and Platinum for Compounds of the Invention Was performed by a Perkin-Elmer C, H, N analyzer and Polyscan 61E ICP. Meanwhile, hydrogen and platinum nuclear magnetic resonance spectra were measured using a Varian Gemini-300. Example 1 Preparation of β-galactose-platinum (II) Complex Complex C 6 H 10 (NH 2 ) 2 Pt [(OOC) 2 C 33 H 43 N 3 O 13 ] (R = C 16 H 33 N 2 O 11 , n = 2) 20 g of lactonolactone was dissolved in 100 ml of dimethylsulfoxide (DMSO), and then reacted with an excess (70 g) of 1,4-diaminobutane for 2 hours at 60 ° C. for N-aminobutyl- O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide was prepared. 2.5 g of 2-carboxyamidobenzylglutamate (5.99 mmol) was dissolved in 20 ml of DMF, the solution was kept at 5 ° C and 0.62 ml of isobutylchloroformate (IBCF) and 1.5 ml of tributylamine were added. After the reaction solution was reacted at 5 ° C. for 15 minutes, 1.75 g of N-aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide (4.08 mmol) was added thereto at 5 ° C. After reacting for 45 minutes at room temperature for 2 hours, the reaction solution was concentrated under vacuum and then poured into 500 ml of diethyl ether to precipitate. The precipitate was filtered off and dried to obtain 2.95 g of galactosyl derivative of the general formula (V). 1.2 g of this derivative was dissolved in 50 ml of methanol containing 4.4% formic acid, 0.7 g of palladium carbon was added, and the mixture was reacted at room temperature for 4 hours to remove the benzyl group. The reaction solution was concentrated, precipitated with excess ether, filtered, and dried to obtain 0.7 g of product. The product was dissolved in methanol again, and a solution of 0.42 g of barium hydroxide dissolved in methanol was added dropwise to obtain a precipitate. This precipitate was filtered and dried to obtain 0.82 g of galactosyl derivative of the general formula (VI). 0.2 g (0.24 mmol) of the galactosyl derivative of Formula (VI) was dissolved in distilled water, and an aqueous solution of 0.1 g (0.24 mmol) of dicyclohexaneamine sulfate was added thereto, followed by reaction at room temperature for 4 hours. The precipitate formed after the reaction (BaSO 4 ) was filtered off and the filtrate was lyophilized to form a β-galactose-platinum (II) complex, C 6 H 10 (NH 2 ) 2 Pt [(OOC) 2 C 33 H 43 N 3 O 13 ] 0.21 g (total yield 71.7%). Formula: C 40 H 55 N 5 O 15 Pt · 3H 2 O Elemental Analysis: C, 34.35; H, 5.95; N, 6. 15; Pt, 18.56 Theory: C, 36.54; H, 6.03; N, 6.87; Pt, 19.15 hydrogen nuclear magnetic resonance spectrum (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons, -NHCH 2 CH 2 CH 2 CH 2 NH-), δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons, L-glutamate C- 2, C-3 protons), δ 2.4-2.7 (m, 4H, -C (O) CH 2 CH 2 CO-), δ 3.1-3.4 (m, 4H, -NHC H 2 CH 2 CH 2 CH 2 NH δ 3.4-4.3 (b, 13H, O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide protons, L-glutamate C-1 proton), δ 4.6 (m, 1H, O-β- D-galactopyranosyl C-1 proton Example 2 Preparation of α-glucose-platinum (II) complex complex [C 6 H 10 (NH 2 ) 2 Pt (OOC) 2 C 33 H 43 N 3 O 13 ] (R = C 16 H 33 N 2 O 11 , n = 2) 20 g of maltonolactone instead of lactonolactone, and N-aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide Instead, the final α-glucose-platinum (II) complex complex in the same manner as in Example 1 using 0.43 g of N-aminobutyl-O-α-D-glucopyranosyl- (1 → 4) -D-gluconamide 0.68 g (total number) . To give a 67.4%) Composition formula: C 40 H 55 N 5 O 15 Pt · 4H 2 O Elemental analysis: C, 35.21; H, 5. 84; N, 6. 28; Pt, 18.20 Theory: C, 35.90; H, 6. 12; N, 6.75; Pt, 18.81 hydrogen nuclear magnetic resonance spectra (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons, -NHCH 2 CH 2 CH 2 CH 2 NH-), δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons, L-glutamate C- 2, C-3 protons), δ 2.4-2.7 (m, 4H, -C (O) CH 2 CH 2 CO-), δ 3.1-3.4 (m, 4H, -NHC H 2 CH 2 CH 2 CH 2 NH δ 3.4-4.3 (b, 13H, O-α-D-glucopyranosyl- (1 → 4) -D-gluconamideprotons, L-glutamate C-1 proton), δ 5.2 (m, 1H, O-α- D-glucopyranosyl C-1 proton Example 3 Preparation of β-glucose-platinum (II) complex complex [C 6 H 10 (NH 2 ) 2 Pt (OOC) 2 C 33 H 43 N 3 O 13 ] (R = C 16 H 33 N 2 O 11 , n = 2) 15 g of cellobiolactone instead of lactonolactone, and N-aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-glucon Final β-glucose-platinum (II) complex in the same manner as in Example 1 using 0.40 g of N-aminobutyl-O-β-D-glucopyranosyl- (1 → 4) -D-gluconamide instead of amide 0.32 g of composite (total . Rate was obtained 35.5%) Composition formula: C 40 H 55 N 5 O 15 Pt · 3H 2 O Elemental analysis: C, 34.35; H, 6. 36; N, 7.28; Pt, 18.51 Theory: C, 36.54; H, 6.03; N, 6.87; Pt, 19.15 hydrogen nuclear magnetic resonance spectrum (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons, -NHCH 2 CH 2 CH 2 CH 2 NH-), δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons, L-glutamate C- 2, C-3 protons), δ 2.4-2.7 (m, 4H, -C (O) CH 2 CH 2 CO-), δ 3.1-3.4 (m, 4H, -NH CH 2 CH 2 CH 2 CH 2 NH δ 3.4-4.3 (b, 13H, O-β-D-glucopyranosyl- (1 → 4) -D-gluconamideprotons, L-glutamate C-1 proton), δ 4.5 (m, 1H, O-β- D-glucopyranosyl C-1 proton Example 4 Preparation of α-glucose-platinum (II) complex complex [C 6 H 10 (NH 2 ) 2 Pt (OOC) 2 C 32 H 41 N 3 O 13 ] (R = C 16 H 33 N 2 O 11 , n = 1) Aspartate derivative instead of glutamate derivative as spacer for introducing platinum (II) and N-aminobutyl-O-α-D-glucopyranosyl- (1 4) in the same manner as in Example 1, using 0.38 g of D-gluconamide and 0.54 g of 2-carboxyamidobenzyl aspartate. Longitudinally α- glucose-platinum (Ⅱ) complex conjugate 0.33g was obtained (total yield 38.9%) Composition formula: C 39 H 53 N 5 O 15 Pt · 4H 2 O Elemental analysis: C, 34.35; H, 6. 36; N, 7.28; Pt, 18.51 Theory: C, 35.23; H, 6.01; N, 6.85; Pt, 19.07 Hydrogen nuclear magnetic resonance spectrum (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 6H, diaminocyclohexane C-3, C-6 protons, -NHCH 2 CH 2 CH 2 CH 2 NH-), δ 2.1 (b, 2H, diaminocyclohexane C-3, C-6 protons), δ 2.3-2.7 (m, 6H, diaminocyclohexane C-1, C-2 protons, -C (O) CH 2 CH 2 CO-), δ 3.1-3.4 (m, 4H, -NH CH 2 CH 2 CH 2 CH 2 NH-), δ 3.4-4.3 (b, 13H, O-α-D-glucopyranosyl- (1 → 4) -D-gluconamide protons, L-glutamate C-1 proton, δ 5.2 (m, 1H, O-α-D-glucopyranosyl C-1 proton) Example 5 Glucose Preparation of the amine-platinum (II) complex complex [C 6 H 10 (NH 2 ) 2 Pt (OOC) 2 C 23 H 25 N 2 O 7 ] (R = C 6 H 12 NO 5 , n = 2) N- Final glucoseamine was prepared in the same manner as in Example 1, using 0.5 g of glucoseamine hydrochloride and 0.78 ml of triethylamine instead of aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide. - platinum (ⅱ) complex conjugate 0.78g (total yield 46.7%) Composition formula: C 30 H 34 N 4 O 9 Pt · 3H 2 O elemental analysis : C, 34.12; H, 5.0 4; N, 6.78; Pt, 24.04 theory: C, 32.99; H, 5. 27; N, 7.33; Pt, 25.51 Hydrogen Nuclear Magnetic Resonance Spectrum (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 2H, diaminocyclohexane C-3, C-6 protons), δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons, L-glutamate C-2, C-3 protons), δ 2.4-2.7 (m, 4H, -C (O) CH 2 CH 2 CO-), δ 3.4-4.1 (b, 7H, D-glucosamine protons, L-glutamate C-1 proton), δ 5.2 (m, 1H, D- glucosamine C-1 proton Example 6 Preparation of Mannosamine-Platinum (II) Complex Complex [C 6 H 10 (NH 2 ) 2 Pt (OOC) 2 C 23 H 25 N 2 O 7 ] (R = C 6 H 12 NO 5 , n = 2) 0.43 g of mannoseamine hydrochloride and 0.78 ml of triethylamine instead of N-aminobutyl-O-β-D-galactopyranosyl- (1 → 4) -D-gluconamide 0.56 g (total yield 42.1%) of the final mannoseamine-platinum (II) complex complex was obtained in the same manner as in Example 1. Formula: C 30 H 34 N 4 O 9 Pt.4H 2 O Elemental Analysis: C, 33.47; H, 5. 12; N, 6.34; Pt, 22.18 Theory: C, 32.15; H, 5.40; N, 7.14; Pt, 24.86 Hydrogen Nuclear Magnetic Resonance Spectrum (D 2 O, ppm): δ 1.1-1.3 (b, 4H, diaminocyclohexane C-4, C-5 protons), δ 1.5-1.7 (m, 2H, diaminocyclohexane C-3, C-6 protons), δ 1.8-2.4 (b, 8H, diaminocyclohexane C-1, C-2, C-3, C-6 protons, L-glutamate C-2, C-3 protons), δ 2.4-2.7 (m, 4H, -C (O) CH 2 CH 2 CO-), δ 3.4-4.1 (b, 7H, D-mannosamine protons, L-glutamate C-1 proton), δ 4.7 (m, 1H, D- mannosamine C-1 proton) Example of anticancer activity test The anticancer activity test for the saccharide-platinum (II) complex complexes of the present invention was performed for lung cancer (A549), ovarian cancer (SK-OV-3) and skin cancer (SK-Mel- 2), human cancer cell lines such as central nervous system cancer (XF-498), and colon cancer (HCT-15) and leukemia cell lines of rodents (L1210), and in vitro tests using mice. In vitro, each cancer cell line was cultured in RPMI 1640 culture solution, and then the concentration of the compound (ED 50 ) which inhibited the growth of each cancer cell by 50% was obtained by adding a solution with different anticancer drug concentration to the cell solution. In vivo test, 8 mice of 6 to 8 weeks of age (BDFI mouse) were used as a group, and 10 6 mouse leukemia cells L1210 per mouse were implanted in the abdominal cavity, and the carbohydrate-platinum (II) complex complex was 0.9%. After dissolving in physiological saline, 10-30mg / kg was administered by intraperitoneal injection for 1, 5, 9 days, and the average life extension effect (T / C,%) was observed. The results are shown in Table 1 and Table 2. It can be seen that the anticancer activity of the saccharide-platinum complexes of the present invention is much superior to conventional commercialized cisplatin or carboplatin. Table 1 In vitro anticancer activity against various cancer cells of the saccharide-platinum (II) complex complex Table 2 In vivo anticancer activity of leukemia cell line (L1210) of saccharide-platinum (II) complex complex * If T / C (%) = 125 or above, it is considered to have anticancer effect.

위에서 상세히 설명한 바와 같이 항암성분인 백금(II)착물((DACH)Pt2+)을 음이온인 아미노산기를 스페이서로 하여 당질에 결합시키므로서 백금(II)착물 본래의 독성을 완화하면서 항암활성시험의 예(표1, 표2)에서 보듯이 항암효과를 기존 시스플라틴이나 카르보플라틴보다 훨씬 우수하게 향상시켰을 뿐만 아니라 본래 난용성인 백금착물의 용해도를 획기적으로 개선하는 효과를 가져올 수 있음을 발견하였다.As described in detail above, an example of an anticancer activity test was performed while the platinum (II) complex ((DACH) Pt 2+ ), which is an anticancer component, was bound to a saccharide by using an amino acid group as an anion as a spacer, thereby alleviating the original toxicity of the platinum (II) complex. As shown in (Table 1, Table 2), the anticancer effect was found to be much better than the existing cisplatin or carboplatin, as well as to significantly improve the solubility of the insoluble platinum complex.

Claims (2)

다음 일반식(I)로 표시되는 당질-백금(II)착물 복합체.The saccharide-platinum (II) complex complex represented by the following general formula (I). 상기 일반식(I)에서 R은 당질 및 당질유도체로서 글루코스아민(C6H12NO5), 만노스아민(C6H12NO5), β-갈락토스유도체인 N-아미노부틸-O-β-D-갈락토피라노실-(1→ 4)-D-글루콘아미드(C16H33N2O11), α-글루코스유도체인 N-아미노부틸-O-α-D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11), β-글루코스유도체인N-아미노부틸-O-β -D-글루코피라노실-(1→4)-D-글루콘아미드(C16H33N2O11)중에서 선택되며, n은 1 또는 2이다.In Formula (I), R is a glucosamine (C 6 H 12 NO 5 ), a mannose amine (C 6 H 12 NO 5 ), a β-galactose derivative, N-aminobutyl-O-β- as a sugar and a sugar derivative. D-galactopyranosyl- (1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), an α-glucose derivative, N-aminobutyl-O-α-D-glucopyranosyl- ( 1 → 4) -D-gluconamide (C 16 H 33 N 2 O 11 ), β-glucose derivative N-aminobutyl-O-β-D-glucopyranosyl- (1 → 4) -D-glu Is selected from conamide (C 16 H 33 N 2 O 11 ), n is 1 or 2. 일반식(Ⅵ)의 당질의 알카리토금속염과 일반식(VII)의 황산백금(II)유도체를 1:1 몰비로 반응시킨 후 부산물인 황산바륨을 제거한 후 일반식(I)의 복합체를 제조하는 방법The complex of formula (I) is prepared by reacting the alkaline earth metal salt of the sugar of formula (VI) with the platinum (II) derivative of formula (VII) in a 1: 1 molar ratio, removing barium sulfate as a by-product. Way
KR1019990010847A 1999-03-29 1999-03-29 Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor KR100307724B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990010847A KR100307724B1 (en) 1999-03-29 1999-03-29 Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990010847A KR100307724B1 (en) 1999-03-29 1999-03-29 Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor

Publications (2)

Publication Number Publication Date
KR20000061648A KR20000061648A (en) 2000-10-25
KR100307724B1 true KR100307724B1 (en) 2001-09-24

Family

ID=19578099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010847A KR100307724B1 (en) 1999-03-29 1999-03-29 Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor

Country Status (1)

Country Link
KR (1) KR100307724B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842070B1 (en) * 2007-04-09 2008-06-30 박준원 Nano platinum ginsenoside particle and production method thereof
CN115536713B (en) * 2021-06-30 2024-07-16 南开大学 Method for preparing nanoparticles from micromolecular glycosylated tetravalent platinum antitumor compounds
CN114891044B (en) * 2022-06-13 2024-04-19 南京迈金生物科技有限公司 Tetravalent platinum complex with anti-tumor activity and preparation method and application thereof

Also Published As

Publication number Publication date
KR20000061648A (en) 2000-10-25

Similar Documents

Publication Publication Date Title
EP0155705B1 (en) Antitumor platinum complexes
CA1258865A (en) Platinum complexes
CA1313655C (en) Cis-platinum complexes, a process for the preparation thereof, and pharmaceuticals containing these compounds
US5041578A (en) Water soluble 1,2-diaminocyclohexane platinum (IV) complexes as antitumor agents
US4861905A (en) Platinum complexes
US5863907A (en) Carboxymethylmannoglucans and derivatives thereof
KR100307724B1 (en) Saccharide - Platinum (Ⅱ) conjugate anticanser agent and preparing for process therefor
US5132323A (en) 1,2-diaminocyclohexane-platinum complexes with antitumor activity
US5028726A (en) Platinum amine sulfoxide complexes
US6221906B1 (en) Platinum complex conjugated to cyclotriphosphazene, its preparation, and anticancer agent comprising the same
US4739087A (en) Antineoplastic platinum complexes
Song et al. Synthesis and hydrolytic properties of polyphosphazene/(diamine) platinum/saccharide conjugates
CN115181134B (en) Trifluoromethyl-containing platinum anti-tumor compound and preparation method and application thereof
KR890004351B1 (en) Process for the preparation of anti-tumor platinum complexs
US5041579A (en) Platinum complexes and uses therewith
CN106608898B (en) The complex of water-soluble platinum containing deoxyglucose and Preparation method and use
CN1068003C (en) Mesoplatinum complex and its synthesis
CN113072594A (en) Carbon glycoside glycosylated tetravalent platinum compound, synthetic method and application thereof
EP0343772A2 (en) Process for preparing platinum green complex

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070731

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee