KR100305567B1 - Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance - Google Patents

Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance Download PDF

Info

Publication number
KR100305567B1
KR100305567B1 KR1019980056499A KR19980056499A KR100305567B1 KR 100305567 B1 KR100305567 B1 KR 100305567B1 KR 1019980056499 A KR1019980056499 A KR 1019980056499A KR 19980056499 A KR19980056499 A KR 19980056499A KR 100305567 B1 KR100305567 B1 KR 100305567B1
Authority
KR
South Korea
Prior art keywords
mgo
resistance
zro
thermal shock
high temperature
Prior art date
Application number
KR1019980056499A
Other languages
Korean (ko)
Other versions
KR20000040773A (en
Inventor
전웅
조용말
Original Assignee
홍상복
포스코신기술연구조합
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍상복, 포스코신기술연구조합, 신현준, 재단법인 포항산업과학연구원 filed Critical 홍상복
Priority to KR1019980056499A priority Critical patent/KR100305567B1/en
Publication of KR20000040773A publication Critical patent/KR20000040773A/en
Application granted granted Critical
Publication of KR100305567B1 publication Critical patent/KR100305567B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/05Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/484Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite

Abstract

본 발명은 고내열충격성 및 고내식성 마그네시아-알루미나-산화철-지르코니아계 내화조성물에 관한 것이며, 그 목적하는 바는 MgO, Al2O3, Fe2O3, 및 ZrO2를 적절한 비율로 조성함으로서, 높은 열충격저항성, 고온의 용융물에 대한 높은 침식저항성, 높은 열간강도, 높은 고온탄성율을 가져 여러분야에서 안정성 있게 사용할 수 있을 뿐 아니라 환경오염을 유발하는 MgO-Cr2O3계 내화물을 대체할 수 있는 MgO-Al2O3- Fe2O3-ZrO2계 내화재료를 제공하는데 있다.The present invention relates to a high thermal shock resistance and high corrosion resistance magnesia-alumina-iron oxide-zirconia-based refractory composition, the object of which is to prepare MgO, Al 2 O 3 , Fe 2 O 3 , and ZrO 2 in an appropriate ratio, It has high thermal shock resistance, high erosion resistance to high temperature melt, high hot strength and high high temperature elasticity so that it can be used stably in your field and can replace MgO-Cr 2 O 3 refractories that cause environmental pollution. MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based refractory material.

상기 목적을 달성하기 위한 본 발명은 중량%로, MgO가 60-95%, Al2O3가 3-20%, Fe2O3가 1-20%, ZrO2가 1-20%로 함유되는 것을 특징으로 하는 고내열충격성 및 고내식성 MgO-Al2O3-Fe2O3-ZrO2계 내화조성물에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight, MgO is contained in 60-95%, Al 2 O 3 3-20%, Fe 2 O 3 1-20%, ZrO 2 1-20% A high thermal shock resistance and high corrosion resistance MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based fire-resistant composition characterized in that the gist.

Description

고내열충격성 및 고내식성 마그네시아-알루미나-산화철-지르코니아계 내화조성물{Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance}Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance

본 발명은 급열과 급냉이 반복되어 고내열충격성이 요구되고 고온의 용융물과 접촉하여 사용되므로 고내식성이 요구되는 세라믹스 재료에 관한 것으로, 보다 상세하게는 고내열충격성 및 고내식성이 우수한 복합소결체 구성을 위한 MgO-Al2O3-Fe2O3- ZrO2계 내화조성물에 관한 것이다.The present invention relates to a ceramic material requiring high corrosion resistance because it is repeated in rapid quenching and rapid quenching and used in contact with a high temperature melt, and more particularly, a composite sintered compact structure having excellent high thermal shock resistance and high corrosion resistance. It relates to a MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 system refractory composition for.

일반적으로 급열과 급냉이 반복되고 고온의 용융물이 접촉되는 조건은 제철, 제강공정, 시멘트 제조공정, 또는 유리제조공정 등에서 발생된다. 따라서 이러한 제조공정에서는 고내열충격 저항성 및 고내식성을 갖춘 내화물이 필수적으로 요구된다. 이러한 내화물을 제조하기 위하여 여러 가지 노력들이 있어왔는데, 특히 MgO 및 Cr2O3를 주원료로 사용하여 고온에서 안정된 물질을 생성시킨 결과 높은 내열충격성및 염기성 슬래그(Slag)에 대한 내침식성이 강화된 내화물들을 만들어져, 제철, 제강공정 및 시멘트 제조공정등에 적용하여 왔다.(①SU 914538 B, ②JP 2030627 A, ③JP 93030790 B)In general, the conditions in which rapid quenching and quenching are repeated and hot melts come into contact with each other occur in steelmaking, steelmaking, cement manufacturing, or glass manufacturing. Therefore, in this manufacturing process, a refractory material having high heat resistance resistance and high corrosion resistance is required. Various efforts have been made to prepare such refractory materials. In particular, MgO and Cr 2 O 3 are used as the main raw materials to produce a stable material at high temperature, and thus high refractory resistance against high thermal shock and basic slag is enhanced. Has been applied to steelmaking, steelmaking and cement manufacturing. (①SU 914538 B, ②JP 2030627 A, ③JP 93030790 B)

그러나, MgO 및 Cr2O3를 주원료로 하는 물질들은 고온에서 사용 후 발암물질인 6가 크롬등을 발생시킴에 따라 폐기물이 심각한 환경오염을 유발시킨다.(참고문헌:Toxicity of chromiumcompoundsformed in refractories, Donald J. Bray, Ceramic Bulletin Vol 64 No 7 (1985))However, materials containing MgO and Cr 2 O 3 as the main raw materials generate carcinogenic hexavalent chromium after use at high temperatures, causing the waste to cause severe environmental pollution. (Toxicity of chromium compounds formed in refractories , Donald J. Bray, Ceramic Bulletin Vol 64 No 7 (1985))

또한, 폐기물의 처리비용도 경제성의 문제를 야기시켜 MgO-Cr2O3계 내화물을 대체하려는 노력들이 있어왔다. 이러한 노력들 중 일부는 원료성분중에 Cr2O3를 감소시키고 Cr2O3의 감소량을 Ti, Al, Ca, Si, Nb 등의 다른 물질로 대체시킨 상태에서 MgO-Cr2O3계 내화물이 갖는 열충격저항성 및 고온의 용융물에 대한 침식저항성을 유지하고자 하는데에 집중되었으나 Cr2O3가 완전히 제거되지 않음에 따라 환경오염의 가능성은 배제되지 않는다.(①JP 58130157 A, ②JP 78020042 B, ③JP 50133208 A)In addition, waste disposal costs have also caused economic problems, and efforts have been made to replace MgO—Cr 2 O 3 based refractory materials. Some of these efforts is the reduction of Cr 2 O 3 in the raw material components and the reduction of Cr 2 O 3 Ti, Al, Ca, Si, a state of MgO-Cr 2 O 3 based refractory material in the replacement of other materials, such as Nb It is focused on maintaining thermal shock resistance and erosion resistance to high temperature melt, but the possibility of environmental pollution is not excluded because Cr 2 O 3 is not completely removed. (①JP 58130157 A, ②JP 78020042 B, ③JP 50133208 A )

한편, 심각한 오염물질을 발생시키는 Cr2O3를 완전히 배제하고 열간에서 사용후에도 환경오염물질을 배출하지 않는 MgO 및 Al2O3를 주성분으로 하여 MgO-Al2O3스피넬(Spinel)을 생성시켜 고내열충격성 및 내침식성을 가지는 물질을 개발하고자 하는 노력들이 있어왔으나 치밀한 소결체를 제조하는 것이 용이하지 않고 열간에서 낮은 강도값을 나타냄에 따라 MgO - Cr2O3계 내화물을 대체하지는 못하였다.(JP 6293556 A)On the other hand, MgO-Al 2 O 3 spinel is produced with MgO and Al 2 O 3 as main components, which completely excludes Cr 2 O 3 that causes serious pollutants and does not emit environmental pollutants even after hot use. Efforts have been made to develop materials having high thermal shock resistance and erosion resistance, but it is not easy to manufacture dense sintered compacts and shows low strength values in the hot zone, and thus cannot replace MgO-Cr 2 O 3 based refractory. JP 6293556 A)

또한, MgO-Al2O3를 주성분으로 하는 물질에 있어 큰 약점인 낮은 소결성을 보완하기 위해 TiO2를 소결조제로서 첨가하는 방법이 고용되었으나, 열간에서의 변형에 대한 척도인 열간탄성율이 낮아 사용이 제한되어 있는 상태이다.(JP 75022046 B)In addition, in order to compensate for the low sinterability, which is a major weakness in the material mainly containing MgO-Al 2 O 3 , a method of adding TiO 2 as a sintering aid has been employed, but it has a low hot modulus, which is a measure of deformation in hot. This is a limited state. (JP 75022046 B)

이에, 본 발명자들은 상기 종래기술들이 안고있는 문제점들을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 MgO, Al2O3, Fe2O3, 및 ZrO2를 적절한 비율로 조성함으로서, 높은 열충격저항성, 고온의 용융물에 대한 높은 침식저항성, 높은 열간강도, 높은 고온탄성율을 가져 여러분야에서 안정성 있게 사용할 수 있을 뿐 아니라 환경오염을 유발하는 MgO-Cr2O3계 내화물을 대체할 수 있는 MgO-Al2O3-Fe2O3-ZrO2계 내화재료를 제공하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the problems of the prior arts and propose the present invention based on the results, and the present invention provides MgO, Al 2 O 3 , Fe 2 O 3 , And ZrO 2 in an appropriate ratio, it has high thermal shock resistance, high erosion resistance to high temperature melt, high hot strength, and high temperature elastic modulus, so that it can be used stably in your field, as well as MgO-Cr which causes environmental pollution. 2 O 3 system to provide a refractory material that can replace MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 based refractory material, it is an object.

상기 목적을 달성하기 위한 본 발명은 중량%로, MgO가 60-95%, Al2O3가 3-20%, Fe2O3가 1-20%, ZrO2가 1-20%로 함유되는 것을 특징으로 하는 고내열충격성 및 고내식성 마그네시아-알루미나-산화철-지르코니아계 내화조성물에 관한 것이다.The present invention for achieving the above object by weight, MgO is contained in 60-95%, Al 2 O 3 3-20%, Fe 2 O 3 1-20%, ZrO 2 1-20% It relates to a high thermal shock resistance and high corrosion resistance magnesia-alumina-iron oxide-zirconia-based refractory composition.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 MgO가 60-95중량% 함유된다. MgO-Al2O3-Fe2O3-ZrO2계 복합소결체에 존재하는 MgO 성분은 전체구조에 메트릭스(Matrix)를 구성하는 주성분으로, 그 함량이 60%미만일 경우 염기성 고온 슬래그(Slag)에 대한 침식저항성이 저하되는 경향을 보이며, 고온강도가 떨어지는 문제점이 있고, 그 함량이 95%를 초과하면 고온강도가 저하되며 열충격저항성이 저하되는 문제점이 있다. 따라서, MgO-Al2O3-Fe2O3-ZrO2계 복합소결체에 있어 염기성 고온 슬래그에 대한 침식저항성 및 고온강도를 확보하기 위해 MgO의 함량은 60-95%로 존재하는 것이 바람직하다.In the present invention, MgO is contained 60-95% by weight. The MgO component present in the MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based composite sinter is a main component of the matrix in the overall structure, and if the content is less than 60%, the basic hot slag Erosion resistance tends to be lowered, and there is a problem that the high temperature strength falls, and when the content exceeds 95%, the high temperature strength decreases and the thermal shock resistance decreases. Therefore, in the MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based composite sintered body, the content of MgO is preferably present at 60-95% in order to secure erosion resistance and high temperature strength against basic hot slag.

또한, 본 발명에서는 Al2O3가 3-20중량% 함유된다. 상기 Al2O3는 MgO와 함께 존재할 때 MgO-Al2O3스피넬(Spinel)을 형성하여 고온의 염기성 슬래그에 대한 침식저항성이 향상되는 경향을 나타내는데, 이러한 효과를 얻기 위해서는 3%이상 함유되어야 한다. 그러나, Al2O3의 함량이 20%를 초과하면 내화도를 저하시키는 경향이 있어 재질의 고온안정성을 해칠 우려가 있다. 따라서, MgO-Al2O3-Fe2O3-ZrO2계 복합소결체에 있어 염기성 고온 슬래그에 대한 침식저항성 및 고온안정성을 확보하기 위하여 Al2O3의 함유량은 3-20%가 바람직하다.In the present invention, the Al 2 O 3 is contained in 3-20% by weight. When Al 2 O 3 is present together with MgO, MgO-Al 2 O 3 spinel forms a spinel and shows a tendency to improve erosion resistance to basic slag of high temperature. . However, when the content of Al 2 O 3 exceeds 20%, there is a tendency to lower the degree of fire resistance, which may damage the high temperature stability of the material. Therefore, in the MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based composite sintered body, the content of Al 2 O 3 is preferably 3-20% in order to secure erosion resistance and high temperature stability against basic high temperature slag.

또한, 본 발명에서는 Fe2O3가 1-20중량%, ZrO2가 중량%로 1-20% 함유된다. 본 발명의 MgO-Al2O3-Fe2O3-ZrO2계 복합소결체의 소결성을 향상시키기 위해서는 원자가가 +2인 Mg2+이온(Ion) 대비 각각 원자가가 +3 과 +4로 큰 Zr+4와 Fe+3을 첨가하는 것이 필요하다. ZrO2와 Fe2O3의 첨가에 의해서 발생하는 소결성 증가효과는 고온탄성율의 증가 및 고온강도의 증가를 유도할 뿐 아니라 내화도 감소효과 또한 미미하여 바람직하다.구체적으로, ZrO 2 는 고상 소결하여 소결성을 향상시키는 소결조제로서 첨가되며, Fe 2 O 3 는 ZrO 2 보다 저융점을 갖고 있어 액상 상태에서 소결성을 촉진하는 소결촉진제로서 첨가된다. 따라서,본 발명의 MgO-Al2O3-Fe2O3-ZrO2계 복합소결체에 있어 정방정 소결성 증가효과를 극대화시키면서 내화도 감소를 위하여 ZrO2및 Fe2O3 는 항상 함께 첨가되어야 한다. 그러나, 그 첨가량이 너무 많으면 고온탄성율 감소효과가 발생하므로 그 첨가량은각각 1-20중량%인 것이 바람직하다.In the present invention, Fe 2 O 3 is 1-20 wt%, and containing ZrO 2 is 1-20% by weight%. In order to improve the sinterability of the MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 composite sintered body of the present invention, Zr having a valence of +3 and +4, respectively, is higher than that of Mg 2+ ion having a valence of +2. It is necessary to add +4 and Fe +3 . The increase in sinterability caused by the addition of ZrO 2 and Fe 2 O 3 not only leads to an increase in high-temperature elastic modulus and an increase in high-temperature strength, but also a low fire-resistance effect. Specifically, ZrO 2 is added as a sintering aid to improve sinterability by solid phase sintering, and Fe 2 O 3 has a lower melting point than ZrO 2 and is added as a sintering accelerator to promote sinterability in a liquid state. Therefore, ZrO 2 and Fe 2 O 3 should always be added together in order to maximize the effect of increasing tetragonal sintering properties in the MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 -based composite sintered body of the present invention . However, if the addition amount is too large, the effect of reducing the high temperature elastic modulus occurs, so the addition amount is preferably 1-20% by weight.

상술한 바와 같이 조성되는 재료를 이용하여 원하는 소결체로의 제조는 통상의 방법으로 행할 수 있다. 이와같이 하여 얻어진 본 발명의 소결체는 열간강도가 60MPa 이상, 내화도가 1700℃이상을 보이는 것이 바람직하다.Production of a desired sintered compact using the material formed as described above can be performed by a conventional method. It is preferable that the sintered compact of this invention obtained in this way shows 60 MPa or more of hot strength, and 1700 degreeC or more of fire resistance.

실시예 1Example 1

순도 99.5%의 MgO, 순도 99.7%의 Al2O3, 순도 99.3%의 Fe2O3, 순도 99.3%의 ZrO2, 순도 99.7%의 Cr2O3분체들을 하기 표2 및 하기 표3과 같은 비율로 칭량한 후 볼밀(Ball Mill)을 이용하여 24시간 혼합, 분쇄, 건조하여 복합분체를 제작하였다. 이렇게 얻어진 복합분체를 일축 및 정수압 성형하고, 1600℃에서 2시간 동안 소결하여 MgO-Al2O3-Fe2O3-ZrO2계 복합소결체를 제조하고 각각의 시료에 대하여 고온강도 (1400℃), 내화도,열충격저항성, 고온 슬래그에 대한 침식저항성등을 측정하고 그 측정결과들을 하기 표2와 표3에 나타내었다.MgO with a purity of 99.5%, Al 2 O 3 with a purity of 99.7%, Fe 2 O 3 with a purity of 99.3%, ZrO 2 with a purity of 99.3%, Cr 2 O 3 powders with a purity of 99.7%, and the like, as shown in Table 2 and Table 3 below. After weighing at a ratio, a composite powder was prepared by mixing, grinding and drying for 24 hours using a ball mill. The composite powder thus obtained was uniaxially and hydrostatically molded, and sintered at 1600 ° C. for 2 hours to prepare MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 based composite sintered body, and the high temperature strength (1400 ° C.) was applied to each sample. , Fire resistance, thermal shock resistance , erosion resistance to high temperature slag and the like and the measurement results are shown in Tables 2 and 3 below.

이때, 고온강도는 각각의 시편에 대하여 4x3x45mm의 벤딩바(Bending Bar)를 제작하여 크로스헤드 스피드(Cross Head Speed) 0.05mm/min으로 행하여 졌고, 내화도는 각각의 재질에 대하여 제겔콘을 만들어 1700℃까지 승온한 후 변형여부를 관찰하여 측정되었으며, 열충격저항성은 시료를 목적온도까지 5℃/min의 속도로 승온시켜 목적온도에서 15분간 유지한 후 유냉(Oil Quenching)하여 열충격을 인가한 후 열충격을 받은 시편의 3점 곡강도를 측정하여 파단되었다. 또한, 내침식성은 하기 표1에 보인 것과 같은 슬래그를 백금도가니에 담고 각각의 재질에 대하여 10x10x10mm 입방체(Cube)를 제작하여 백금도가니에 담긴 슬래그 속에 함침시킨 후 1600℃에서 1시간동안 가열하여 고온의 용융 슬래그가 시편을 침식하게 한 후 슬래그와 반응하여 용출되지 않은 시편의 중량을 측정하여 판단되었다.At this time, the high temperature strength was performed at a crosshead speed of 0.05mm / min by producing a bending bar of 4x3x45mm for each specimen, and the fire resistance was made at 1700 ° C by making zegelcon for each material. It was measured by observing the deformation after heating up, and the thermal shock resistance was raised to 5 ℃ / min at the target temperature for 15 minutes and maintained at the target temperature for 15 minutes, and then subjected to thermal shock by applying oil shock (Oil Quenching). The three-point bending strength of the specimen received was measured and broken. In addition, the corrosion resistance was put in a slag as shown in Table 1 in the platinum crucible to produce a 10x10x10mm cube (cube) for each material, impregnated in the slag contained in the platinum crucible and heated at 1600 ℃ for 1 hour to heat The molten slag eroded the specimen and then reacted with the slag to determine the weight of the undissolved specimen.

구분division 화학성분Chemical composition MgOMgO CaOCaO SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 P2O5 P 2 O 5 Mn2O3 Mn 2 O 3 함량 [중량%]Content [wt%] 4.84.8 3838 4.94.9 28.428.4 12.912.9 5.55.5 4.44.4

구분division 발명예Inventive Example #1#One #2#2 #3# 3 #4#4 #5# 5 MgO의 함량 [중량%]MgO content [% by weight] 9393 8888 8383 8181 7878 Al2O3의 첨가량 [중량%]Addition amount of Al 2 O 3 [wt%] 55 1010 1515 1717 2020 Fe2O3의 첨가량 [중량%]Addition amount of Fe 2 O 3 [wt%] 1One 1One 1One 1One 1One ZrO2의 첨가량 [중량%]Addition amount of ZrO 2 [wt%] 1One 1One 1One 1One 1One 고온강도(1400℃), [MPa]High temperature strength (1400 ℃), [MPa] 6060 6767 7373 7575 8181 내화도, [℃]Refractoriness, [° C.] 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 열충격저항성, [ΔΤc, ℃)Thermal shock resistance, [ΔΤc, ℃) 450450 450450 500500 550550 550550 침식시험 후 잔존율,[중량%]Residual rate after erosion test, [wt%] 7878 7878 7575 8080 8282 구 분division 비교예Comparative example #1#One #2#2 #3# 3 #4#4 #5# 5 MgO의 함량 [중량%]MgO content [% by weight] 9696 9797 7373 6363 7373 Al2O3의 첨가량 [중량%]Addition amount of Al 2 O 3 [wt%] 22 1.51.5 2525 3535 99 Fe2O3의 첨가량 [중량%]Addition amount of Fe 2 O 3 [wt%] 1One 0.50.5 1One 1One 66 ZrO2의 첨가량 [중량%]Addition amount of ZrO 2 [wt%] 1One 1One 1One 1One -- Cr2O3의 첨가량 [중량%]Addition amount of Cr 2 O 3 [wt%] -- -- -- -- 1212 고온강도(1400℃), [MPa]High temperature strength (1400 ℃), [MPa] 3030 3535 3838 4848 5454 내화도, [℃]Refractoriness, [° C.] 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 열충격저항성, [ΔΤc, ℃)Thermal shock resistance, [ΔΤc, ℃) 300300 300300 350350 350350 400400 침식시험 후 잔존율,[중량%]Residual rate after erosion test, [wt%] 6464 7070 6060 6363 7575

상기 표 2에 나타낸 것과 같이, 발명예(1-5)는 적정량의 Al2O3첨가에 의해 MgO 메트릭스(Matrix)가 강화되어 MgO-Cr2O3대비 높은 열충격저항성 및 내침식성을 나타내고 Al2O3가 소량 첨가된 비교예(1-5)은 MgO-Cr2O3대비 낮은 열충격 저항성 및 내침식성을 나타내었다.As shown in Table 2, Inventive Example (1-5) is the MgO matrix (Matrix) by a suitable amount of Al 2 O 3 added is strengthened exhibits high thermal shock resistance and abrasion resistance compared to MgO-Cr 2 O 3 Al 2 Comparative Example (1-5) in which a small amount of O 3 was added showed lower thermal shock resistance and erosion resistance than MgO-Cr 2 O 3 .

구분division 발명예Inventive Example #6# 6 #7# 7 #8#8 #9# 9 #10# 10 MgO의 함량 [중량%]MgO content [% by weight] 7070 6868 6565 6868 7070 Al2O3의 첨가량 [중량%]Addition amount of Al 2 O 3 [wt%] 55 55 55 55 55 Fe2O3의 첨가량 [중량%]Addition amount of Fe 2 O 3 [wt%] 55 1010 1515 1717 2020 ZrO2의 첨가량 [중량%]Addition amount of ZrO 2 [wt%] 2020 1717 1515 1010 55 고온강도(1400℃), [MPa]High temperature strength (1400 ℃), [MPa] 8585 8888 8787 7575 9494 내화도, [℃]Refractoriness, [° C.] 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 열충격저항성, [ΔΤc, ℃)Thermal shock resistance, [ΔΤc, ℃) 600600 650650 650650 650650 650650 침식시험 후 잔존율,[중량%]Residual rate after erosion test, [wt%] 8080 8383 8383 8585 8585 구 분division 발명예Inventive Example #11# 11 #12# 12 #13# 13 #14# 14 #15# 15 MgO의 함량 [중량%]MgO content [% by weight] 6565 6363 6060 6363 6565 Al2O3의 첨가량 [중량%]Addition amount of Al 2 O 3 [wt%] 1010 1010 1010 1010 1010 Fe2O3의 첨가량 [중량%]Addition amount of Fe 2 O 3 [wt%] 55 1010 1515 1717 2020 ZrO2의 첨가량 [중량%]Addition amount of ZrO 2 [wt%] 2020 77 1515 1010 55 고온강도(1400℃), [MPa]High temperature strength (1400 ℃), [MPa] 105105 115115 123123 121121 117117 내화도, [℃]Refractoriness, [° C.] 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 1700 이상1700 or more 열충격저항성, [ΔΤc, ℃)Thermal shock resistance, [ΔΤc, ℃) 700700 750750 700700 700700 750750 침식시험 후 잔존율,[중량%]Residual rate after erosion test, [wt%] 8787 8888 9292 9393 9595 비교예Comparative example -- -- #6# 6 #7# 7 #8#8 MgO의 함량 [중량%]MgO content [% by weight] 5555 6060 5050 Al2O3의 첨가량 [중량%]Addition amount of Al 2 O 3 [wt%] 55 55 1010 Fe2O3의 첨가량 [중량%]Addition amount of Fe 2 O 3 [wt%] 2020 1010 2020 ZrO2의 첨가량 [중량%]Addition amount of ZrO 2 [wt%] 2020 2525 2020 고온강도(1400℃), [MPa]High temperature strength (1400 ℃), [MPa] 5252 6060 3535 내화도, [℃]Refractoriness, [° C.] 1700 이하1700 or less 1700 이하1700 or less 1700 이하1700 or less 열충격저항성, [ΔΤc, ℃)Thermal shock resistance, [ΔΤc, ℃) 500500 550550 550550 침식시험 후 잔존율,[중량%]Residual rate after erosion test, [wt%] 5151 5555 5252

상기 표3에 나타낸 것과 같이, 발명예(6-15)는 비교예 (6-8) 대비 Fe2O3와 ZrO2의 첨가량이 적정량 까지 증가함에 따라 MgO-Cr2O3대비 높은 열충격저항성 및 내침식성을 나타내고 Fe2O3와 ZrO2의 첨가량이 적정량 이상으로 증가함에 따라 열충격 저항성 및 내침식성이 급격히 감소하는 경향을 나타내었다.As shown in Table 3, Inventive Example (6-15) has a higher thermal shock resistance than MgO-Cr 2 O 3 as the amount of Fe 2 O 3 and ZrO 2 added to the appropriate amount compared to Comparative Example (6-8) and As the corrosion resistance was increased and the addition amount of Fe 2 O 3 and ZrO 2 increased more than the proper amount, the thermal shock resistance and the corrosion resistance showed a tendency to decrease rapidly.

상술한 바와같은 본 발명에 의하면, 높은 열충격저항성, 고온의 용융물에 대한 높은 침식저항성, 높은 열간강도, 높은 고온탄성율을 갖는 MgO-Al2O3-Fe2O3-ZrO2계 복합소결체를 얻을 수 있으며, 이를 제철, 제강, 및 시멘트 제조공정 등에 적용할 경우, 안정성 있게 사용할 수 있을 뿐 아니라 환경오염을 유발하는 MgO-Cr2O3계 내화물을 대체할 수 있는 효과가 제공된다.According to the present invention as described above, to obtain a MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 based composite sintered body having high thermal shock resistance, high erosion resistance to high temperature melt, high hot strength, high temperature elastic modulus When applied to steelmaking, steelmaking, and cement manufacturing process, it can be used stably and provides an effect of replacing MgO-Cr 2 O 3 refractories that cause environmental pollution.

Claims (1)

중량%로, MgO가 60-95%, Al2O3가 3-20%, Fe2O3가 1-20%, ZrO2가 1-20%로 함유되는 것을 특징으로 하는 고내열충격성 및 고내식성 MgO-Al2O3-Fe2O3-ZrO2계 내화조성물By weight, high thermal shock resistance and high, characterized in that it contains 60-95% MgO, 3-20% Al 2 O 3 , 1-20% Fe 2 O 3 , 1-20% ZrO 2 Corrosion Resistance MgO-Al 2 O 3 -Fe 2 O 3 -ZrO 2 System
KR1019980056499A 1998-12-19 1998-12-19 Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance KR100305567B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980056499A KR100305567B1 (en) 1998-12-19 1998-12-19 Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980056499A KR100305567B1 (en) 1998-12-19 1998-12-19 Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance

Publications (2)

Publication Number Publication Date
KR20000040773A KR20000040773A (en) 2000-07-05
KR100305567B1 true KR100305567B1 (en) 2001-10-17

Family

ID=19564006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980056499A KR100305567B1 (en) 1998-12-19 1998-12-19 Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance

Country Status (1)

Country Link
KR (1) KR100305567B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350151A (en) * 1989-03-16 1991-03-04 Tokyo Yogyo Co Ltd Refractory material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350151A (en) * 1989-03-16 1991-03-04 Tokyo Yogyo Co Ltd Refractory material

Also Published As

Publication number Publication date
KR20000040773A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
Dal Maschio et al. Industrial applications of refractories containing magnesium aluminate spinel
US5124287A (en) Zircon refractories with improved thermal shock resistance
US5286685A (en) Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
CN101925558B (en) Raw material for zirconia/mullite refractory and plate brick
US5212123A (en) Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials
US5053366A (en) Refractory compositions containing monoclinic zirconia and articles formed from these compositions exhibiting improved mechanical strength at high temperatures and improved resistance to thermal shocks
US4735923A (en) Erosion-resistant silicon carbide composite sintered materials
EP0323010A2 (en) Carbon containing refractory
CN109996772A (en) Magnesia carbon brick and its manufacturing method
KR20170088830A (en) Refractory product, batch composition for producing said product, method for producing the product and use of said product
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
US3620781A (en) Partially stabilized zirconia refractory
EP0360773A2 (en) Transformation toughened ceramic alloys
KR100305567B1 (en) Refractory compositions of MgO-Al203-Fe203-Zr02 with high thermal spalling resistance and chemical wear resistance
CN1325435C (en) Chromium free refractory material for RH vacuum furnace lining
Ghosh et al. Effect of ZrO2 on the densification behavior and properties of Indian magnesite
KR20050113633A (en) Chromium-free monothilic refractory for melting furnace for waste and melting furnace for waste lined with the same
US4435514A (en) Chromia magnesia refractory
KR100349177B1 (en) MgO-Al2O3-Fe2O3-ZrO2 Based Refractory Composition Containing Metallic Powder
KR960011347B1 (en) Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom
KR100704284B1 (en) Batch for producing a refractory ceramic shaped body, shaped body made therefrom, and a use thereof
CN107954606B (en) Glass ceramic and preparation method and application thereof
CA2315398A1 (en) Dense refractories with improved thermal shock resistance
JPH01192761A (en) Ingot azs refractory composition
JPH0741358A (en) Magnesia-dolomite brick and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee