KR100305436B1 - Methal oxide electrode for supercapacitor and menufacturing method thereof - Google Patents

Methal oxide electrode for supercapacitor and menufacturing method thereof Download PDF

Info

Publication number
KR100305436B1
KR100305436B1 KR1019990039898A KR19990039898A KR100305436B1 KR 100305436 B1 KR100305436 B1 KR 100305436B1 KR 1019990039898 A KR1019990039898 A KR 1019990039898A KR 19990039898 A KR19990039898 A KR 19990039898A KR 100305436 B1 KR100305436 B1 KR 100305436B1
Authority
KR
South Korea
Prior art keywords
conductive carbon
electrode
supercapacitor
manganese oxide
aqueous solution
Prior art date
Application number
KR1019990039898A
Other languages
Korean (ko)
Other versions
KR20010025129A (en
Inventor
이희영
김희수
김선욱
Original Assignee
김선욱
주식회사 네스캐패시터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선욱, 주식회사 네스캐패시터 filed Critical 김선욱
Priority to KR1019990039898A priority Critical patent/KR100305436B1/en
Priority to US09/514,366 priority patent/US6339528B1/en
Priority to JP2000080308A priority patent/JP3978302B2/en
Publication of KR20010025129A publication Critical patent/KR20010025129A/en
Priority to US09/971,652 priority patent/US6616875B2/en
Application granted granted Critical
Publication of KR100305436B1 publication Critical patent/KR100305436B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

아몰퍼스상 망간산화물을 이용한 슈퍼캐패시터용 전극 및 그 제조 방법이 개시되어 있다. 먼저 탈이온수에 계면활성제를 첨가하여 충분히 녹인 다음에 도전성 카본 분말을 충분히 분산시켜 도전성 카본 수용액을 준비한다. 도전성 카본이충분히 분산된 후 상기 도전성 카본 수용액에 과망간산칼륨 (KMnO4)을 첨가하여 도전성 카본위에 과망간산칼륨을 흡착시킨 과망간산칼륨 수용액을 준비한다. 별도로 아세트산망간(manganese acetate) 수용액을 준비한 후, 상기 과망간산칼륨 수용액에 아세트산망간 수용액을 혼합시켜 아몰퍼스상 망간산화물(a-MnO2·nH2O)을 형성한다. 이어서, 상기 아몰퍼스상 망간산화물을 적출하여 슈퍼캐패시터용 전극을 제작한다. 도전성 카본과 망간산화물의 접촉면적 및 접촉강도가 향상되어 등가저항이 감소되고 고주파특성이 향상된다.Disclosed are an electrode for a supercapacitor using amorphous manganese oxide and a method of manufacturing the same. First, a surfactant is added to deionized water to be sufficiently dissolved, and then conductive carbon powder is sufficiently dispersed to prepare an aqueous conductive carbon solution. After the conductive carbon is sufficiently dispersed, potassium permanganate (KMnO 4 ) is added to the conductive carbon aqueous solution to prepare an aqueous potassium permanganate solution by adsorbing potassium permanganate on the conductive carbon. After separately preparing a manganese acetate solution, the manganese acetate solution is mixed with the aqueous potassium permanganate solution to form amorphous manganese oxide (a-MnO 2 · nH 2 O). Subsequently, the amorphous manganese oxide is removed to prepare an electrode for a supercapacitor. The contact area and the contact strength of the conductive carbon and manganese oxide are improved to reduce the equivalent resistance and improve the high frequency characteristics.

Description

슈퍼캐패시터용 금속산화물 전극 및 그 제조 방법 {METHAL OXIDE ELECTRODE FOR SUPERCAPACITOR AND MENUFACTURING METHOD THEREOF}Metal Oxide Electrode for Supercapacitor and Manufacturing Method Thereof {METHAL OXIDE ELECTRODE FOR SUPERCAPACITOR AND MENUFACTURING METHOD THEREOF}

본 발명은 슈퍼캐패시터용 금속산화물 전극 및 그의 제조 방법에 관한 것이다. 보다 상세하게는, 아몰퍼스 망간산화물을 활물질로 한 전기화학적 캐패시터의 금속산화물 전극 및 그 제조 방법에 관한 것이다.The present invention relates to a metal oxide electrode for a supercapacitor and a method of manufacturing the same. More specifically, the present invention relates to a metal oxide electrode of an electrochemical capacitor using an amorphous manganese oxide as an active material, and a method of manufacturing the same.

전기화학 캐패시터는 재충전가능한 축전지에 의해 전원공급을 받는 하이브리드 전기장치에서의 보조 에너지 저장장치로서 흥미있는 것이다. 전기화학 이중층 캐패시터(EDLC)는 전극에서 전자적인 전하의 물리적인 분리와 그 표면에서 흡수된 전해질의 이온을 이용한다. 이러한 캐패시터들은 최적화된 파라다익 슈퍼캐패시터보다 낮은 단위 캐패시턴스를 갖는다. 예를 들어, 강산에서 아몰퍼스상의 수화된 루테늄산화물(hydrated ruthenium oxide), RuO2·nH2O, 우수한 주기성과 700 F/g의 캐패시턴스를 갖게 된다. 그러나 이러한 구성은 적절한 것이지만, RuO2·nH2O이 너무 비싸기 때문에 상업적으로 유리하지 못하여 다른 물질에 대한 연구가 이루어져 왔다. 프로톤의 작은 크기가 최적의 화학적 흡착을 달성하는 데 최대의 기회를 제공하기 때문에 연구는 강산에서 안정된 물질로 제한되어 왔다. 방전속도가 전해질내에서 활동이온의 이동도에 의해 지배된다는 믿음하에 강산 전해질에 대한 선택이 보다 강화되어 왔다. 그러나 불행하게도 대부분의 전극 물질들은 강산하에서 불안정하였다.Electrochemical capacitors are of interest as auxiliary energy storage devices in hybrid electric devices powered by rechargeable batteries. An electrochemical double layer capacitor (EDLC) utilizes the physical separation of electronic charges at the electrodes and the ions of the electrolyte absorbed at its surface. These capacitors have lower unit capacitance than the optimized paradigm supercapacitors. For example, in strong acid, amorphous hydrated ruthenium oxide, RuO 2 · nH 2 O, have excellent periodicity and a capacitance of 700 F / g. However, this configuration is appropriate, but RuO 2 · nH 2 O is too expensive to be commercially advantageous and has been studied for other materials. Research has been limited to stable materials in strong acids because the small size of protons provides the greatest opportunity to achieve optimal chemisorption. The choice of strong acid electrolytes has been intensified in the belief that the rate of discharge is governed by the mobility of active ions in the electrolyte. Unfortunately, most electrode materials were unstable under strong acids.

한편, 아몰퍼스(amorphous) 망간산화물이 중성전해질, 예를 들어 염화칼륨(KCl) 하에서 슈퍼캐패시터용 전극물질로 뛰어난 성능을 갖는 것으로 본 발명자에 의해 발표되었다. 그러나 아몰퍼스상의 망간산화물 자체는 상온에서 전도도가 매우 낮은 물질이기 때문에 등가저항이 매우 커서 고주파동작이 불가능할 뿐만아니라 저주파동작에서도 저항에 의한 에너지 손실이 막대하다는 단점이 있다. 따라서 전도성이 좋은 도전성 카본을 아몰퍼스 망간산화물과 물리적으로 혼합하여 슈퍼캐퍼시터용 전극을 제작하였다.Amorphous manganese oxides, on the other hand, have been published by the inventors as having excellent performance as electrode materials for supercapacitors under neutral electrolytes, such as potassium chloride (KCl). However, the amorphous manganese oxide itself is a material having a very low conductivity at room temperature, so its equivalent resistance is very large, and thus high frequency operation is impossible. Therefore, a conductive carbon having good conductivity was physically mixed with amorphous manganese oxide to prepare an electrode for a supercapacitor.

그러나, 이러한 도전성 카본과 아몰퍼스상 망간산화물을 물리적으로 혼합하여 제작한 슈퍼캐퍼시터용 전극은, 비표면적이 300 m2/g 정도로 매우 크고, 단위 질량당 캐퍼시턴스가 약 200 내지 300 F/g 인 아몰퍼스상 망간산화물을 도전성 카본과 물리적으로 혼합하기 때문에 단위부피당 포함되는 망간산화물의 양이 크지 않게 된다. 따라서 작은 부피에서 고용량을 나타내는 소자개발에 한계가 있게 된다.However, the supercapacitor electrode produced by physically mixing such conductive carbon and amorphous manganese oxide has a very large specific surface area of about 300 m 2 / g and a capacitance per unit mass of about 200 to 300 F / g. Since the amorphous manganese oxide is physically mixed with the conductive carbon, the amount of manganese oxide contained per unit volume is not large. Therefore, there is a limit to the development of a device showing a high capacity in a small volume.

다음으로, 이러한 단순한 물리적 혼합방법은 아몰퍼스상 망간산화물과 도전성 카본의 접촉면적에 있어서 한계를 가지고 있을 뿐만 아니라, 분산도라는 측면에서도 그 한계를 나타낼 수 밖에 없다.Next, such a simple physical mixing method not only has a limit in the contact area between amorphous manganese oxide and conductive carbon, but also has a limit in terms of dispersion.

본 발명의 목적은, 중성전해질하에서도 슈퍼캐퍼시터용 전극물질로서 뛰어난 성능을 가지면서도 등가저항이 작고 고주파특성이 향상된 슈퍼캐퍼시터용 금속산화물 전극을 제공하는 것이다.An object of the present invention is to provide a metal oxide electrode for a supercapacitor, which has excellent performance as an electrode material for a supercapacitor even under a neutral electrolyte, and has a small equivalent resistance and improved high frequency characteristics.

본 발명의 다른 목적은 단위부피당 금속산화물의 로딩량을 크게 증가시켜 중성 전해질하에서도 슈퍼캐패시터용 전극물질로서의 성능을 향상시킨 슈퍼캐퍼시터용 금속산화물 전극을 제공하는 것이다.Another object of the present invention is to provide a metal oxide electrode for a supercapacitor, which greatly increases the loading amount of the metal oxide per unit volume, thereby improving the performance as an electrode material for a supercapacitor even under a neutral electrolyte.

본 발명의 또 다른 목적은 상기 전극을 제조하는데 특히 적합한 슈퍼 캐패시터용 금속 산화물 전극의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a metal oxide electrode for a super capacitor, which is particularly suitable for producing the electrode.

도 1a 내지 도 1f는 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV(Cyclic Voltammogram)를 나타내는 도면이다.1A to 1F are diagrams illustrating CV (Cyclic Voltammogram) measured while varying a voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor according to an embodiment of the present invention.

도 2a 내지 도 2d는 본 발명의 다른 실시예에 따른 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV를 나타내는 도면이다.2A to 2D are views illustrating CV measured while varying a voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor according to another embodiment of the present invention.

도 3a 내지 도 3f는 본 발명의 또다른 실시예에 따른 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV를 나타내는 도면이다.3A to 3F are diagrams illustrating CV measured while varying a voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor according to another embodiment of the present invention.

도 4는 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 20 mV/sec에 고정한 채, 각 도전성 카본의 종류에 따른 도전성 카본의 함량비 및 단위캐패시턴스의 변화를 나타낸 도면이다.4 is a view illustrating a change in content ratio and unit capacitance of conductive carbon according to each type of conductive carbon while fixing a voltage scanning speed at 20 mV / sec with respect to a metal oxide electrode for a supercapacitor according to an embodiment of the present invention. Drawing.

도 5는 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 달리하면서 종래기술과 비교한 단위캐패시턴스의 변화를 나타낸 도면이다.5 is a view showing a change in unit capacitance compared to the prior art while varying the voltage scanning speed for the metal oxide electrode for the supercapacitor according to an embodiment of the present invention.

도 6은 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 고정한 채 종래기술과 비교한 CV 측정결과를 나타낸 도면이다.FIG. 6 is a view showing CV measurement results compared with the prior art while fixing a voltage scanning speed with respect to a metal oxide electrode for a supercapacitor according to an embodiment of the present invention.

도 7은 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대한 캐패시터의 성능을 측정한 결과도면이다.7 is a result of measuring the performance of the capacitor for the metal oxide electrode for the supercapacitor according to an embodiment of the present invention.

상기 본 발명의 목적을 달성하기 위하여, 수용액상에서 아몰퍼스상 망간산화물을 화학반응법에 의해 합성하는 과정에서 도전성 카본을 미리 참여시켜, 도전상 카본의 표면에 아몰퍼스상 망간산화물이 형성되도록 한다.In order to achieve the object of the present invention, in the process of synthesizing the amorphous manganese oxide in an aqueous solution by a chemical reaction method, the conductive carbon is involved in advance, so that the amorphous manganese oxide is formed on the surface of the conductive carbon.

본 발명의 일 실시예에 따른 슈퍼캐퍼시터용 금속산화물 전극의 제조 방법은, 먼저, 탈이온수에 계면활성제를 충분히 녹인 후, 도전성 카본 분말을 탈이온수에 분산시켜 도전성 카본 수용액을 준비한다. 도전성 카본이 충분히 분산된 후 상기 도전성 카본 수용액에 과망간산칼륨 (KMnO4)을 첨가하여 도전성 카본의 표면에 과망간산칼륨을 흡착시킨 과망간산칼륨 수용액을 준비한다. 별도로 아세트산망간 (manganese acetate) 수용액을 준비한 후, 상기 과망간산칼륨 수용액에 아세트산망간 수용액을 혼합시켜 아몰퍼스상 망간산화물(a-MnO2·nH2O)을 형성한다. 이어서,상기 아몰퍼스상 망간산화물을 적출하여 슈퍼캐패시터용 전극을 제작한다.In the method of manufacturing a metal oxide electrode for a supercapacitor according to an embodiment of the present invention, first, a surfactant is sufficiently dissolved in deionized water, and then the conductive carbon powder is dispersed in deionized water to prepare a conductive carbon aqueous solution. After the conductive carbon is sufficiently dispersed, potassium permanganate (KMnO 4 ) is added to the conductive carbon aqueous solution to prepare an aqueous potassium permanganate solution in which potassium permanganate is adsorbed on the surface of the conductive carbon. After separately preparing a manganese acetate solution, the manganese acetate solution is mixed with the aqueous potassium permanganate solution to form amorphous manganese oxide (a-MnO 2 · nH 2 O). Subsequently, the amorphous manganese oxide is removed to prepare an electrode for a supercapacitor.

상기 아몰퍼스상 망간산화물로부터 전극을 제작하는 단계는, 상기 아몰퍼스상 망간산화물의 분말입자를 상기 혼합된 수용액으로부터 필터링, 워싱 및 건조시켜 적출한 후, 상기 아몰퍼스상 망간산화물의 분말입자를 분쇄하고, 상기 아몰퍼스상 망간산화물의 분쇄물에 바인더를 혼합한 후, 상기 혼합물을 특정 형상으로 형상화하여 전극을 형성한다.The preparing of the electrode from the amorphous manganese oxide may include filtering, washing and drying the amorphous manganese oxide powder particles from the mixed aqueous solution, and then pulverizing the powder particles of the amorphous manganese oxide, and After the binder is mixed with the pulverized amorphous manganese oxide, the mixture is shaped into a specific shape to form an electrode.

상기 도전성 카본의 함량은 상기 아몰퍼스 망간산화물 분말의 총량에 대하여 20 내지 80 중량%가 되도록 분산시킨다.The content of the conductive carbon is dispersed to 20 to 80% by weight based on the total amount of the amorphous manganese oxide powder.

한편, 본 발명의 다른 실시예에 따른 슈퍼캐패시터용 금속산화물 전극은, 특정의 형상으로 제작된 슈퍼캐패시터용 금속산화물 전극에 있어서, 도전성 카본의 표면상에 코팅된 망간산화물의 분말입자와 이들을 결합시켜주는 바인더의 혼합물로 이루어진다.On the other hand, the metal oxide electrode for supercapacitors according to another embodiment of the present invention, in the metal oxide electrode for supercapacitors manufactured in a specific shape, by combining them with powder particles of manganese oxide coated on the surface of the conductive carbon The master consists of a mixture of binders.

상기 도전성 카본의 함량은 상기 망간산화물 분말입자의 총량에 대하여 20 내지 80 중량%가 된다. 또한, 상기 망간산화물은 도전성 카본이 미리 분산된 수용액에 과망간산칼륨을 0.01 몰(mole) 첨가하여 도전성 카본의 외부표면에 흡착시킨 수용액과, 아세트산망간이 0.015 몰(mole) 첨가된 수용액을 반응시켜 형성된 것이다.The content of the conductive carbon is 20 to 80% by weight based on the total amount of the manganese oxide powder particles. In addition, the manganese oxide is formed by reacting an aqueous solution in which potassium permanganate is added to an aqueous solution in which conductive carbon is dispersed in advance and adsorbed onto the outer surface of conductive carbon, and an aqueous solution in which 0.015 mol of manganese acetate is added. will be.

이하, 본 발명의 바람직한 실시예를 첨부하는 도면과 함께 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

먼저, 본 발명에 따른 슈퍼캐퍼시터용 금속산화물 전극의 형성과정을 구체적으로 살펴본다.First, the formation process of the metal oxide electrode for the supercapacitor according to the present invention will be described in detail.

1) 60 ml의 탈이온수에 일정량의 도전성 카본 분말을 첨가한 후 완전히 습윤(wetting)되어 수용액내에 분산되도록 저어준다. 이때 도전성 카본의 입자표면성질이 배수성(hydrophobic)이기 때문에 미리 탈이온수에 계면활성제를 첨가하여 완전히 녹인다. 만약 계면활성제를 첨가하지 않으면 수용액에서 도전성 카본의 입자표면이 적셔지지 않아서 이후 설명할 과망간산칼륨이 흡착될 수 없기 때문에 이럴 경우에는 목적하는 도전성 카본위에 아몰퍼스상 망간산화물을 직접적으로 합성할 수 없게 된다. 계면활성제로서는 폴리비닐피롤리돈(Polyvinyl pyrrolidone;PVP)를 0.06 g 사용하였다.1) After adding a certain amount of conductive carbon powder to 60 ml of deionized water, completely wet and stir to disperse in aqueous solution. At this time, since the surface property of the conductive carbon is hydrophobic, a surfactant is added to deionized water in advance to completely dissolve it. If the surfactant is not added, the surface of the conductive carbon is not wetted in the aqueous solution, and thus potassium permanganate, which will be described later, cannot be adsorbed. In this case, amorphous manganese oxide cannot be directly synthesized on the target conductive carbon. As the surfactant, 0.06 g of polyvinylpyrrolidone (PVP) was used.

도전성 카본의 종류는 아세틸렌 블랙(acetylene black;chevron chemical company(미국)의 제품명), SUPER-P(M.M.M Carbon 회사(벨기에)의 제품명) 및 Ketjen black EC(lion corporation(일본)의 제품명)의 3가지를 사용하였다.There are three kinds of conductive carbon: acetylene black (product name of chevron chemical company (USA)), SUPER-P (product name of MMM Carbon company (Belgium)) and Ketjen black EC (product name of lion corporation (Japan)). Was used.

도전성 카본의 함량은 각기 20 중량%, 40 중량%, 60 중량%, 80 중량%가 되도록 첨가하였다. 여기서 중량%는 과망간산칼륨과 아세트산망간을 후속되는 조성으로 혼합하여 합성된 망간산화물 분말의 총량을 기준으로 하여 첨가된 도전성 카본의 중량비를 의미한다.The content of the conductive carbon was added so as to be 20 wt%, 40 wt%, 60 wt%, and 80 wt%, respectively. Here, the weight% means a weight ratio of conductive carbon added based on the total amount of manganese oxide powder synthesized by mixing potassium permanganate and manganese acetate in a subsequent composition.

2) 이후, 1.58g의 과산화망간(KMnO4)을 첨가하여 1시간 이상 저어주면서 e도전성 카본에 과산화망간의 흡착이 충분히 일어날 수 있도록 한다.2) After that, add 1.58 g of manganese peroxide (KMnO 4 ) to stir for more than 1 hour to allow sufficient adsorption of manganese peroxide to the electroconductive carbon.

3) 별도로 100 ml의 탈이온수에 3.68 g의 아세트산망간(Manganese acetate)을 첨가하여 수용액을 제조한다.3) Separately, 3.68 g of manganese acetate is added to 100 ml of deionized water to prepare an aqueous solution.

4) 이어서, 상기 도전성 카본이 첨가된 과산화망간 수용액에 상기 아세트산망간 수용액을 혼합하여 격렬하게 저어준다. 두 수용액을 혼합하면 아몰퍼스 망간산화물의 형성반응은 매우 빨리 일어난다. 따라서 혼합직후 혼합용액의 색이 아몰퍼스상 망간산화물의 색인 갈색으로 바로 변하며, 혼합용액의 점도도 급격히 증가하게 된다. 혼합용액을 12시간 이상 스터링하여 반응이 충분히 일어나도록 한다.4) Next, the manganese acetate aqueous solution is mixed with the manganese peroxide aqueous solution to which the conductive carbon is added and stirred vigorously. When the two aqueous solutions are mixed, the formation reaction of amorphous manganese oxide occurs very quickly. Therefore, immediately after mixing, the color of the mixed solution immediately changes to the brown color of amorphous manganese oxide, and the viscosity of the mixed solution also increases rapidly. Stir the mixed solution for at least 12 hours to allow sufficient reaction.

5) 이어서, 짙은 갈색의 아몰퍼스 망간산화물의 분산입자를 세라믹 필터로 수차례 필터링하고 탈이온수로 워싱한 후 120℃ 정도로 유지되는 건조기에서 충분히 건조시킨다. 여기서 생성물의 아몰퍼스 특성을 확인하기 위하여 X선 회절분석을 실시하기도 한다.5) Subsequently, the dark brown amorphous manganese oxide dispersed particles were filtered several times with a ceramic filter, washed with deionized water, and dried sufficiently in a drier maintained at about 120 ° C. X-ray diffraction analysis may be performed to confirm amorphous properties of the product.

6) 이어서, 충분히 건조된 아몰퍼스 망간산화물 분산입자를 분쇄한 후, 바인더(binder)로서 폴리테트라플루오로에틸렌(polytetrafluoroethylene;PTFE)과 혼합한다. 이어서, 혼합물을 롤링하여 일정한 두께를 갖는 시트형상으로 만든다. 이어서 시트형상의 전극을 절단하여 펠릿형상으로 만든 후 집전체(current collector)상에 냉간압연시켜 슈퍼캐패시터용 전극을 제작한다.6) Then, the sufficiently dried amorphous manganese oxide dispersed particles are pulverized, and then mixed with polytetrafluoroethylene (PTFE) as a binder. The mixture is then rolled into a sheet with a constant thickness. Subsequently, the sheet electrode is cut into pellets, and then cold rolled onto a current collector to fabricate a supercapacitor electrode.

도 1a 내지 도 1f는 도전성 카본으로써 아세틸렌 블랙을 사용한 경우이며, 그 함량이 40 중량%인 경우의 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV(Cyclic Voltammogram)를 나타내는 도면이며, 도 2a 내지 도 2d는 도전성 카본으로써 SUPER-P를 사용한 경우이며, 그 함량이 60 중량%인 경우의 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV를 나타내는 도면이며, 도 3a 내지 도 3f는 도전성 카본으로써 KetjenBlack EC인 경우이며, 그 함량이 40 중량%인 경우의 슈퍼캐패시터용 금속산화물 전극을 제작한 후 전압주사속도를 달리하면서 측정한 CV를 각기 나타내는 도면이다.1A to 1F show acetylene black as the conductive carbon, and show a CV (Cyclic Voltammogram) measured while varying the voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor when its content is 40 wt%. 2A to 2D show the case where SUPER-P is used as the conductive carbon, and shows CV measured while varying the voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor when its content is 60% by weight. 3A to 3F are cases of KetjenBlack EC as conductive carbon, and showing CV measured while varying the voltage scanning speed after fabricating a metal oxide electrode for a supercapacitor having a content of 40% by weight. to be.

도 4는 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 20 mV/sec에 고정한 채, 각 도전성 카본의 종류에 따른 도전성 카본의 함량비 및 단위캐패시턴스의 변화를 나타낸 도면이다. 여기서 단위캐패시턴스는 활성탄소에 코팅된 이산화망간의 무게에 대해 측정된 캐패시턴스값을 나누어서 표준화한 값을 의미한다.4 is a view illustrating a change in content ratio and unit capacitance of conductive carbon according to each type of conductive carbon while fixing a voltage scanning speed at 20 mV / sec with respect to a metal oxide electrode for a supercapacitor according to an embodiment of the present invention. Drawing. Here, unit capacitance means a standardized value obtained by dividing the measured capacitance value with respect to the weight of manganese dioxide coated on activated carbon.

도 4로부터 사용된 도전성 카본이 SUPER-P인 경우 단위 캐패시턴스값이 양호하게 나타났으며, 특히 그 함량이 40 중량% 및 60 중량%인 경우 300 F/g 이상의 단위캐패시턴스값을 나타냄을 알 수 있다.When the conductive carbon used in FIG. 4 is SUPER-P, the unit capacitance value was satisfactory. In particular, when the content is 40% by weight and 60% by weight, the unit capacitance value was 300 F / g or more. .

도 5는 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 달리하면서 종래기술과 비교한 단위캐패시턴스의 변화를 나타낸 도면이다. 즉, 도전성 카본으로 SUPER-P를 사용하고 함량비가 60 중량%일 때, 도전성 카본위에 이산화망간을 코팅한 후 제작된 전극과 도전성 카본을 이산화망간이 합성된 이후 단순히 물리적으로 혼합하여 제작된 전극간의 전압주사속도를 변화시키면서 단위캐패시턴스를 측정한 결과이다.5 is a view showing a change in unit capacitance compared to the prior art while varying the voltage scanning speed for the metal oxide electrode for the supercapacitor according to an embodiment of the present invention. That is, when SUPER-P is used as the conductive carbon and the content ratio is 60% by weight, voltage injection between the electrode manufactured by coating manganese dioxide on the conductive carbon and the electrode produced by simply physically mixing the conductive carbon after manganese dioxide is synthesized This is the result of measuring unit capacitance while changing the speed.

도 5로부터 각 전압주사속도에서 모두 도전성 카본위에 미리 이산화망간을 코팅한 경우에 높은 단위캐패시턴스를 얻을 수 있음을 알 수 있다.It can be seen from FIG. 5 that high unit capacitance can be obtained when manganese dioxide is coated on conductive carbon in advance at each voltage scanning speed.

도 6은 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대하여 전압주사속도를 고정한 채 종래기술과 비교한 CV 측정결과를 나타낸 도면이다.즉, 도전성 카본으로 SUPER-P를 사용하고 함량비가 60 중량%일 때, 도전성 카본위에 이산화망간을 코팅한 후 제작된 전극과 도전성 카본을 이산화망간이 합성된 이후 단순히 물리적으로 혼합하여 제작된 전극간에 대해 전압주사속도를 20 mV/sec로 고정한채 CV를 측정한 결과이다.6 is a view showing the results of CV measurements compared to the prior art while fixing the voltage scanning speed for the metal oxide electrode for the supercapacitor according to an embodiment of the present invention. When the ratio is 60% by weight, after the manganese dioxide is coated on the conductive carbon, the produced electrode and the conductive carbon are synthesized by simply mixing the manganese dioxide, and then physically mixed, and the CV is fixed at a voltage scan rate of 20 mV / sec. It is a result of a measurement.

도 6로부터 도전성 카본위에 미리 이산화망간을 코팅한 본 발명의 경우에 전압의 양극단에서 전류 반응성이 빠른 이상적이 슈퍼캐패시터의 성능을 나타냄을 알 수 있다.It can be seen from FIG. 6 that in the case of the present invention in which the manganese dioxide is coated on the conductive carbon in advance, the ideal performance of the supercapacitor having a high current reactivity at the anode end of the voltage is shown.

도 7은 본 발명의 일 실시예에 따른 슈퍼캐패시터용 금속산화물 전극에 대한 캐패시터의 성능을 측정한 결과도면이다. 즉 도전성 카본으로 SUPER-P를 사용하고 그 함량비가 60 중량%일 때 도전성 카본위에 이산화망간을 코팅한 전극을 이용하여 실제로 사용할 수 있는 캐패시터를 제작하여 캐패시터의 성능을 측정한 결과이며, 캐패시터는 2 V급이다.7 is a result of measuring the performance of the capacitor for the metal oxide electrode for the supercapacitor according to an embodiment of the present invention. In other words, when using SUPER-P as conductive carbon and the content ratio is 60% by weight, the capacitor can be actually used by using an electrode coated with manganese dioxide on the conductive carbon, and the performance of the capacitor is measured. Class.

도 7로부터 이상적인 캐패시터의 성능을 나타냄을 알 수 있다.It can be seen from FIG. 7 that the ideal capacitor performance is shown.

본 발명에 따르면, 슈퍼캐패시터용 전극물질로써, 망간산화물만을 사용하거나 도전성 카본을 단순히 혼합한 경우에 비하여 단위면적당 망간산화물의 로딩량이 크게 증대될 뿐만 아니라, 분산도의 측면에서도 크게 향상됨을 알 수 있다. 따라서 본 발명에 따른 전극은 도전성 카본과 이산화망간의 접촉면적의 증대 및 접촉강도의 향상으로 등가저항이 크게 감소하고, 높은 단위캐패시턴스를 갖기 때문에 고주파특성이 향상된다는 효과가 있다.According to the present invention, as the electrode material for the supercapacitor, the loading amount of manganese oxide per unit area is not only increased greatly but also in terms of dispersion degree as compared with the case of using only manganese oxide or simply mixing conductive carbon. . Accordingly, the electrode according to the present invention has the effect of greatly reducing the equivalent resistance by increasing the contact area between the conductive carbon and the manganese dioxide and improving the contact strength, and improving the high frequency characteristics because of the high unit capacitance.

이상의 본 발명의 실시예는 본 발명의 권리범위를 제한하는 것은 아니며, 본 발명의 사상의 범위내에서 다양한 변경 및 변화가 있음을 당업자에게 있어서는 당연한 것이다.The above embodiments of the present invention do not limit the scope of the present invention, and it is natural to those skilled in the art that various changes and modifications can be made within the scope of the spirit of the present invention.

Claims (7)

특정의 형상으로 제작된 슈퍼캐패시터용 금속산화물 전극에 있어서, 상기 전극은, 도전성 카본상에 코팅된 망간산화물의 분말입자와 이들을 결합시켜주는 바인더의 혼합물로 이루어진 것을 특징으로 하는 슈퍼캐패시터용 금속산화물 전극.A metal oxide electrode for a supercapacitor manufactured in a specific shape, wherein the electrode is made of a mixture of a powder particle of manganese oxide coated on a conductive carbon and a binder for bonding the metal oxide electrode for a supercapacitor. . 제 1 항에 있어서, 상기 바인더는 폴리테트라플루오로에틸렌(PTFE)으로서 5 중량% 혼합된 것을 특징으로 하는 슈퍼캐패시터용 금속산화물 전극.The metal oxide electrode as claimed in claim 1, wherein the binder is mixed with 5 wt% of polytetrafluoroethylene (PTFE). 제1항에 있어서, 상기 도전성 카본의 함량은 상기 망간산화물 분말입자의 총량에 대하여 20 내지 80 중량%가 되는 것을 특징으로 한 슈퍼캐패시터용 금속 산화물 전극.The metal oxide electrode as claimed in claim 1, wherein the conductive carbon is 20 to 80% by weight based on the total amount of the manganese oxide powder particles. 제1항에 있어서, 상기 망간산화물은 도전성 카본이 미리 분산된 수용액에 과망간산칼륨을 0.01 몰(mole) 첨가하여 도전성 카본의 표면에 흡착시킨 수용액과, 아세트산망간이 0.015 몰(mole) 첨가된 수용액을 반응시켜 형성된 것임을 특징으로 한 슈퍼캐패시터용 금속산화물 전극.The method of claim 1, wherein the manganese oxide is an aqueous solution in which potassium permanganate is added to the surface of the conductive carbon by adding 0.01 mol of potassium permanganate to an aqueous solution in which conductive carbon is dispersed in advance, and an aqueous solution in which 0.015 mol of manganese acetate is added. Metal oxide electrode for a supercapacitor, characterized in that formed by reacting. 탈이온수에 계면활성제를 첨가하여 녹이는 단계;Adding a surfactant to deionized water to dissolve it; 도전성 카본(conducting carbon) 분말을 상기 계면활성제가 녹은 수용액에분산시켜 도전성 카본 수용액을 준비하는 단계;Preparing a conductive carbon aqueous solution by dispersing a conductive carbon powder in an aqueous solution in which the surfactant is dissolved; 상기 도전성 카본 수용액에 과망간산칼륨(KMnO4)을 첨가하여 도전성 카본상에 과망간산칼륨을 흡착시킨 과망간산칼륨 수용액을 준비하는 단계;Preparing a potassium permanganate aqueous solution in which potassium permanganate is adsorbed on the conductive carbon by adding potassium permanganate (KMnO 4 ) to the conductive carbon aqueous solution; 아세트산망간(manganese acetate) 수용액을 준비하는 단계;Preparing an aqueous solution of manganese acetate; 상기 과망간산칼륨 수용액에 상기 아세트산망간 수용액을 혼합시켜 아몰퍼스상 망간산화물(a-MnO2·nH2O)을 형성하는 단계; 및Mixing the aqueous manganese acetate solution with the aqueous potassium permanganate solution to form an amorphous manganese oxide (a-MnO 2 .nH 2 O); And 상기 아몰퍼스상 망간산화물을 적출하여 슈퍼캐패시터용 전극을 제작하는 단계를 구비하여 이루어진 것을 특징으로 하는 슈퍼캐패시터용 금속산화물 전극의 제조 방법.And extracting the amorphous manganese oxide to fabricate an electrode for a supercapacitor. 제5항에 있어서, 상기 아몰퍼스상 망간산화물로부터 전극을 제작하는 단계는;The method of claim 5, wherein the preparing of the electrode from the amorphous manganese oxide comprises: 상기 아몰퍼스상 망간산화물의 분말입자를 상기 혼합된 수용액으로부터 필터링, 워싱 및 건조시켜 적출하는 단계;Filtering, washing and drying the amorphous particles of the powdered manganese oxide from the mixed aqueous solution; 상기 아몰퍼스상 망간산화물의 분말입자를 분쇄하는 단계;Pulverizing the powder particles of the amorphous manganese oxide; 상기 아몰퍼스상 망간산화물의 분쇄물에 바인더를 혼합하는 단계; 및Mixing a binder with the pulverized product of the amorphous manganese oxide; And 상기 혼합물을 특정 형상으로 형상화하여 전극을 형성하는 단계;Shaping the mixture into a specific shape to form an electrode; 를 구비하여 이루어지는 것을 특징으로 하는 슈퍼캐패시터용 금속산화물 전극의 제조 방법.Method for producing a metal oxide electrode for a supercapacitor comprising a. 제5항에 있어서, 상기 계면활성제는 폴리비닐피롤리돈(PVP)임을 특징으로 하는 슈퍼캐패시터용 금속산화물 전극의 제조 방법.The method of manufacturing a metal oxide electrode for a supercapacitor according to claim 5, wherein the surfactant is polyvinylpyrrolidone (PVP).
KR1019990039898A 1999-09-16 1999-09-16 Methal oxide electrode for supercapacitor and menufacturing method thereof KR100305436B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019990039898A KR100305436B1 (en) 1999-09-16 1999-09-16 Methal oxide electrode for supercapacitor and menufacturing method thereof
US09/514,366 US6339528B1 (en) 1999-09-16 2000-02-28 Metal oxide electrode for supercapacitor and manufacturing method thereof
JP2000080308A JP3978302B2 (en) 1999-09-16 2000-03-22 Metal oxide electrode for supercapacitor and method for producing the same
US09/971,652 US6616875B2 (en) 1999-09-16 2001-10-09 Manufacturing method for a metal oxide electrode for supercapacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990039898A KR100305436B1 (en) 1999-09-16 1999-09-16 Methal oxide electrode for supercapacitor and menufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20010025129A KR20010025129A (en) 2001-04-06
KR100305436B1 true KR100305436B1 (en) 2001-11-07

Family

ID=19611892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990039898A KR100305436B1 (en) 1999-09-16 1999-09-16 Methal oxide electrode for supercapacitor and menufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100305436B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508234B1 (en) * 2002-11-29 2005-08-17 주식회사 기노리텍 Manufacturing method of metaloxide for super capacitor and manufacturing methode of metaloxidic super capacitor
KR100765615B1 (en) * 2006-05-26 2007-10-09 현대자동차주식회사 Method of manufacturing electrochemical capacitors containing composite materials of manganese oxide and carbon nano tubes

Also Published As

Publication number Publication date
KR20010025129A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
Zhang et al. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes
Ede et al. One step synthesis of Ni/Ni (OH) 2 nano sheets (NSs) and their application in asymmetric supercapacitors
US6616875B2 (en) Manufacturing method for a metal oxide electrode for supercapacitor
US5797971A (en) Method of making composite electrode materials for high energy and high power density energy storage devices
Ng et al. Individual and bipolarly stacked asymmetrical aqueous supercapacitors of CNTs/SnO2 and CNTs/MnO2 nanocomposites
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
KR101812496B1 (en) Nano composite including graphene, and method for preparing the same
Ding et al. A high-capacity TiO 2/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte
KR102182496B1 (en) Electrochemical device electrode including cobalt oxyhydroxide
US11923582B2 (en) Hydrogen-based battery
Lee et al. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes
Yan et al. Energizing hybrid supercapacitors by using Mn 2+-based active electrolyte
Kozarenko et al. Effect of potential range on electrochemical performance of polyaniline as a component of lithium battery electrodes
Mohamed et al. An electrode for a high-performance asymmetric supercapacitor made of rGO/PANI/PB ternary nanocomposite
KR100305436B1 (en) Methal oxide electrode for supercapacitor and menufacturing method thereof
Eraković et al. Interactive promotion of supercapacitance of rare earth/CoO3-based spray pyrolytic perovskite microspheres hosting the hydrothermal ruthenium oxide
KR100305435B1 (en) Metal oxide electrode for supercapacitor and manufacturing method thereof
CN112420401B (en) Bismuth oxide/manganese oxide composite supercapacitor and preparation method thereof
CN110642293B (en) Oxygen vacancy Li 3 VO 4 Lithium ion battery cathode material and preparation method thereof
KR20210055217A (en) Method for producing carbon-manganese oxide catalyst for electrode for improving life characteristics, carbon-manganese oxide catalyst produced therefrom, electrode including the same, and energy storage device
Michael et al. Design of monolayer porous carbon-embedded hybrid-LiMnPO4 for high energy density Li-ion capacitors
JP2000124082A (en) Energy-storing element and manufacture thereof
KR101837556B1 (en) Electrode material for supercapacitor utilizing cobalt oxide-nanocarbon composite consolidated active-conducting materials structured core-shell quantum dots type and fabrication process thereof
Kim et al. Preparation and electrochemical performance of CNT electrode with deposited titanium dioxide for electrochemical capacitor
JP6709445B2 (en) Lithium air secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
G15R Request for early publication
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130528

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140617

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150616

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160712

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 18