KR100297668B1 - Method for forming metal oxide film - Google Patents

Method for forming metal oxide film Download PDF

Info

Publication number
KR100297668B1
KR100297668B1 KR1019980034369A KR19980034369A KR100297668B1 KR 100297668 B1 KR100297668 B1 KR 100297668B1 KR 1019980034369 A KR1019980034369 A KR 1019980034369A KR 19980034369 A KR19980034369 A KR 19980034369A KR 100297668 B1 KR100297668 B1 KR 100297668B1
Authority
KR
South Korea
Prior art keywords
oxide film
reactor
metal oxide
sccm
metal
Prior art date
Application number
KR1019980034369A
Other languages
Korean (ko)
Other versions
KR20000014785A (en
Inventor
이경수
고원용
강상원
Original Assignee
이경수
지니텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경수, 지니텍 주식회사 filed Critical 이경수
Priority to KR1019980034369A priority Critical patent/KR100297668B1/en
Publication of KR20000014785A publication Critical patent/KR20000014785A/en
Application granted granted Critical
Publication of KR100297668B1 publication Critical patent/KR100297668B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

반도체 소자에 필요한 금속산화물 막을 기판 상에 형성하는 방법에 관해 개시하고 있다. 본 발명의 금속 산화물 막 형성방법은, 금속 유기화합물 및 이에 대해 질소가 수소결합을 이루는 질소화합물 각각을 기체 상태로 만들어 금속산화물 막을 형성하기 위한 기체를 준비하는 단계와; 이 기체들을 기판에 접촉시키는 단계를 구비하는 것을 특징으로 한다. 본 발명에 따르면, 종래의 방법보다 더 낮은 온도에서 균일한 두께의 금속산화물 막을 형성하거나, 동일 온도에서 더 빨리 금속산화물 막을 형성할 수 있다.A method of forming a metal oxide film required for a semiconductor device on a substrate is disclosed. The method for forming a metal oxide film of the present invention comprises the steps of preparing a gas for forming a metal oxide film by making a metal organic compound and each of the nitrogen compounds in which nitrogen is hydrogen-bonded to a gas state; Contacting the substrates with the substrate. According to the present invention, a metal oxide film having a uniform thickness can be formed at a lower temperature than the conventional method, or a metal oxide film can be formed faster at the same temperature.

Description

금속산화물 막의 형성방법{METHOD FOR FORMING METAL OXIDE FILM}METHODS FOR FORMING METAL OXIDE FILM

본 발명은 기판 상에 막을 형성하는 방법에 관한 것으로, 특히 반도체 소자에 필요한 금속산화물 막을 기판 상에 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a film on a substrate, and more particularly to a method of forming a metal oxide film required for a semiconductor device on a substrate.

반도체 소자를 만드는 데 있어서, 유전막은 여러 용도로 이용된다. 특히, 반도체 소자의 커패시터용 유전막으로는, 현재 SiO2막 또는 SiO2/Si3N4의 복합막이 널리 쓰이고 있으나, DRAM(Dynamic Random Access Memory) 또는 FeRAM(Ferroelectric Random Access Memory) 등의 반도체 소자의 집적도 증가에 따라 더 높은 유전률을 갖는 물질, 예컨대 Ta2O5, Pb(Zr,Ti)O4, TiO2등의 고유전 금속산화물 막이 사용될 것이다.In making semiconductor devices, dielectric films are used for various purposes. Particularly, as a dielectric film for a capacitor of a semiconductor device, a SiO 2 film or a composite film of SiO 2 / Si 3 N 4 is widely used. However, a semiconductor device such as DRAM (Dynamic Random Access Memory) or FeRAM (Ferroelectric Random Access Memory) is used. As the degree of integration increases, materials with higher dielectric constants such as Ta 2 O 5 , Pb (Zr, Ti) O 4 , TiO 2, etc. will be used.

반도체 공정에서 화학증착법으로 금속산화물 막을 형성할 경우, 비교적 낮은 온도에서도 금속산화물 막을 만들 수 있는 금속의 알킬산, 디케톤산 화합물과 같은 금속 유기화합물(metal-organic compound)을 금속의 원료로 사용한다. 산소를 포함한 이소프로필산티탄과 같은 금속의 알킬산 화합물만을 원료로 써서도 금속 산화물 막을 화학증착할 수 있으나, 이렇게 형성한 산화물 막에는 많은 탄소가 함유되는경향이 있기 때문에, 통상적으로 금속의 알킬산 또는 디케톤산 화합물과 함께 O2등의 산소 원료를 함께 사용하여 금속산화물을 화학증착한다. 그러나, 300℃ 이하의 낮은 온도에서 금속산화물 막을 증착하고자 할 경우에는, O2의 반응성이 낮아서 막이 너무 천천히 성장하는 문제가 있다.In the case of forming a metal oxide film by chemical vapor deposition in a semiconductor process, metal-organic compounds such as alkyl acid and diketone acid compound of a metal that can make a metal oxide film even at a relatively low temperature are used as a metal raw material. Although the metal oxide film can be chemically deposited using only an alkyl acid compound of a metal such as titanium isopropyl acid as a raw material, the oxide film thus formed tends to contain a large amount of carbon. Alternatively, a metal oxide is chemically deposited using an oxygen source such as O 2 together with a diketone acid compound. However, when the metal oxide film is to be deposited at a low temperature of 300 ° C. or lower, there is a problem that the film is grown too slowly due to low reactivity of O 2 .

한편, 박막을 이루는 성분 원소의 원료를 동시에 공급하는 통상의 화학증착법과는 달리 원료를 순차적으로 공급하면 기판 표면의 화학반응에 의해서만 박막을 형성할 수 있기 때문에 기판 표면의 요철에 관계없이 균일한 두께의 박막을 성장시킬 수 있다. T. 순톨라와 M. 심프슨이 편집한 책 "원자층 적층 성장"에 이 방법이 잘 설명되어 있다 (참고자료: T. Suntola and M. Simpson eds.Atomic Layer Epitaxy, Blackie, London (1990)). 이에 따르면, 예컨대 SiCl4와 H2O를 순차적으로 기판 상에 공급하여, 다음의 화학식 1 및 2로 표현되는 반쪽 반응을 차례로 일으켜 SiO2막을 형성할 수 있다.On the other hand, unlike the conventional chemical vapor deposition method of simultaneously supplying the raw materials of the constituent elements constituting the thin film, if the raw materials are sequentially supplied, the thin film can be formed only by the chemical reaction on the surface of the substrate. The thin film of can be grown. This is illustrated in the book "Atomic Layer Growth" edited by T. Suntola and M. Simpson (see Resources: T. Suntola and M. Simpson eds. Atomic Layer Epitaxy , Blackie, London (1990)). . According to this, for example, SiCl 4 and H 2 O may be sequentially supplied onto the substrate, and the half reactions represented by the following Chemical Formulas 1 and 2 may be sequentially generated to form SiO 2 films.

Si-OH*+ SiCl4→ SiO-Si-Cl3 *+ HClSi-OH * + SiCl 4 → SiO-Si-Cl 3 * + HCl

Si-Cl*+ H2O → Si-OH*+ HClSi-Cl * + H 2 O → Si-OH * + HCl

여기서, 별표로 표시한 것은 막 표면에 고정된 화학종을 나타낸다. 그런데,SiCl4와 H2O만을 순차적으로 공급하여 SiO2막을 형성하려면 기판을 300℃ 이상의 온도로 가열하여야 한다.Here, the asterisks indicate chemical species immobilized on the membrane surface. However, in order to form SiO 2 film by sequentially supplying only SiCl 4 and H 2 O, the substrate should be heated to a temperature of 300 ° C. or higher.

한편, 최근에 J. W. 클라우스 등은 반응에 직접 참여하지 않는 피리딘을 SiCl4, H2O와 함께 공급하여 17℃에서도 SiO2막을 형성할 수 있다고 보고하였다(참고자료: J. W. Klaus, O. Sneh, and S. M. George, "촉매된 순차 반쪽 반응을 이용하여 상온에서 산화실리콘 성장(Growth of SiO2at Room Temperature with the Use of Catalyzed Sequential Half-Reactions)", 사이언스(Science), Vol. 278, p 1934 (1997)). 이들은 피리딘을 첨가한 경우 활성화 에너지가 피리딘을 첨가하지 않은 경우의 것보다 작은 것을 확인하였으며, 이것이 화학증착에 기체 상태의 촉매를 이용한 최초의 예라고 주장하였다. 즉, 피리딘이 H2O와 수소결합을 하여 산소와 수소 사이의 결합을 약하게 해서 활성화 에너지를 낮춘다고 추정하였다.On the other hand, JW Klaus et al. Recently reported that pyridine, which does not directly participate in the reaction, can be fed with SiCl 4 , H 2 O to form SiO 2 films at 17 ° C. (Reference: JW Klaus, O. Sneh, and SM George, "Growth of SiO 2 at Room Temperature with the Use of Catalyzed Sequential Half-Reactions," Science, Vol. 278, p 1934 (1997 )). They found that the activation energy was lower when pyridine was added than that without pyridine, and this was the first example of using a gaseous catalyst for chemical vapor deposition. In other words, it was estimated that pyridine lowered the activation energy by weakening the bond between oxygen and hydrogen by hydrogen bonding with H 2 O.

그런데, 클라우스 등이 사용한 방법, 즉 원료를 기판에 순차적으로 공급하는 화학증착법은 원료를 동시에 공급하는 화학증착법에 비해 막의 성장 속도가 훨씬 느리기 때문에 막을 빨리 형성할 필요가 있는 곳에는 적용할 수 없다. 또한, 이 방법은 기판에 SiCl4와 H2O를 공급하여 SiO2막을 형성하는 공정에 적용된 것으로서, H2O는 진공 장치에서 배기가 잘 되지 않는다는 문제점이 있다. 또한, 반응가스로 사용하는 염소화합물인 SiCl4는 부식성이 있어 사용하기 불편하다는 문제점도 있다.However, the method used by Klaus et al., Ie, the chemical vapor deposition method of sequentially supplying the raw materials to the substrate, is much slower than the chemical vapor deposition method of simultaneously supplying the raw materials, and thus cannot be applied where the film needs to be formed quickly. In addition, this method is applied to a process of forming a SiO 2 film by supplying SiCl 4 and H 2 O to a substrate, there is a problem that H 2 O is not exhausted well in a vacuum apparatus. In addition, SiCl 4 , a chlorine compound used as a reaction gas, has a problem in that it is inconvenient to use because it is corrosive.

따라서, 본 발명의 기술적 과제는 낮은 기판 온도에서도 충분히 빨리 금속 산화물 막을 형성할 수 있는 방법을 제공하는 데 있다.It is therefore an object of the present invention to provide a method capable of forming a metal oxide film quickly enough even at a low substrate temperature.

본 발명의 다른 기술적 과제는 반도체 기판 표면의 요철에도 불구하고 균일한 두께의 금속산화물 막을 형성할 수 있는 방법을 제공하는 데 있다.Another technical problem of the present invention is to provide a method capable of forming a metal oxide film having a uniform thickness in spite of irregularities on the surface of a semiconductor substrate.

상기한 기술적 과제를 달성하기 위한 본 발명의 금속산화물 막 형성방법은, 금속 유기화합물인 알킬산금속의 증기와, 상기 알킬산금속에 수소결합할 수 있는 질소성분을 함유하는 질소화합물기체를 기판에 접촉시켜 화학기상증착방법으로 금속산화막을 형성하는 것을 특징으로 한다.The metal oxide film forming method of the present invention for achieving the above technical problem, a nitrogen compound gas containing a vapor of the metal metal alkyl compound, a metal organic compound and a nitrogen component capable of hydrogen bonding to the metal alkyl acid on the substrate. It is characterized in that the metal oxide film is formed by contact with each other by chemical vapor deposition.

상기 질소화합물기체로써 암모니아기체를 사용할 수 있다. 그리고, 상기 알킬산금속의 증기와 상기 질소화합물기체를 상기 기판에 동시에 접촉시킬 수도 있으며, 서로 교대로 접촉시킬 수도 있다.As the nitrogen compound gas, ammonia gas may be used. The vapor of the alkyl acid metal and the nitrogen compound gas may be brought into contact with the substrate at the same time, or may be brought into contact with each other in turn.

산화티탄 막을 형성하고자 하는 경우에는 상기 알킬산금속으로써 이소프로필산티탄을 사용할 수 있으며, 산화탄탈 막을 형성하고자 하는 경우에는 상기 알킬산금속으로써 에틸산탄탈을 사용할 수 있다.In the case where a titanium oxide film is to be formed, titanium isopropyl acid can be used as the metal alkylate, and in the case where a tantalum oxide film is to be formed, tantalum ethyl carbonate can be used as the metal alkylate.

이하, 본 발명의 바람직한 실시예와 이에 대한 비교예에 대해 설명하기로 한다.Hereinafter, preferred embodiments of the present invention and comparative examples thereof will be described.

[실시예 1]Example 1

스테인레스 스틸로 제작한 반응기에 실리콘 기판을 넣고 300℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤기체를 100sccm의 유속으로 버블링(bubbling)하여 티탄 원료를 반응기로 공급하고 알곤 기체와 암모니아기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하여 산화티탄막을 형성하였다. 이 때, 산화티탄막에는 암모니아기체에 포함되어 있는 질소성분이 소량 포함되게 된다. 증착 후, 계측장비인 엘립소미터(ellipsometer)로 측정한 막의 두께는 39.6㎚, 굴절률은 2.2이었다.A silicon substrate was placed in a reactor made of stainless steel and heated to 300 ° C. Maintain the pressure of the reactor at 10 Torr, bubbling argon gas at a flow rate of 100 sccm to isopropyl acid heated to 60 ° C. to supply the titanium raw material to the reactor, and argon gas and ammonia gas to 50 sccm and 100 sccm, respectively. The titanium oxide film was formed by feeding the reactor for 30 minutes at a flow rate. At this time, the titanium oxide film contains a small amount of nitrogen contained in the ammonia gas. After the deposition, the film was 39.6 nm thick and had a refractive index of 2.2, measured with an ellipsometer.

[비교예 1]Comparative Example 1

실시예 1의 반응기에 실리콘 기판을 넣고 300℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤 기체를 100sccm의 유속으로 버블링하여 티탄 원료를 반응기로 공급하고 알곤 기체와 산소기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 6.9㎚, 굴절률은 2.0이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 300 ° C. The pressure of the reactor was maintained at 10 Torr, and the titanium raw material was fed to the reactor by bubbling argon gas at a flow rate of 100 sccm in isopropyl acid heated to 60 ° C. and argon gas and oxygen gas were flowed at a flow rate of 50 sccm and 100 sccm, respectively. The reactor was fed for minutes. After evaporation, the film had a thickness of 6.9 nm and a refractive index of 2.0 as measured by an ellipsometer.

[실시예 2]Example 2

실시예 1의 반응기에 실리콘 기판을 넣고 330℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤 기체를 100sccm의 유속으로 버블링(bubbling)하여 티탄 원료를 반응기로 공급하고 알곤 기체와 암모니아기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하여 산화티탄 막을 형성하였다. 이 때, 산화티탄 막에는 실시예 1에서 상술한 바와 같이 질소성분이 불순물로써 포함되게 된다. 증착 후, 엘립소미터로 측정한 막의 두께는 54.8㎚, 굴절률은 2.5이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 330 ° C. The reactor pressure was maintained at 10 Torr, and argon gas heated to 60 ° C. was bubbled with argon gas at a flow rate of 100 sccm to supply titanium raw material to the reactor, and argon gas and ammonia gas of 50 sccm and 100 sccm, respectively. The reactor was fed at a flow rate for 30 minutes to form a titanium oxide film. At this time, the titanium oxide film contains a nitrogen component as an impurity as described in the first embodiment. After evaporation, the film had a thickness of 54.8 nm and a refractive index of 2.5, measured by an ellipsometer.

[비교예 2]Comparative Example 2

실시예 1의 반응기에 실리콘 기판을 넣고 330℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤 기체를 100sccm의 유속으로 버블링하여 티탄 원료를 반응기로 공급하고 알곤 기체와 산소기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하여 산화티탄 막을 증착하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 16.0㎚, 굴절률은 2.4이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 330 ° C. The pressure of the reactor was maintained at 10 Torr, and the titanium raw material was fed to the reactor by bubbling argon gas at a flow rate of 100 sccm in isopropyl acid heated to 60 ° C. and argon gas and oxygen gas were flowed at a flow rate of 50 sccm and 100 sccm, respectively. A titanium oxide film was deposited by feeding the reactor for minutes. After vapor deposition, the film thickness measured by an ellipsometer was 16.0 nm and the refractive index was 2.4.

[실시예 3]Example 3

실시예 1의 반응기에 실리콘 기판을 넣고 350℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤 기체를 100sccm의 유속으로 버블링(bubbling)하여 티탄 원료를 반응기로 공급하고 알곤 기체와 암모니아기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하여 실시예 1과 마찬가지로 산화티탄 막을 증착하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 72.1㎚, 굴절률은 2.7이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 350 ° C. The reactor pressure was maintained at 10 Torr, and argon gas heated to 60 ° C. was bubbled with argon gas at a flow rate of 100 sccm to supply titanium raw material to the reactor, and argon gas and ammonia gas of 50 sccm and 100 sccm, respectively. The titanium oxide film was deposited in the same manner as in Example 1 by supplying the reactor for 30 minutes at a flow rate. After vapor deposition, the film thickness measured by an ellipsometer was 72.1 nm and the refractive index was 2.7.

[비교예 3]Comparative Example 3

실시예 1의 반응기에 실리콘 기판을 넣고 350℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 알곤 기체를 100sccm의 유속으로 버블링하여 티탄 원료를 반응기로 공급하고 알곤 기체와 산소기체를 각각 50sccm과 100sccm의 유속으로 30분 동안 반응기에 공급하여 산화티탄 막을 증착하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 55.7㎚, 굴절률은 2.4이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 350 ° C. The pressure of the reactor was maintained at 10 Torr, and the titanium raw material was fed to the reactor by bubbling argon gas at a flow rate of 100 sccm in isopropyl acid heated to 60 ° C. and argon gas and oxygen gas were flowed at a flow rate of 50 sccm and 100 sccm, respectively. A titanium oxide film was deposited by feeding the reactor for minutes. After vapor deposition, the film thickness measured by an ellipsometer was 55.7 nm and the refractive index was 2.4.

[실시예 4]Example 4

실시예 1의 반응기에 실리콘 기판을 넣고 300℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 버블링한 알곤 기체를 100sccm의 유속으로 10초, 티탄원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 10초, 암모니아기체를 100sccm의 유속으로 10초, 티탄원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 10초 동안 순차적으로 반응기에 공급하는 것을 30분 동안 반복하여 산화티탄 막을 형성하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 23.9㎚, 굴절률은 2.4이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 300 ° C. The pressure of the reactor was maintained at 10 Torr, argon gas bubbled in titanium isopropyl acid heated to 60 ° C. for 10 seconds at a flow rate of 100 sccm, argon gas not passed through titanium raw material at a flow rate of 100 sccm for 10 seconds, and ammonia gas. 10 seconds at a flow rate of 100 sccm, the argon gas not passed through the titanium raw material was sequentially supplied to the reactor for 10 seconds at a flow rate of 100 sccm for 30 minutes to form a titanium oxide film. After vapor deposition, the film thickness measured by an ellipsometer was 23.9 nm and the refractive index was 2.4.

[비교예 4][Comparative Example 4]

실시예 1의 반응기에 실리콘 기판을 넣고 300℃로 가열하였다. 반응기의 압력을 10Torr로 유지하며, 60℃로 가열한 이소프로필산티탄에 버블링한 알곤 기체를 100sccm의 유속으로 10초, 티탄원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 10초, 산소기체를 100sccm의 유속으로 10초, 티탄원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 10초 동안 순차적으로 반응기에 공급하는 것을 30분 동안 반복하여 산화티탄막을 형성하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 6.9㎚, 굴절률은 2.0이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 300 ° C. The pressure of the reactor was maintained at 10 Torr, argon gas bubbled in titanium isopropyl acid heated to 60 ° C. for 10 seconds at a flow rate of 100 sccm, argon gas not passed through titanium raw material at a flow rate of 100 sccm for 10 seconds, and an oxygen gas. 10 seconds at a flow rate of 100 sccm, argon gas not passed through the titanium raw material was sequentially supplied for 10 seconds at a flow rate of 100 sccm for 10 minutes to form a titanium oxide film. After evaporation, the film had a thickness of 6.9 nm and a refractive index of 2.0 as measured by an ellipsometer.

[실시예 5]Example 5

실시예 1의 반응기에 실리콘 기판을 넣고 265℃로 가열하였다. 반응기의 압력을 7.5Torr로 유지하며, 135℃로 가열한 에틸산탄탈에 알곤 기체를 100sccm의 유속으로 버블링하여 탄탈 원료를 반응기로 공급하고 암모니아기체 100sccm을 동시에30분 동안 반응기에 공급하여 산화탄탈 막을 형성하였다. 이 때 오제전자분광법으로 산화탄탈막의 조성을 분석한 결과 탄탈:산소:탄소:질소의 비가 약 35:51:5:12로 측정되었다. 여기서, 탄소성분은 에틸산탄탈에 포함되어 있던 탄소성분이 화학기상증착과정에서 박막내에 포함되게 된 것이다. 증착 후, 엘립소미터로 측정한 막의 두께는 37.9㎚이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 265 ° C. The pressure of the reactor is maintained at 7.5 Torr, and argon gas is bubbled into the ethyl tantalum heated to 135 ° C. at a flow rate of 100 sccm to supply a tantalum raw material to the reactor, and 100 sccm of ammonia gas is simultaneously supplied to the reactor for tantalum oxide. A film was formed. As a result of analyzing the composition of the tantalum oxide film by Auger electron spectroscopy, the ratio of tantalum: oxygen: carbon: nitrogen was determined to be about 35: 51: 5: 12. Here, the carbon component is that the carbon component contained in tantalum ethyl carbonate is included in the thin film during the chemical vapor deposition process. After the deposition, the thickness of the film measured by ellipsometer was 37.9 nm.

[비교예 5][Comparative Example 5]

실시예 1의 반응기에 실리콘 기판을 넣고 265℃로 가열하였다. 반응기의 압력을 7.5Torr로 유지하며, 135℃로 가열한 에틸산탄탈에 알곤 기체를 100sccm의 유속으로 버블링하여 탄탈 원료를 반응기로 공급하고 산소기체 100sccm을 동시에 30분 동안 반응기에 공급하였다. 이 조건에서는 실리콘 기판에 막이 증착되지 않았다.A silicon substrate was placed in a reactor of Example 1 and heated to 265 ° C. The pressure of the reactor was maintained at 7.5 Torr, argon gas was bubbled into the ethyl tantalum heated to 135 ° C. at a flow rate of 100 sccm, and a tantalum raw material was supplied to the reactor, and 100 sccm of oxygen gas was simultaneously supplied to the reactor for 30 minutes. Under this condition, no film was deposited on the silicon substrate.

[실시예 6]Example 6

실시예 1의 반응기에 실리콘 기판을 넣고 350℃로 가열하였다. 반응기의 압력을 7.5Torr로 유지하며, 135℃로 가열한 에틸산탄탈에 알곤 기체를 100sccm의 유속으로 버블링하여 탄탈 원료를 반응기로 공급하고 암모니아기체 100sccm을 동시에 30분 동안 반응기에 공급하여 실시예 5와 같이 산화탄탈막을 형성하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 220㎚이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 350 ° C. The pressure of the reactor was maintained at 7.5 Torr, argon gas heated to 135 ° C. was bubbled with argon gas at a flow rate of 100 sccm to supply tantalum raw material to the reactor, and 100 sccm of ammonia gas was simultaneously supplied to the reactor for 30 minutes. A tantalum oxide film was formed as shown in 5. After the deposition, the thickness of the film measured by an ellipsometer was 220 nm.

[비교예 6]Comparative Example 6

실시예 1의 반응기에 실리콘 기판을 넣고 350℃로 가열하였다. 반응기의 압력을 7.5Torr로 유지하며, 135℃로 가열한 에틸산탄탈에 알곤 기체를 100sccm의 유속으로 버블링하여 탄탈 원료를 반응기로 공급하고 산소기체 100sccm을 동시에 30분 동안 반응기에 공급하여 산화탄탈막을 형성하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 40.3㎚이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 350 ° C. The pressure of the reactor is maintained at 7.5 Torr, and argon gas is bubbled into the ethyl tantalum heated to 135 ° C. at a flow rate of 100 sccm to supply a tantalum raw material to the reactor, and 100 sccm of oxygen gas is simultaneously supplied to the reactor for tantalum oxide. A film was formed. After the deposition, the film thickness measured by an ellipsometer was 40.3 nm.

[실시예 7]Example 7

실시예 1의 반응기에 실리콘 기판을 넣고 250℃로 가열하였다. 반응기의 압력을 7.5Torr로 유지하며, 135℃로 가열한 에틸산탄탈에 버블링한 알곤 기체를 100sccm의 유속으로 20초, 탄탈원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 5초, 암모니아기체를 100sccm의 유속으로 5초, 탄탈원료를 통과시키지 않은 알곤 기체를 100sccm의 유속으로 5초 동안 순차적으로 반응기에 공급하는 것을 30분 동안 반복하여 산화탄탈막을 형성하였다. 증착 후, 엘립소미터로 측정한 막의 두께는 4.4㎚이었다.A silicon substrate was placed in a reactor of Example 1 and heated to 250 ° C. The pressure of the reactor was maintained at 7.5 Torr, and argon gas bubbled in ethyl tantalum heated to 135 ° C. was flowed at 100 sccm for 20 seconds, argon gas was not passed through tantalum raw material at 100 sccm for 5 seconds, and ammonia gas was used. 5 seconds at a flow rate of 100 sccm, argon gas not passed through the tantalum material was sequentially supplied to the reactor for 5 seconds at a flow rate of 100 sccm for 30 minutes to form a tantalum oxide film. After the deposition, the thickness of the film measured by an ellipsometer was 4.4 nm.

상기한 바와 같은 실시예 및 비교예를 아래의 표 1에 정리하였다.Examples and comparative examples as described above are summarized in Table 1 below.

기판 온도Substrate temperature 반응기 압력Reactor pressure 금속유기화합물Metal Organic Compound 공급기체Gas supply 공급방법Supply method 막 두께Film thickness 실시예 1Example 1 300℃300 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 암모니아ammonia 동시The same time 39.6㎚39.6 nm 비교예 1Comparative Example 1 300℃300 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 산소Oxygen 동시The same time 6.9㎚6.9 nm 실시예 2Example 2 330℃330 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 암모니아ammonia 동시The same time 54.8㎚54.8 nm 비교예 2Comparative Example 2 330℃330 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 산소Oxygen 동시The same time 16.0㎚16.0 nm 실시예 3Example 3 350℃350 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 암모니아ammonia 동시The same time 72.1㎚72.1 nm 비교예 3Comparative Example 3 350℃350 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 산소Oxygen 동시The same time 55.7㎚55.7 nm 실시예 4Example 4 300℃300 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 암모니아ammonia 순차Sequential 23.9㎚23.9 nm 비교예 4Comparative Example 4 300℃300 ℃ 10 Torr10 Torr 이소프로필산티탄Isopropyl Titanium 산소Oxygen 순차Sequential 6.9㎚6.9 nm 실시예 5Example 5 265℃265 ℃ 7.5 Torr7.5 Torr 에틸산탄탈Tantalum ethyl 암모니아ammonia 동시The same time 37.9㎚37.9 nm 비교예 5Comparative Example 5 265℃265 ℃ 7.5 Torr7.5 Torr 에틸산탄탈Tantalum ethyl 산소Oxygen 동시The same time 0㎚0 nm 실시예 6Example 6 350℃350 ℃ 7.5 Torr7.5 Torr 에틸산탄탈Tantalum ethyl 암모니아ammonia 동시The same time 220㎚220 nm 비교예 6Comparative Example 6 350℃350 ℃ 7.5 Torr7.5 Torr 에틸산탄탈Tantalum ethyl 산소Oxygen 동시The same time 40.3㎚40.3 nm 실시예 7Example 7 250℃250 ℃ 7.5 Torr7.5 Torr 에틸산탄탈Tantalum ethyl 암모니아ammonia 순차Sequential 4.4㎚4.4 nm

표 1을 참조하면, 다른 조건이 동일한 경우, 질소화합물인 암모니아를 공급한 경우가 그렇지 않은 경우에 비해 빠른 막 성장 속도를 나타냄을 알 수 있다. 또한, 원료 기체를 동시에 공급하는 경우가 순차 공급의 경우에 비해 빠른 막 성장 속도를 나타내었다. 그런데, 원료를 순차적으로 공급하는 화학증착법의 경우 기판의 온도가 사용하는 금속원료의 자체 열분해 온도보다 높으면 기상반응(氣相反應)이 일어나서 원료의 확산이 막의 성장에 영향을 주기 때문에 요철이 심한 표면에 균일한 두께의 막을 얻기 어렵다.Referring to Table 1, it can be seen that when the other conditions are the same, the case where ammonia, which is a nitrogen compound, is supplied, shows a faster film growth rate than when it is not. In addition, the simultaneous feed of the source gas showed a faster film growth rate than the sequential feed. However, in the case of the chemical vapor deposition method of supplying raw materials sequentially, if the substrate temperature is higher than the thermal decomposition temperature of the metal raw material used, a gas phase reaction occurs and the diffusion of the raw materials affects the growth of the film. It is difficult to obtain a film of uniform thickness.

또한, 기체를 순차 공급할 경우가 동시 공급의 경우에 비해 증착 속도가 낮다는 것이 확인되었으나, 순차 공급의 이점은 기판 표면의 요철이 심한 경우에도 단차 피복성(step coverage)이 우수한 박막을 증착할 수 있다는 것이기 때문에, 기판의 표면에 따라 순차 공급 공정 및 동시 공급 공정이 모두 박막 증착 공정으로서 유효하게 사용될 수 있다.In addition, it was confirmed that the deposition rate is lower when the gas is sequentially supplied than the simultaneous feeding, but the advantage of the sequentially feeding is that even when the uneven surface of the substrate surface is severe, it is possible to deposit a thin film having excellent step coverage. Since it is present, both the sequential supply process and the simultaneous supply process can be effectively used as the thin film deposition process depending on the surface of the substrate.

따라서, 자체 열분해 온도가 낮은 금속 유기화합물을 원료로 써서 균일한 두께의 금속산화물 막을 만들고자 할 경우, 수소결합을 할 수 있는 질소화합물과 금속 유기화합물을 교대로 공급해서 금속 유기화합물의 열분해 온도보다 낮은 기판 온도에서 균일한 두께의 금속산화물 막을 성장시킬 수 있었다. 상기한 질소화합물과 금속 유기화합물의 기체와 더불어 산소 기체를 동시 또는 순차적으로 공급하여 박막을 형성시킬 수도 있다.Therefore, in order to make a metal oxide film having a uniform thickness by using a metal organic compound having a low self-decomposition temperature as a raw material, it is lower than the thermal decomposition temperature of the metal organic compound by supplying nitrogen compound and metal organic compound which can be hydrogen-bonded alternately. It was possible to grow a metal oxide film of uniform thickness at the substrate temperature. A thin film may be formed by simultaneously or sequentially supplying oxygen gas together with the gas of the nitrogen compound and the metal organic compound.

실시예와 클라우스 등의 결과로부터 질소가 수소결합을 할 수 있는 암모니아의 유도체나 질소를 포함한 다른 헤테로고리 화합물도 암모니아와 동일한 역할을 수행할 것이 기대된다.From the results of Example and Klaus et al., It is expected that derivatives of ammonia and other heterocyclic compounds including nitrogen capable of hydrogen bonding to nitrogen also play the same role as ammonia.

따라서, 본 발명의 따르면, 종래의 방법보다 더 낮은 온도에서 균일한 두께의 금속산화물 막을 형성하거나, 동일 온도에서 더 빨리 금속산화물 막을 형성할 수 있다.Therefore, according to the present invention, it is possible to form a metal oxide film of uniform thickness at a lower temperature than the conventional method, or to form a metal oxide film faster at the same temperature.

Claims (5)

알킬산금속의 증기와, 상기 알킬산금속에 수소결합할 수 있는 질소성분을 함유하는 질소화합물기체를 기판에 접촉시켜 화학기상증착방법으로 금속산화막을 형성하는 것을 특징으로 하는 금속산화물 막의 형성방법.A method of forming a metal oxide film, comprising forming a metal oxide film by chemical vapor deposition by contacting a substrate with a nitrogen compound gas containing a vapor of an alkyl acid metal and a nitrogen component capable of hydrogen bonding to the alkyl acid metal. 제1항에 있어서, 상기 질소화합물기체가 암모니아기체인 것을 특징으로 하는 금속산화물 막의 형성 방법.The method for forming a metal oxide film according to claim 1, wherein the nitrogen compound gas is an ammonia gas. 제1항에 있어서, 상기 알킬산금속의 증기와, 상기 질소화합물기체가 상기 기판에 동시에 접촉되는 것을 특징으로 하는 금속산화물 막의 형성 방법.The method of claim 1, wherein the vapor of the metal alkylate and the nitrogen compound gas are in contact with the substrate at the same time. 제1항에 있어서, 상기 알킬산금속의 증기와, 상기 질소화합물기체가 상기 기판에 교대로 접촉되는 것을 특징으로 하는 금속산화물 막의 형성 방법.The method of claim 1, wherein the vapor of the metal alkylate and the nitrogen compound gas alternately contact the substrate. 제1항에 있어서, 상기 알킬산금속이 이소프로필산티탄 또는 에틸산탄탈인 것을 특징으로 하는 금속산화물 막의 형성 방법.The method for forming a metal oxide film according to claim 1, wherein the metal alkylate is titanium isopropyl acid or tantalum ethyl acetate.
KR1019980034369A 1998-08-25 1998-08-25 Method for forming metal oxide film KR100297668B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980034369A KR100297668B1 (en) 1998-08-25 1998-08-25 Method for forming metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980034369A KR100297668B1 (en) 1998-08-25 1998-08-25 Method for forming metal oxide film

Publications (2)

Publication Number Publication Date
KR20000014785A KR20000014785A (en) 2000-03-15
KR100297668B1 true KR100297668B1 (en) 2001-08-07

Family

ID=19548150

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980034369A KR100297668B1 (en) 1998-08-25 1998-08-25 Method for forming metal oxide film

Country Status (1)

Country Link
KR (1) KR100297668B1 (en)

Also Published As

Publication number Publication date
KR20000014785A (en) 2000-03-15

Similar Documents

Publication Publication Date Title
KR100287174B1 (en) Method for synthesis of thin film of multi-element oxide and nitride
US6319832B1 (en) Methods of making semiconductor devices
US8501637B2 (en) Silicon dioxide thin films by ALD
TWI398543B (en) Atomic layer deposition systems and methods including metal beta-diketiminate compounds
KR20020002579A (en) A method for forming zirconium oxide film using atomic layer deposition
KR20000022003A (en) Method for forming three-components compound comprising metal and silicon
JP2005277426A (en) Thin-film formation method
JP2001527282A (en) Method for selectively depositing bismuth-based ferroelectric films
EP1664374B1 (en) Atomic layer deposition methods of forming silicon dioxide comprising layers
US20030091740A1 (en) Forming ferroelectric Pb (Zr, Ti)O3 films
KR100510473B1 (en) Method for forming upper electrode of a capacitor using ALD
JP3488007B2 (en) Thin film forming method, semiconductor device and manufacturing method thereof
KR101372162B1 (en) Method for making oriented tantalum pentoxide films
KR100297668B1 (en) Method for forming metal oxide film
NL8500645A (en) METHOD FOR depositing a layer consisting essentially of silicon carbide on a substrate
JP3176069B2 (en) Method of forming titanium monophosphide layer and use thereof
KR100531464B1 (en) A method for forming hafnium oxide film using atomic layer deposition
KR100414871B1 (en) Method for forming group ⅸ metal layer using atomic layer deposition
KR100699362B1 (en) Atomic Layer Deposition Method using Plasma
JP2024514693A (en) Deposition of vanadium-containing films
Tanimoto et al. A high rate of chemical vapor deposition of tantalum pentoxide film initiated by photoexcitation
JP3969206B2 (en) Production of PZT thin films by chemical vapor deposition
JPH09110429A (en) Production of thin film of bismuth-containing laminar ferroelectric
JPH09110430A (en) Production of thin film of bismuth-containing laminar ferroelectric
JP2006161097A (en) Thin-film-forming method and thin-film-forming apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140508

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170420

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 18

EXPY Expiration of term