KR100292331B1 - 플루오로탁솔 - Google Patents

플루오로탁솔 Download PDF

Info

Publication number
KR100292331B1
KR100292331B1 KR1019930011874A KR930011874A KR100292331B1 KR 100292331 B1 KR100292331 B1 KR 100292331B1 KR 1019930011874 A KR1019930011874 A KR 1019930011874A KR 930011874 A KR930011874 A KR 930011874A KR 100292331 B1 KR100292331 B1 KR 100292331B1
Authority
KR
South Korea
Prior art keywords
compound
formula
mmol
fluoro
mixture
Prior art date
Application number
KR1019930011874A
Other languages
English (en)
Other versions
KR940005605A (ko
Inventor
슈-휘첸
비토리오파리나
돌라트레이바이아스
죠이딥칸트
Original Assignee
스티븐 비. 데이비스
브리스톨-마이어스스퀴브컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/996,445 external-priority patent/US5305523A/en
Priority claimed from US08/029,819 external-priority patent/US5254580A/en
Priority claimed from US08/062,687 external-priority patent/US5294637A/en
Application filed by 스티븐 비. 데이비스, 브리스톨-마이어스스퀴브컴파니 filed Critical 스티븐 비. 데이비스
Publication of KR940005605A publication Critical patent/KR940005605A/ko
Application granted granted Critical
Publication of KR100292331B1 publication Critical patent/KR100292331B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/81Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/82Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Epoxy Compounds (AREA)

Abstract

본 발명은 일반식 (I)의 플루오르화 탁솔에 관한 것이다:
상기식에서,
R1은 -CORz이고, Rz는 R0- 또는 R 이며;
Rg는 C1-6알킬, C2-6알켄일, C2-6알킨일, C3-6시클로알킬, 또는 식 -W-Rx의 라디칼이며, 여기서 W 는 결합, C2-6알켄디일, 또는 -(CH2)t- 이며, t 는 1-6 이고; Rx는 나프틸, 푸릴, 티엔일 또는 페닐이며, 또한 Rx는 임의로 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환될 수 있으며;
R2는 -OCOR, H, 0H, -0R, -OS02R, -OCONROR, -0COO(CH2)tR, 또는 -OCOOR 이며;
R 과 R0는 각각 C1-6알킬, C2-6알켄일, C3-6시클로알킬, C2-6알킨일, 또는 페닐이며, 임의로 1-3개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환된다.
또한 본 발명에 의해 약제 배합물과 일반식 (I)의 플루오르화 탁솔을 위하여 유용한 중간체가 제공된다. 일반식(I)의 화합물을 사용한 포유류 종양을 치료하는 방법이 제공된다.

Description

[발명의 명칭]
플루오로 탁솔
[발명의 상세한 설명]
본 발명은 항종양 활성을 가진 화합물을 제공한다. 본 발명에 의해 또한 항종양 활성을 가진 화합물을 제조하기 위한 중간체가 제공된다.
탁솔 (taxol)은 처음에 웨스턴 유 (Western Yew), 탁수스 브레비폴리아 누트 (Taxus brevifolia Nutt, Taxaceae)의 줄기 껍질에서 분리되었고 다음의 구조 (2'-, 7-, 10- 및 13-위치가 지정됨)를 가지고 있다.
국립암연구소(NCl)가 주최한 임상 시험에서, 탁솔은 난소, 흉부, 및 다른 암이 진행된 경우에 이들과 싸우는데 유망한 결과를 보여준 바 있다. 탁솔은 최근에 난소의 전이암을 치료하는데 승인된 바 있다.
탁솔은 심지어 다른 바람직하지 못한 조건하에 튜블린 (tublin)에서 안정한 마이크로튜블 (microtubule)의 결합을 촉진한다는 점에서 세포분열 억제약중에서 독특하다. 약물은 마이크로튜블에 결합하고, 그들을 탈중합 반응으로 부터 안정화시키며, 따라서 튜블린-마이크로튜블 평형을 파괴하여 결과적으로 유사분열을 억제한다. 탁솔에 대한 작용 기구, 독성학, 임상적 효능 등이 많은 논문, 이를테면 Rowinsky 외에 의한 논문(Taxol: A Novel Investigational Antimicrotubule Agent, J. Natl. Cancer Inst., 82: p1247 (1990))에서 검토되고 있다.
암치료에 있어서 중요한 효과의 발견이래, 많은 실험실에서는 보다 양호한 약리학적 프로파일을 찾아서 탁솔 동족체를 디자인하는 프로그램을 착수한 바 있다. 이러한 프로그램중에는 마이크로튜블의 결합을 촉진하는데 탁솔과 같이 효과적이며 약 두배의 세포독성이 있다고 보고된 다음식의 탁소테레의 발견이 있었다 (참조, Biologically Active Taxol Analogues with Deleted A-Ring Side Chain Substitutents and Variable C-2*, Configurations, J. Med. Chem., 34, p 1175 (1991); Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity, J. Med. Chem., 34, p 992 (1991)).
최근에, 약리학적으로 활성인 화합물에 틀루오린을 도입하는 것이 약간 심오하고 예상치못한 결과의 발견을 이끌어 왔다 (생물학적으로 활성인 유기플루오린 화합물의 제조에 있어서 진보에 대한 종합적인 검토를 위해, 참조: Advances in the Preparation of Biologically Active Organofluorine Compounds, Tetrahedron, 43, No. 14, p 3123 (1987)). 본 발명의 목적은 플루오린화 탁솔 및 그들의 유도체를 제공하는 것이다.
본 발명은 일반식 (I)의 플루오린화 탁솔 유도체에 관한 것이다.
상기식에서,
R1은 -CORz이고, Rz는 R0- 또는 R 이며;
Rg는 C1-6알킬, C2-6알켄일, C2-6알킨일, C3-6시클로알킬, 또는 식 -W-Rx의 라디칼이며, 여기서 W 는 결합, C2-6알켄디일, 또는 -(CH2)t- 이며, t 는 1-6 이고; Rx는 나프틸, 푸릴, 티엔일 또는 페닐이며, 또한 Rx는 임의로 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환될 수 있으며;
R2는 -OCOR, H, 0H, -0R, -OS02R, -OCONROR, -OCONHR, -0COO(CH2)tR, 또는 -OCOOR 이며;
R 과 R0는 각각 C1-6알킬, C2-6알켄일, C3-6시클로알일, C2-6알킨일, 또는 페닐이며, 임의로 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환된다.
또한 본 발명은 약제 배합물과 식 (I)의 플루오린화 탁솔을 위한 유용한 중간체를 제공한다. 식 (I)의 화합물을 사용하여 포유류 종양을 치료하는 방법이 또한 제공된다.
본 발명은 다음 일반식 (I)의 플루오린화 탁솔 유도체에 관한 것이다.
상기식에서,
R1은 -CORz이고, Rz는 RO- 또는 R 이며;
Rg는 C1-6알킬, C2-6알켄일, C2-6알킨일, C3-6시클로알킬, 또는 식 -W-Rx의 라디칼이며, 여기서 W 는 결합, C2-6알켄디일, 또는 -(CH2)t- 이며, t 는 1-6 이고; Rx는 나프틸, 푸릴, 티엔일 또는 페닐이며, 또한 Rx는 임의도 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환될 수 있으며;
R2는 -OCOR, H, 0H, -OR, -OS02R, -OCONR0R, -OCONHR, -OCOO(CH2)tR, 또는 -OCOOR 이며;
R 과 R0는 각각 C1-6알킬, C2-6알켄일, C3-6시클로알킬, C2-6알킨일, 또는 페닐이며, 임의로 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환된다.
일반식 (I)의 플루오르화 탁솔 유도체의 할성은 다잉한 방법에 의해 성취될 수 있다. 이어지는 종합적인 설명과 특정 실시예는 단지 예시목적으로 의도된 것이며, 다른 방법에 의해 본 발명의 화합물을 제조하는 것에 어떠한 방식으로 한정되는 것으로 해석되지 않는다.
일예에 있어서, 반응식 (I)의 공정이 일반식(I)의 화합물을 제조하는데 이용될 수 있다. 반응식 (I)에서, 일반식 (Ⅱ)의 2'-히드록시 보호 탁솔을 디에틸아미노술푸르 트리플루오라이드 (DAST)와 반응시켜 일반식 (XXV)의 8-데스메틸-7,8-시클로프로파탁솔 (또는 간단히 7,8-시클로프토파탁솔)유도체에 더하여 일반식 (Ⅲ)의 7-α-플루오로탁솔 유도체를 얻는다(단계 (a)). 단계 (a)의 반응은 다잉한 용매, 이를테면 테트라히드로푸란, 메틸렌 클로라이드, 디에틸 에테르, 톨루엔, 1,1-디메톡시에탄 (DME), 등 또는 이들의 조합/혼합물에서 수행될 수 있다. 단계 (a)가 THF/디에틸에테르의 혼합물 또는 테트라히드로푸란에 대해 톨루엔 약 10:1-8:1 의 혼합물에서 수행될 때, 7,8-시틀로프로파탁솔 (XXV)에 대해 높은 비율의 7-α-플루오로탁솔 (Ⅲ)이 얻어질 수 있다고 일반적으로 관찰된 바 있다. 여기서 사용된 바와 같이, R3는 종래의 히드록시 보호기이다. 일반식 (Ⅲ)의 화합물은 화합물 (XXV)로 부터 분리될 수 있거나, 또는 분리없이 그 혼합물이 단계 (b)에 사용될 수 있으며, 생성물 (I1)이 단계 (b) 후에 화합물 (XXVI)로 부터 분리된다. 화합물의 분리는 본 기술에서 숙련된 자에 의해 통상적으로 이용된 종래의 정제기술에 의해 수행될 수 있다. 분리방법은 크로마토그래피, 분별걸정, 등을 포함한다. 분리하는데 특히 적합한 방법은 HPLC (고압액체크토마토그래피)이다.
본 발명에서 사용된 바와 같이, 종래의 히드록시 보호기(또는 간단히 히드록시 보호기)는 히드록시 작용을 차단하거나 보호하는데 사용될 수 있는 성분이며, 그들은 본 기술에 숙련된 자들에게 잘 알려져 있다. 바람직하게도, 상기 기들은 분자의 나머지 부분에 대해 인식될 수 없는 파괴를 초래하는 방법에 의해 제거될 수 있는 것들이다. 쉽게 제거될 수 있는 이러한 히드록시 보호기의 실예는 클로로아세틸, 메톡시메틸, 2,2,2-트리클로로에톡시메틸, 2,2,2-트리클로로에틸록시카르보닐 (또는 간단히 트리클로로에틸록시카르보닐), 테트라히드로피란일, 테트라히드로푸란일, t-부틸, 벤질, p-니트로벤질, p-메톡시벤질, 디페닐메틸, 트리 C1-6알킬실릴, 트리페닐실릴, 등을 포함한다. 사용될 수 있는 다른 적합한 보호기는 "Protecting Groups in Organic Synthesis", Second Ed., Theodora W. Greene and Peter G.M. Wuts (1991, John Wiley & Sons)의 2 장에서 발견된다. 일반식 (Ⅱ) 화합물에 대해 특히 유용한 보호기는 촉매 가수소분해반응에 의해 편리하게 제거될 수 있는 벤질록시카르보닐, 또는 플루오라이드 이온에 의해 제거될 수 있는 트리 C1-6알킬실릴이다.
또다른 일예에서, 일반식 (I2)의 화합물은 반응식(Ⅱ)의 공정에 의해 제조될 수 있다. 반응식에서, (C)13-측쇄는 테트라부틸암모늄 보로히드라이드와 같은 환원제에 의해 일반식(I1)의 화합물로 부터 환원적으로 제거되어 일반식 (Ⅳ)의 7-α-플루오로 박카틴 Ⅲ 을 제공한다 (단계 (a)). 이어서 아제티디 논 (XV)을 단계 (b)에서 일반식 (Ⅳ)의 화합물과 반응시킨다. 일반식(Ⅳ)의 아제티디논의 일반적 클래스가 잘 알려져 있다. 그들의 합성 또는 그들의 전구체의 합성이 이를테면 1990. 12. 5 자 공고된 유럽특허출원 제 0,400,971 A2 호에서 Holton에 의해; 또한 모두 1993. 3. 31 자 공고된 유럽특허출원 제 0,534,709 A1, 0,534,708 A1, 및 0,534,707 A1 호에서 Holton 에 의해; Tetrahedron, 48, No. 34, pp 6985 - 7012 (1992), Journal of Organic Chemistry, 56, pp 1681-1683 (1991), 및 Tetrahedron Letters, 33, No. 39, pp 5737-5740 (1992)에서 Ojima et al. 에 의해; J. Org. Chem., 58, pp 1068-1075 에서 Brieva et at.에 의해; 및 Tetrahedron Letters, 31, No. 44, pp 6429-6432 (1990)에서 Palomo et at.에 의해 보고된 바 있으며, 모두 9개의 문헌은 전적으로 본 발명에서 참고로 속한다. 일반식 (XV)의 범위내에 다른 아제티디논을 제조하기 위하여 변형법이 채택될 수 있으나, 특히 본 발명에서 또는 상기의 9 개 문헌 또는 그밖에 보고된 것에 기재되지 않은 방법이 본 기술에 숙련된 자에게 명백할 것이다.
유럽특허출원 제 0,400,971 A2, 0,534,709 A1, 0,534,708 A1, 및 0,534,707 A1 호, 및 Tetrahedron, 48, No. 34, pp 6985-7012 (1992)에서도 일반식 (XV)의 아제티디논의 클래스를 박카틴 Ⅲ 유도체 또는 그의 금속 알콕시드의 (C) 13-히드록시기와 반응시켜 다앙한 (C) 13-측쇄를 가진 탁솔 동족체를 제공하는 방법을 기재하고 있다. 반응식 (Ⅱ)의 단계 (b)에서, 커플링전에 (C) 13-탄소위 히드록시기 (별표로 표시됨)를 금속 알콕시드로 전환하는 것이 유용하다. 상기 금속 알콕시드의 금속 양이온은 바람직하게도 Ia 또는 Ⅱa 족 금속중에서 선택된다. 원하는 금속 알콕시드의 형성은 일반식 (Ⅳ)의 화합물을 금속 강염기, 이를테면 리튬 디이소프로필아미드, C1-6알킬리튬, 리튬 비스(트리메틸실릴)아미드, 페닐리튬, 소디움 히드라이드, 포타슘 히드라이드, 리튬 히드라이드, 또는 유사한 염기와 반응시켜 수행될 수 있다. 예를들어 리튬 알콕시드를 필요로 할 때, 일반식 (Ⅳ)의 화합물을 테트라히드로푸란과 같은 불활성 용매에서 n-부틸리튬과 반응시킬 수 있다. 단계 (C)에서 일반식(V)의 화합물에서 R3를 제거하면 일반식 (I3)의 화합물을 얻는다. R3가 트리 C1-6알킬실릴기, 이를테면 트리에틸실릴기일 때, 플루오라이드 이온에 의해 또는 알코올 또는 아세토니트릴내 무기산으로서 제거될 수 있다. 플루오라이드 이온으로서 제거는 테트라히드로푸란, 메틸렌 클로라이드, 1,4-디옥산, DMF, 클로로포름과 같은 불활성 용매에서, 또는 유사한 용매에서 수행되며; 바람직하게는 반응 매질이 초산과 같은 약산으로서 완충된다. 어떻든 7,8-시클로프로파 유도체의 존재는 그의 존재에 의해 소비될 적당량의 시약이 고려될 것이라는 가정하에, 반응식 (Ⅱ)의 각 단계에 물질적으로 영향이 없다. 통상적으로 단계 (a) 후 그러나 단계 (b) 전에 7,8-시클로프로파 유도체를 분리하는 것이 바람직하다고 발견될 것이다.
반응식 (Ⅲ)은 일반식(I5)의 화합물에 도달하는 방법을 기재하고 있으며, 여기서 Rm은 -OCOR, -0S02R, -OCONR0R, -OCONHR, -OCOO(CH2)tR, 또는 -OCOOR 이다. 일반식 (XXX)의 출발 화합물은 본 기술에 잘 기재되어 있으며 또는 탁솔 기술에 잘 알려진 방법에 의해 제조될수 있다. 예를들어, 반응식 (Ⅲa)에 제시된 바와 같이, 일반식 (XXXVⅢ)의 화합물을 RC(=O)L, R(CH2)tOC(=O)L, ROC(=O)L, LS02R, LC0NR0R, LC0NHR, 0=C=N-R 또는 그의 무수물 유도체와 반응시켜 일반식 (XXIX)의 화합물을 제공할 수 있으며, 여기서 L 은 클로로, 브로모, 메실, 트리플루오로메탄술포닐, 또는 토실이다. 염기는 통상적으로 단계 (a)에서 C-10 히드록시기로 부터 양성자를 초기에 탈양성자화하는데 필요하다. 단계(a)에 대해 특히 유용한 염기는 C1-6알킬리튬, 리튬 비스(트리메틸실릴)아미드와 같은 강염기, 또는 약 1.1 당량으로 사용된 유사 염기이다. 염기에 의한 양성자 제거반응은 바람직하게도 비양성자성 용매, 이를테면 테트라히드로푸란에서 저온, 통상적으로 -4O℃ - 0℃에서 수행된다. 단계 (b)에서, 일반식 (XXXIX)의 화합물을 반응식 (Ⅱ)의 단계 (b)와 실제로 동일한 방식으로 일반식 (XV)의 아제티디논과 반응시켜 일반식 (XL)의 화합물이 제공될 수 있으며 이로 부터 R3기가 제거되어 일반식 (XXX)의 화합물이 제공될 수 있다.
일반식 (I3)의 화합물은 또한 일반식 (I)의 화합물의 범위내에 있으며, 반응식 (Ⅳ)의 공정에 의해 제조될 수 있다. 단계 (a)에서, 일반식 (Ⅵ)의 화합물을 종래의 히드록시 보호 시약, 바람직하게는 트리클로로 에틸 클로로포르메이트 1-2 당량으로 처리할 때, 2'- 및 7-히드록시 보호 (일반식 (XⅢ)의 화합물) 및 2'- 및 10-히드록시 보호 (일반식 (Ⅶ)의 화합물) 탁솔 유도체의 혼합물이 동시에 얻어질 수 있다.
이어서 단계 (b)에서 일반식 (XⅢ)의 화합물을 1,1,2-트리플루오로-2-클로로트리에틸아민과 반응시켜 일반식 (Ⅷ)의 디엔온을 제공한다. 단계 (c)에서, 보호기 R3를 제거한다 (트리클로로에틸록시카르보닐기의 제거는 초산내 아연분말에 의해 수행될 수 있다). 단계 (d)에서, 일반식 (IX)의 화합물의 디엔은 촉매적으로 수소화되어 일반식(X)의 화합물을 제공한다. 이어서 단계 (e)에서, 이 때 2'-히드록시기를 바람직하게는 벤질록시카르보닐로서 다시 한번 보호하여 일반식 (XI)의 화합물을 제공한다. 일반식 (XI)의 화합물을 DAST 로서 처리하면 일반식 (XⅡ)의 플루오로 화합물을 얻는다. 단계 (g)에서 보호기 R3의 제거는 일반식 (I3)의 화합물을 제공한다.
반응식 (V)은 또한 일반식 (I) 화합물의 범위내에 있는, 일반식 (I4)의 화합물을 제조하는 방법을 기술한다. 단계 (a)에서, 일반식 (Ⅶ)의 화합물을 DAST 와 반응시켜 일반식 (XIV)의 화합물을 제공한다. R3보호기의 제거는 일반식 (I4)의 화합물을 제공한다.
일반식 (Ⅵ)의 화합물은 이미 알려져 있거나 반응식 (Ⅵ)의 공정에 의해 쉽게 제조될 수 있다. 단계 (a)는 실제로 반응식 (Ⅱ)의 단계 (b) 와 실제로 동일하다. 7- 및 10-히드록시기에 보호기가 있는 일반식(XXXⅢ)의 박카틴 Ⅲ 유도체도 이미 알려져 있거나 10-데아세틸박카틴 Ⅲ으로 부터 쉽게 제조될 수 있다 (참조예, 각각 1988. 1. 20 자 및 1993. 1. 13 자로 공고된 유럽특허출원 제 0,253,738,A1 및 0,522,958,A1 호). 단계 (b)에서 히드록시 보호기의 제거는 일반식(Ⅵ)의 화합물을 제공한다.
본 출원에 있어서, 심볼 "c" 다음에 첨자 숫자는 특정기가 함유될 수 있는 탄소원자수를 의미한다. 예를들어, C1-6알킬은 한개 내지 6개의 탄소원자를 가진 직쇄 및 측쇄 알킬기를 뜻하며 이러한 기들은 메틸, 에틸, n-프로필, 이소프로필, n-부틸, t-부틸, n-펜틸, n-헥실, 3-메틸펜틸, 또는 유사한 알킬기를 포함하며; C2-6알켄일은 비닐, 알릴, 1-프로펜일, 이소프로펜일, 1-부텐일, 2-부텐일, 3-부텐일, 메타알릴, 1,1-디메틸알릴, 1-헥센일, 2-헥센일, 또는 유사한 기와 같은 직쇄 또는 측쇄 알켄일기를 뜻하며; C3-6시클로알킬은 시클로프로필, 시클로부틸, 시클로펜틸, 또는 시클로헥실을 뜻하며; C2-6알킨일은 에틴일, 프로파르길 (2-프로핀일), 1-프로핀일, 2-부틴일, 3-부틴일, 1-헥신일, 4-메틸-2-펜틴일, 및 그 유사한 기와 같은 직쇄 또는 측쇄 알킨일기를 뜻하며; C2-6알켄디일은 에틸렌-1,2-디일(비닐렌), 2-메틸-2-부텐-1,4-디일, 2-헥센-1,6-디일, 및 유사한 기와 같은 기를 뜻하며; C1-6알킬록시 (알콕시)는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, n-부톡시, t-부톡시 (t--부틸록시), n-펜틸록시, n-헥실록시, 또는 3-메틸펜틸록시와 같은 직쇄 또는 측쇄 알킬록시기를 뜻하며; 할로겐은 플루오린, 클로린, 브로민, 또는 요오딘을 뜻한다. 본 출원에 있어서, 일단 정의된 모든 심볼은 재정의될 때까지 동일한 의미를 갖는다.
I1: Rc= α-플루오로, Rd= CH3
XXVI: Rc및 Rd는 다같이 β-시클로프라를 형성함
I1: Rc= α-플루오로, Rd= CH3
XXVI: Rc및 Rd는 다같이 β-시클로프라를 형성함
IV: Rc= α-플루오로, Rd= CH3
XXVⅡ: Rc및 Rd는 다같이 β-시클로프라를 형성함
V: Rc= α-플루오로, Rd= CH3
XXVⅢ: Rc및 Rd는 다같이 β-시클로프라를 형성함
I2: Rc= α-플루오로, Rd= CH3
XXIX: Rc및 Rd는 다같이 β-시클로프라를 형성함
다음의 구체적인 실시예는 본 발명의 대표적인 화합물의 합성을 예시하며 발명의 범위 또는 영역을 한정하는 것으로 해석되지 않는다. 본 방법은 본 발명에 의해 포함되나 구체적으로 기재되지 않은 화합물을 제조하기 위하여 다른 변형방법으토 채택될 수 있다. 또한, 약간 다른 패션으로 동일한 화합물을 제조하는 방법의 변형법도 본 기술에 숙련된 자에게 명백할 것이다.
모든 온도는 특정되지 않을 때 센티그레이드 (C)로 이해된다. 핵자기공명 (NMR) 스펙트럼 특성치는 참고표준으로서 테트라메틸실란 (TMS)에 대해 백만당 부 (ppm)으로 표시된 화학 전이 (δ)를 뜻한다. 양성자 NMR 스펙트럼 데이타에서 여러가지 전이에 대해 기록된 상대면적은 분자에서 특정 작용기 형태의 수소 원자수에 상응한다. 다중도에 대한 전이 특성은 넓은 단일선 (bs), 넓은 이중선 (bd), 넓은 삼중선 (bt), 넓은 다중선 (bm), 넓은 사중선 (bq), 단일선 (s), 다중선 (m), 이중선 (d), 사중선 (q), 삼중선 (t), 이중선의 이중선 (dd), 삼중선의 이중선 (dt), 및 사중선의 이중선 (dq)으로서 기록되어 있다. NMR 스펙트럼을 취하는데 사용된 용매는 DMSO-d6(퍼도이터로디메틸술폭시드), D2O (중수소화수), CDCl3(도이터로클로로포름) 및 다른 종래의 중수소화 용매이다. "Exch."는 CD30D 와 교환가능한 것을 의미한다 (예를들어, "d 플러스 exch." 는 이중선 플러스 교환가능한 시그널을 의미한다. 전체 시그널을 다른 양성자가 교환된 후에 바로 이중선으로 파괴된다). "Incl." 은 포함하는 것을 의미한다.
적외선 (IR) 스펙트럼 기술은 단지 작용기 인식 수치를 가진 흡수파수 (cm-1)를 포함한다.
셀라이트는 규조토에 대해 the Johns-Manville Products Corporation 사의 등록 상표명이다.
본 발명에서 사용된 약호는 본 기술에서 널리 사용된 종래의 약호이다. 이들중 몇가지는 다음과 같다:
Ac : 아세틸
Ar : 아릴
Bz : 벤조일
Cbz : 벤질록시카르보닐
DCI : 화학적인 탈착 이온화반응
DMF : 디메틸포름아미드
DMSO : 디메틸 술폭시드
FAB : 빠른 원자 충돌
h : 시간
HRMS : 고분해능 질량 스펙트로미트리
i-ProH : 이소프로필알코올
min : 분
MS : 질량 스펙트로미트리
NOBA : m-니트로벤질알코올
Ph : 페닐
rt : 상온
tBu : 삼차부틸
TES : 트리에틸실릴
THF : 테트라히드로푸란
tlc : 박층 크로마토그래피
v/v : 부피/부피
Y : 수율
표 1 과 2 는 다음의 실시예에서 합성법이 기재되어 있는 화합물의 목록이다.
[실시예 1]
2'-0-(벤질록시카르보닐)탁솔 (Ⅱa)
상온에서 무수 CH2Cl2(4 mL)내 탁솔(150 mg, 0.176 mmol)과 N,N-디이소프로필에틸아민 (93 μL, 0.534 mmol, 3 eq.)의 교반 용액에 벤질 클로로 포르메이트 (75μL, 0.525 mmol, 3 eq.)를 상온에서 첨가하였다. 반응 혼합물을 상온에서 3 h동안 교반하였다. 반응 혼합물을 부피 2 mL 로 농축시키고 용출제로서 1:1의 EtoAc/헥산을 이용하여, 실리카 겔 컬럼에서 생성물을 정제하여 백색 분말로서 표제의 화합물 (Ⅱa) 150 mg을 얻었다: mp, 140-15O℃ (분해); [α]D 20-53.5°(c = 0.2, 95% EtOH);1H-NMR (300MHz, 아세톤-d6) δ ppm: 1.18 (3H, s, 17-H3), 1.92 (3H, s, 16-H3), 1.66 (3H, s, 19-H3), 1.96 (3H, s, 18-H3), 2.16 (3H, s, 10-OAc), 2.5 (3H, s, 4-OAc), 3,53 (1H, d, J=5.89 Hz, 7-OH, D2O 와 교환됨), 3.85 (1H, d, J=7.19 Hz, 3-H), 3.9 (1H, s, 1-0H, D20 와 교환됨), 4.17 (2H, ABq, 20-Hz), 4.25 (1H, m, 7-H), 4.97 (1H, d, J=9.56 Hz, 5-H), 5.19 (2H, ABq, 0CH2C6H5), 5.54 (1H, d, J=5.5 Hz, 2'-H), 5.68 (1H, d, J=7.13 Hz, 2-H), 6.01 (1H, dd, J=5.5, 9.05 Hz, 3'-H), 6.17 (1H, bt, J=9.0 Hz, 13-H), 6.42 (1H, s, 10-H), 7.28-7.69 (16H, m), 7.87 (2H, "d", J=8 Hz, 3'-NHCOPh), 8.14 (2H, "d", J=8 Hz, 2-CO2Ph), 8.55 (1H, d, J=9.06 Hz, NH, D2O 와 교환됨); MS (FAB-NOBA/NaI+KI): m/e 988 (M+H)+, 1010 (M+Na)+, 1026 (M+K)+; IR (KBr) ν max: 3448, 1748 (C=O), 1726 (CONH), 1250 (C-0) cm-1; UV (MeOH:H20, 1:1) λ max: 198 (ε7.3 × 104), 230 nm (ε 2.7 × 104).
C55H58N016(MH+)에 대한 HRMS 계산치: 988.3756.
실측치 : 988.3766.
C55H57N016ㆍH2O 에 대한 분석 계산치: C, 65.67; H, 5.92; N, 1.40.
실측치: C, 65.99; H, 5.64; N, 1.33.
[실시예 2]
2'-0-벤질록시카르보닐-7-α-플루오로탁솔 (Ⅲa)
DAST (18.7 μL, 0.141 mmol)를 건조 디클로로메탄 (0.5 mL)에 용해시키고, 이 용액을 0℃로 냉각하였다. 디클로로메탄 (1mL)내 화합물 (Ⅱa, 71 mg, 0.072 mmol)의 용액을 첨가하고 얻어진 용액을 0℃ 에서 30 분간 및 상온에서 4 h 동안 유지하였다. 그 후 반응물을 냉각시키기 위하여 반응 혼합물에 물 (0.15 mL)을 첨가하였고 얻어진 혼합물을 농축시켜 잔류물을 유리하였다. 잔류물을 실리카 겔 컬럼 (헥산내 40% 에틸 아세테이트로서 용출됨)에서 크로마토그래피하여 화합물 (Ⅲa)과 2'-0-벤질록시카르보닐-8-데스메틸-7,8-시클로프로파탁솔 (XXVa)의 혼합물 61 mg 을 얻었다;1H-NMR (화합물 (Ⅲa 및 XXVa)의 혼합물, CDCl3) δ 8.08 (d, J=8.7 Hz, 2H) 7.65-7.17 (m, 18H) 6.85 (exch. d, J=9.4 Hz, 1H) 6.49 (s, 1H, H-10) 6.25-6.14 (m, 1H, H-13) 5.92 (dd, J=9.4 hz, J'=2.4 Hz, 1H, H-3') 5.68 (d, J=7.2 Hz, 1H, H-2) 5.38 (m, 1H, H-2') 5.06 (m, 2H) 4.96 (bd, 1H, H-5) 5.38 (m, 1H, H-2') 5.06 (m, 2H) 4.96 (bd, 1H, H-5) 4.80-4.35 (m, 1H, H-7) 4.31-4.20 (m, 2H, H-20) 3.94 (d, H=7.2 Hz, 1H, H-3) 2.47-1.64 (m, 17H incl. s 2.38 에서, 3H, 2.11 에서, 3H, 1.78 에서, 3H, 1.65, 3H) 1.10 (s, 3H) 1.07 (s, 3H).
[실시예 3]
7-α-플루오로탁솔 (Ia)
화합물 (Ⅲa) 및 2'-0-벤질록시카르보닐-8-데스메틸-7,8-시클로프로파탁솔의 1:1 혼합물 (89 mg)을 에틸 아세테이트 (3 mL)에 용해시키고 혼합물을 목탄위 팔라듐 (10% Pd, 29 mg, 0.027 mmol)의 존재하에 수소 1 기압에서 가볍게 교반하였다. 12 h 후에, 용매를 제거하고, 잔류물을 실리카 겔 크로마토그래피 (헥산내 40% 에틸 아세테이트로서 용출됨)에 의해 정제하여 백색 고체로서 8-데스메틸-7,8-시클로프로파탁솔(XXVIa)과 다같이, 표제의 화합물 67.7 mg을 제공하였다;1H-NMR (화합물 (XXVIa 및 Ia)의 혼합물, CDCl3) δ 8.11 (d, J=8.7 Hz, 2H) 7.72-7.07 (m, 14H) 6.50 (s, 1H, H-10) 6.14 (bt, 1H, H-13) 5.80 (dd, J=9.0 Hz, J'=2.4 Hz, 1H, H-3') 5.74 (d, J=7.2, 1H, H-2) 4.98 (d, J+8.1 Hz, 1H, H-5) 4.77 (m, 1H, H-2') 4.70-4.40 (m, 1H, H-7) 4.40-4.21 (m, 2H, H-20) 4.02 (d, J=7.2 Hz, 1H, H-3) 2.60-1.55 (m, 17H, incl. s 2.37 에서, 3H, 2.20, 3H, 1.77, 3H, 1.74, 3H) 1.14 (s, 3HO 1.12 (s, 3H).
다음의 HPLC 방법은 8-데스메틸-7,8-시클로프로파탁솔로 부터 7-α-플루오로탁솔을 분리하는데 사용될 수 있다:
방법 1:
장치
펌프: PE 시리즈 4
컬럼: Shandon Hypercarb (흑연화 탄소), 7 μ, 100 × 4.6 mm, #59864750 (예비 사이즈 컬럼에 대한 정보는 Keystone Scientific (Bellefonte, PA)사로 부터 얻어질 수 있음)
인젝터: PE ISS-100
디텍터: HP-1040M
조건
이동상: 메틸렌 클로라이드: 헥산 85:15
메틸렌 클로라이드: 헥산: 이소프로필 알코올 80:19:1 에서 분리되지 않음
유속: 2.5 mL/min
디텍터: 254 nm
희석제: 메틸렌 클로라이드에 용해된 샘플
방법 2:
용출제로서 에틸 아세테이트와 헥산 1:1 이며 DYNAMAX-6OA (Si 83.121-C) 예비 HPLC 컬럼 (30 cm x 2.5 cm)을 사용함 유속은 분당 10 mL 이며 7-α-플루오로탁솔에 대한 체류시간은 15.59 분이고, 반면에 8-데스메틸-7,8-시클로프로파탁솔에 대한 체류시간은 16.65 분이었음.
[실시예 4]
7-α-플루오로탁솔 (Ia)
화합물 (Ⅱa, 258 mg. 0.26 mmol)을 THF (1.7 mL)와 디에틸 에테르 (3.4 mL)에 용해시키고, 용액을 -78℃ 로 냉각하였다. 이 용액에 DAST(69 μL, 0.52 mmol)를 첨가하고, 그 혼합물을 -78℃ 에서 30 분간, 및 그후 상온에서 밤새 교반하였다. 물 (0.3 mL)을 첨가하여 반응물을 냉각하고 혼합물을 농축시켜 잔류물을 유리하였다. 잔류물을 실리카 겔 크로마토그래피 (헥산내 30% 에틸 아세테이트로서 용출됨)에 의해 정제하여 비정질 고체로서 2'-0-벤질록시카르보닐-7α-플루오로탁솔 (Ⅲa) 87 mg (Y: 33.7%)을 제공하였다.1H-NMR 스펙트럼은 필히 실시예 2에 기록된 것과 동일하였다;19F-NMR (CDCl3) φ (vs. CF3COOH) 90 (ddd, JF.H7=49.6 Hz, JF.H6=40.1 Hz, JF.H6=21.6 Hz).
[실시예 5]
N-데벤조일-N-t-부톡시카르보닐-2'-0-트리에틸실릴-7-α-플루오로탁솔 (Va)
7-α-플루오로탁솔과 2'-0-벤질록시카르보닐-8-데스메틸-7,8-시클로프로파탁솔의 혼합물 (572 mg, 3:2 혼합물)을 건조 디클로로메탄 (7 mL)내 테트라부틸암모늄 보로히드리드 (286 mg, 1.111 mmol)로서 상온에서 밤새 처리하였다. 과량의 보로히드리드를 초산 (0.4 mL)으로서 냉각하고; 용매를 증발시켜 원생성물을 유리하였다. 이와 같이 얻어진 원생성물을 실리카겔 컬럼 (헥산내 50% 에틸 아세테이트로서 용출됨)에서 정제하여 백색 발포체로서 7-α-플루오로 박카틴 Ⅲ(Ⅳ) 및 8-데스메틸-7,8-시클로프로파 박카틴 Ⅲ (XXVⅡ)의 혼합물 271 mg 을 제공하였다. NMR 스펙트럼은 구조와 일치하였다.
건조 THF (1 mL)내 화합물 (Ⅳ)와 8-데스메틸-7,8-시클로프로파박카틴 Ⅲ (130 mg)의 혼합물 용액을 -40℃ 로 냉각하였고 n-부틸리튬 (헥산내 1.63 M, 0.164 mL, 0.260 mmol)을 아르곤하에 적가하였다. 15 분후에, 건조 THF (0.5 mL)내 1-t-부톡시카르보닐-(3R,4S)-시스-3-트리에틸실릴록시-4-페닐아제티디논 (XVa) (203 mg, 0.530 mmol) 용액을 첨가하고, 혼합물을 0℃ 로 가열하였다. 0℃에서 90분간 계속 반응시키고 암모늄 클로라이드 포화수용액으로서 냉각시켰다. 반응 혼합물을 에틸 아세테이트로서 추출하였다. 에틸 아세테이트층을 건조시키고, 여과한다음 진공 농축시켜 원오일을 유리하였다. 이 오일을 실리카 겔 크로마토그래피 (헥산내 40% 에틸 아세테이트로서 용출됨)에 의해 정제하여 백색 발포체로서 표제의 화합물과 N-데벤조일-N-t-부톡시카르보닐-2'-0-트리에틸실릴-8-데스메틸-7,8-시클로프로파탁솔 (XXVⅢa)의 혼합물 143 mg을 제공하였다;1H-NMR (화합물 (XXVⅢa 및 Va)의 혼합물, 300MHz, CDCl3) δ 8.14 (d, 2H) 7.45-7.17 (m, 8H) 6.56 (s, 0.6H, H-10) 6.32 (s, 0.4H, H-10) 6.28 (m, 1H, H-13) 5.72 (d, 0.6H, H-2) 5.62 (d, 0.4H, H-2) 5.44 (m, 1H, H-3') 5.28 (exch. m, 1H, N-H) 5.00 (d, 1H, H-5) 4.70-4.45 (m, 1H, H-7) 4.50 (bs, 1H, H-2') 4.40-4.35 (m, 2H, H-20) 4.05 (d, 1H, H-3) 2.63-1.15 (m, 32H) 0.73 (m, 9H) 0.34 (m, 6H).
[실시예 6]
N-데벤조일-N-t-부톡시카르보닐-7-α-플루오로탁솔 (Ib)
아세토니트릴 (1 mL)내 화합물 (Va)과 N-데스벤조일-N-t-부톡시카르보닐-2'-0-트리메틸실릴-8-데스메틸-7,8-시클로프로파탁솔의 혼합물 (100 mg)을 함유한 용액에 -5℃ 에서 HCl 수용액 (0.0192 mL, 0.30 mmol, 36% 용액)을 첨가하였다. 반응 혼합물을 10 분간 교반하고 에틸 아세테이트 (1.5 mL) 로서 희석하였다. 유기상을 물로서 세척하고, 건조시키며, 여과하고, 농축시켜 잔류물을 유리하였다. 잔류물을 실리카 겔 크로마토그래피 (헥산내 40% 에틸 아세테이트로서 용출됨)에 의해 정제하여 발포체로서 표제의 생성물과 N-데벤조일-N-t-부톡시카르보닐-8-데스메틸-7,8-시클로프로파탁솔 (XXIXa)의 혼합물 73 mg 을 제공하였다;1H-NMR (화합물(XXIXa 및 Ib)의 혼합물, 300 MHz, CDCl3) δ 8.11 (m, 2H) 7.60-7.22 (m, 8H) 6.50 (s, 0.6H, H-10) 6.30 (s, 0.4H, H-10) 6.22 (m, 1H, H-13) 5.72 (d, O.6H, H-2) 5.61 (d, 0.4H, H-2) 5.50-5.42 (m, 1H, H-3') 5.28 (exch. bd, 1H, N-H) 5.00 (d, 1H, H-5) 4.70-4.40 (m, 1H, H-7) 4.60 (bs, 1H, H-2') 4.40-4.23 (m, 2H, H-20) 4.02 (d, 1H, H-3) 3.40 (exch. bs, 1H, 0-H) 2.65-1.10 (m, 32H). MH+에 대한 HRMS 계산치 852.3670, 실측치 852.3604.
[실시예 7]
7-α-플루오로 박카틴 Ⅲ (Ⅳ)
불활성 분위기하에 건조 플라스크에 2'-0-(벤질록시카르보닐)탁솔 (Ⅱa) (4 g, 4 mmol)과 건조 톨루엔 (80 mL)을 넣었다. 건조 테트라히드로푸란 (16 mL)을 무색 용액이 얻어질 때까지 건조 테트라히드로푸란 (16 mL)을 적가하면서 얻어진 슬러리를 주위 온도에서 교반하였다. 상기의 용액을 건조 얼음/아세톤조에서 -78℃로 냉각시킨 다음 디에틸아미노술푸트 트리플루오라이드 (DAST, 1.2 mL, 2.5 eq.)로서 처리하였다. 점차 주위 온도로 가열하면서 반응물을 16 h 동안 교반하였다. 얻어진 현탁액을 여과하고 여과액 (에틸 아세테이트 (30 mL)로서 희석됨)을 소디움 바이카보네이트 포화수용액 이어서 염수로 세척하였다. 유기 유분을 건조시키고 (MgSO4) 농축시켜 백색 발포체로서 원생성물을 제공하였다. 원물질을 실리카 겔 컬럼 크로마토그래피 (CH2Cl2내 10% CH3CN 으로서 용출함)에 의해 부분적으로 정제하여 7-α-플루오로 유도체 (Ⅲa) 및 7,8-시클로프로파 첨가물 (XXVa)의 혼합물 (1H-NMR에 의해 82:18 혼합물) 1.45 g 을 제공하였다.
상기 혼합물(1.45 g)을 에틸 아세테이트(60 mL)에서 취한 다음 탄소위 팔라듐 (300 mg)으로 처리하였다. 수소 50 파운드/스퀘어 인치 (psi)하에 4 h 동안 교반한후, 반응물을 배기시키고 실리카 겔의 짧은 플러그를 통해 여과시킨 다음 농축하였다. 이것은 백색 발포체로서 원하는 생성물 혼합물 (1.24 g, Y: 99%,1H-NMR 에 의해 90:10 혼합물)을 공급하였다. 7-α-플루오로- 및 7,8-시클로프로파탁솔의 혼합물을 건조 메틸렌 클로라이드 (30 mL)에서 취한다음 테트라부틸암모늄 보로히드리드 (745 mg, 2.9 mmol, 2 eq)로서 처리하고 6 h 동안 교반하였다. 그후 반응물을 초산 (1 mL)으로서 냉각하고, 추가의 메틸렌 클로라이드 930 mL)로서 희석한다음 소디움 바이카보네이트 포화수용액으로서 세척하였다. 유기 유분을 건조시키고 (MgS04) 농축하였다. 원화합물, 치환된 탁산 코어 혼합물을 실리카 겔 크로마토그래피 (CH2Cl2내 10% CH3CN 으로 용출됨)에 의해 부분적으로 정제하여 백색 발포체로서 7-α-플루오로 및 7,8-시클로프로파 동족체의 90:10 혼합물 (1H-NMR 에 의해 측정됨)로서 표제의 박카틴 Ⅲ (510 mg, 60%)을 제공하였다. 얻어진 발포체를 핫 이소프로판올로 부터 결정화하여 백색의 작은 침상체 (Y: 410 mg)로서 7-α-플루오로 박카틴 Ⅲ (Ⅳ)을 제공하였다; m.p. 234-236℃ (분해);1H-NMR (300 MHz, CDCl3): δ 8.14 (d, 2H, J=6 Hz), 7.65-7.52 (m, 1H), 7.52-7.49 (m, 2H), 6.57 (s, 1H), 5.72 (d, 1H, J=9 Hz), 5.03 (d, 1H, J=9 Hz), 4.86-4.79 (m, 1H), 4.55 (dd, C-7 프로톤 1H, J=3.9, JH-F=47.1 Hz), 4.36 (ABq 의 A, 1H, J=7.8 Hz), 4.27 (ABq 의 B, 1H, J=7.8 Hz), 4.12 (d, 1H, J=6.9 Hz), 2.60-2.48 (m, 2H), 2.30-1.O7 (m, 2.30; 2.21; 2.08; 1.77; 1.58; 1.13; 1.07 에서 단일선을 포함한 22H).
[실시예 8]
1-t-부톡시카르보닐-(3R,4S)-시스-3-트리에틸실릴록시-4-페닐아제티디논 (XVa)의 제조, 반응식 (Ⅶ)
무수 디클로로메탄 (15 mL)내 (L)-트레오닌 메틸 에스테르 히드로클로라이드 (1.26 g, 7.44 mmol)를 이미다졸 (1.01 g, 14.89 mmol) 및 t-부톡시 디페닐실릴 클로라이드 (2.274 g, 7.816 mmol)와 함께 상온에서 16 h 동안 교반하였다. 반응 혼합물을 물과 디클로로메탄 사이에 분배하였다. 유기상을 5% 소디움 바이카보네이트와 물로서 세척하고, 건조시킨다음 농축하여 원오일 2.88 g 을 제공하고, 이것을 다음 단계에 직접 사용하였다;1H-NMR (CDCl3) δ 7.70-7.25 (m, 10H) 4.44 (m, 1H) 3.62 (s, 3H) 3.31 (d, J=3 Hz, 1H) 2.12 (bs, 2H) 1.3-1.15 (m, 12H).
무수 디클로로메탄 (10 mL)내 이전의 오일 (548 mg, 1.414 mmol)을 벤즈알데히드 (0.158 mL, 1.55 mmol)로서 4Å 분자망의 존재하에 상온에서 밤새 처리하여 제자리에서 일반식(XVⅡa)의 화합물을 제공하였다. 화합물 (XVⅡa)을 함유한 용액을 -40℃ 로 냉각할 때, 트리에틸아민 (0.20 mL, 1.698 mmol) 이어서 아세톡시아세틸 클로라이드 (XVIa) (0.182 mL, 1.698 mmol)를 10 분에 걸쳐 첨가하였다. 혼합물을 4 h 에 걸쳐 상온에 도달시키고 생성물을 디클로로메탄과 물 사이에 분배하였다. 유기상을 추가로 물과 염수로 세척한 다음, 건조시키고 농축하였다. 실리카 겔 크로마토그래피 (1:4 EtOAc/헥산으로 용출됨)는 3R,4S : 3S,4R 디아스테레오머 약 10:1 혼합물로서 화합물 (XVⅢa) 411 mg 을 제공하였다.
건조 THF (2 mL)내 디아스테레오머 (245.1 mg, 0.414 mmol)의 혼합물을 초산 (0.15 mL)과 테트라부틸암모늄 플루오라이드 (TBAF, THF에서 1M, 1.20 mL)로서 처리하였다. 용액을 상온에서 14 h 동안 교반한 다음, 에틸 아세테이트와 5% 소디움 바이카보네이트 수용액 사이에 분배하였다. 유기상을 건조하고 농축하였다. 용출제로서 1:1 메틸 아세테이트/헥산을 이용한 섬광 실리카 겔 크로마토그래피는 발포체로서 화합물(XIXa)(한가지 디아스테레오머) 66 mg (Y: 50%)을 제공하였다;1H-NMR (CDCl3) δ: 7.42-7.25 (m, 5H) 5.90 (d, J=4.8 Hz, 1H) 5.09 (d, J=4.8 Hz, 1H) 4.28 (m, 1H) 4.01 (d, J=4.8 Hz, 1H) 3.70 (s, 3H) 1.73 (s, 3H) 1.19 (d, J=6.6 Hz, 3H).
건조 디클로로메탄 (100 mL)내 일반식 (XIXa)의 화합물 (9.8 g, 0.0305 mol)을 -78℃ 에서 트리에틸아민 (9.40 mL, 0.0671 mol)과 메탄술폰일 클로라이드 (MsCl, 3.50 mL, 0.0457 mol)로서 처리하였다. 용액을 밤새 상온으로 도달시켰다. 반응 혼합물을 물과 디클로로메탄 사이에 분배하였다. 유기층을 5% 소디움 바이카보네이트, HCl 묽은 수용액, 물 및 염수로서 세척한다음, 농축하여 원오일상 잔류물로서 화합물 (XXa)을 제공하였다. 원잔류물 (10.0g)을 디클로로메탄 (250 mL)에 용해시키고 용액의 색이 청색으로 머물 때까지 -78℃ 에서 오존화하였다. 메틸 술파이드 (11 mL)의 첨가와 반응 혼합물의 농축은 일반식 (XXIa)의 화합물 (원화합물)을 제공하였다.
일반식 (XXIa)의 화합물을 THF (150 mL)에 용해시키고 히드라진 히드레이트로서 -78℃ 에서 처리하였다. 2 h 후에, 혼합물을 묽은 HCl 수용액과 에틸 아세테이트로 붓고, 두가지 상을 분리하였다. 유기상을 더 많은 산, 물 및 염수로서 세척한 다음 농축하여 원생성물을 제공하였고, 이것을 용출제로서 메틸렌 클로라이드내 1-5% 메탄올을 사용한 실리카 겔 크로마토그래피에 의해 정제하여 일반식 (XXⅡa)의 화합물 4.40 g (Y; 71%)을 얻었다;1H-NMR (CDCl3) δ 7.38-7.24 (m, 5H) 6.31 (bs, 1H) 5.87 (bm, 1H) 5.04 (d, J=4.8 Hz, 1H) 1.67 (s, 3H).
1M KOH 수용액 (140 mL)과 아세토니트릴 (100 mL)의 냉각 (-5℃) 혼합물에 아세토니트릴 (130 mL)내 화합물 (XXⅡa) (2.39 g, 11.22 mmol)의 용액을 적가하였다. 혼합물을 0℃ 에서 1 h 동안 교반하고 에틸 아세테이트 (300 mL), 물 (50 mL) 및 바이카보네이트 포화수용액 (50 mL)으로서 희석하였다. 유기상을 결합하고, 건조시키고, 여과한다음 농축하여 일반식 (XXⅢa)의 화합물을 제공하였고, 이것을 헥산/아세톤 (mp, 184-6℃)에서 재결정화하였다; 수율, 1.53 g (Y: 82%).
건조 THF (5.0 mL)내 아제티디논 (XXⅢa) (580 mg, 3.55 mmol)에 이미다졸 (265.5 mg, 3.90 mmol) 이어서 트리에틸실릴 클로라이드 (TESC1, 0.654 mL, 3.90 mmol)를 첨가하였다. 혼합물을 1 h 동안 교반하였다. 에틸 아세테이트를 첨가하고 유기층을 염수, 10% HCl 수용액으로 세척한다음 건조시켰다. 실리카 겔 크로마토그래피 (헥산내 25% 에틸 아세테이트로서 희석됨)는 발포체로서 화합물 (XXIVa) 670 mg (Y: 68%)을 제공하였다.
건조 THF (25 mL)내 화합물 (XXIVa) (2.20 g, 7.92 mmol)의 교반 용액에 아르곤 분위기하에 0℃ 에서 디이소프로필에틸아민 (1.65 mL, 9.51 mmol)을 첨가하였다. 용액을 5분간 교반한 다음, 디-t-부틸카보네이트 (Boc20, 2.08 g, 9.51 mmol)와 4-디메틸아미노피리딘 (193.6 mg, 1.58 mmol)을 첨가하였다. 반응 혼합물을 0℃ 에서 60 분간 교반하였다. 반응물을 에틸 아세테이트 (25 mL)로서 희석하고, 혼합물을 염수, 10% 소디움 바이카보네이트 수용액, 1O% HCl 수용액으로 세척하고, 마그네슘 술페이트에서 건조시킨 다음, 농축하여 오일을 유리하였다. 실리카 겔 섬광 크로마토그래피 (헥산내 15% 에틸 아세테이트로서 용출됨)는 백색 고체로서 화합물 (XVa) 2.40 g (Y: 83%)을 제공하였다;1H-NMR (CDCl3) δ 7.28 (m, 5H) 5.03 (m, 2H) 1.38 (s, 9H) 0.76 (t, J=7.56, 9H) 0.43 (m, 6H).
[실시예 9]
7-α-플루오로-2'-0-트리에틸실릴-3'-데페닐-3'-(2-푸릴)-N-데벤조일-N-t-부톡시카르보닐탁솔 (Vb)
건조 테트라히드로푸란 (5 mL)내 7-α-플루오로-박카틴 Ⅲ (Ⅳ) (59.3 mg, 0.1 mmol)의 용액을 불활성 분위기로서 씻어 내고 건조 얼음/아세톤 조에서 -55℃ 로 냉각하였다. 이 용액에 리튬 헥사메틸디실라잔 (THF 내 0.5M 용액, 0.24 mL, 1.2 eq.)을 시린지에 의해 적가하였다. 얻어진 엷은 황색 용액을 5 분간 교반하였다. 그후 라세미 1-t-부톡시카르보닐-시스-3-트리에틸실릴록시-4-(2-푸릴)아제티디논 (XVb) (178.4 mg, 6 eq.)의 테트라히드로푸란 (2 mL) 용액을 5 분간에 걸쳐 첨가하였다. 그후 냉각조를 얼음/염수조로서 대치하고 얻어진 용액을 0℃ 에서 1 h 동안 교반하였다. 반응물을 포화 NH4Cl 용액 (2 mL)의 첨가에 의해 냉각시킨 다음 에틸아세테이트 (25 mL)로서 희석하고 물 (2 × 10 mL)로서 세척하였다. 유기 유분을 건조시킨 다음(MgS04) 농축하여 무색 원오일로서 원하는 생성물을 제공하였다. 원생성물을 용출제로서 헥산/에틸 아세테이트 (7:3)를 사용한 실리카 겔에서 정제하였다. 이것은 무색 유리로서 표제의 생성물 (80.5 mg, Y: 84%)을 공급하였다;1H-NMR (300 MHz, CDCl3): δ 8.13 (d, 2H, J=9.0 Hz), 7.62-7.56 (m, 1H), 7.51-7.46 (m, 2H), 7.38 (s, 1H), 6.59 (s, 1H), 6.45 (dd, 1H, J=1.8, 3.2 Hz), 6.21 (d, 2H, J=3.2 Hz), 5.76 (d, 1H, J=7.2 Hz), 5.33 (bt, 2H), 5.03 (d, 1H, J=7.5 Hz), 4.75 (s, 1H), 4.57 (dd, C-7 프로톤 1H, J=4.3, JH-F=46.9 Hz), 4.37 (ABq 의 A, 1H, J=8.4 Hz), 4.27 (ABq 의 B, 1H, J=8.4 Hz), 4.05 (d, 1H, J=7.2 Hz), 2.49-1.16 (m, 11H, 2.47 (3H), 2.20 (3H), 1.88 (3H), 1.72 (3H), 1.38 (9H)에서 단일선을 포함), 0.83 (t, 9H, J=5 Hz), 0.55-0.37 (m, 6H);13C-NMR (75.6 MHz, CDCl3): δ 206.0, 171.1, 169.4, 169.1, 167.2, 155.2, 152.1, 141.8, 141.4, 133.6, 131.8, 130.1, 129.2, 128.7, 110.6, 107.1, 96.2, 93.9, 81.9, 80.7, 80.0, 78.7, 77.9, 77.8, 75.0, 72.3, 70.8, 56.9, 56.7, 52.7, 42.6, 40.0, 35.5, 33.9, 33.6, 28.1, 28.0, 25.5, 22.5, 21.2, 20.7, 14.6, 14.5, 14.3, 14.2, 6.4, 4.2.
[실시예 10]
7-α-플루오로-2'-0-트리에틸실릴-3'-데페닐-3'-(2-티엔일)-N-t-부톡시카르보닐탁솔 (Vc)
실시예 9 에 기재된 방식으로 제조하여 백색 발포체로서 원하는 생성물을 제공하였다 (Y: 회수된 출발물질을 기초로 78%);1H-NMR (300 MHz, CDCl3): δ 8.14 (d, 2H, J=9.0 Hz), 7.63-7.58 (m, 1H), 7.51-7.48 (m, 2H), 7.24 (dd, 2H, J=2.4,3.6 Hz), 7.00-6.93 (m, 2H), 6.58 (s, 1H), 6.23 (t, 1H, J=9 Hz), 5.77 (d, 1H, J=6 Hz), 5.51-5.42 (m, 2H), 5.03 (d, 1H, J=9 Hz), 4.57 (d, 1H, J=3 Hz), 4.59 (dd, C-7 프로톤 1H, J=6, JH-F=48 Hz), 4.38 (ABq 의 A, 1H, J=6 Hz), 4.27 (ABq 의 B, 1H, J=6 Hz), 4.05 (d, 1H, J=7 Hz), 2.57-1.15 (m, 11H, 2.44 (3H), 2.20 (3H), 1.88 (3H), 1.70 (3H), 1.32 (9H)에서 단일선을 포함), 0.86 (t, 9H, J=5 Hz), 0.56-0.41 (m, 6H);13C-NMR (75.6 MHz, CDCl3): δ 206.0, 171.0, 169.4, 168.8, 167.2, 161.4, 142.9, 141.3, 133.6, 131.8, 130.2, 129.2, 128.7, 126.9, 124.6, 124.5, 96.3, 93.9, 81.9, 80.8, 80.0, 78.8, 77.9, 77.8, 77.2, 76.5, 75.2, 75.0, 71.0, 65.4, 56.9, 53.7, 42.7, 40.3, 35.6, 33.6, 28.1, 22.7, 21.3, 20.8, 18.8, 14.5, 14.3, 10.4, 6.3, 4.5.
[실시예 11]
7-α-플루오로-3'-데페닐-3'-(2-푸릴)-N-데벤조일-N-t-부톡시카르보닐탁솔 (Ie)
아세토니트릴 (2 mL)내 화합물 (Vb) (80 mg, 0.08 mmol)의 용액을 얼음/염수조에서 0℃ 로 냉각하였다. 이 용액에 1 N HCl (0.5 mL, 6 eq.)을 첨가하고 반응물을 그 온도에서 30 분간 교반하였다. 그후 용매를 진공하에 증발시키고 잔류물을 에틸 아세테이트 (25 mL)와 물 (10 mL) 사이에 분배하였다. 유기 유분을 건조시키고 (MgSO4) 농축시켜 백색 발포체를 제공하였다. 원생성물을 용출제로서 CH2Cl2내 10% CH3CN 을 사용한 실리카겔에서 정제하였다. 백색 발포체로서 표제의 생성물을 분리하였다 (45.6 mg, Y: 회수된 출발물질을 기초로 77%); [α]D= -26.2°(c. 0.8 mg/mL, CH2Cl2);1H-NMR (300 MHz, CDCl3): δ 8.12 (d, 2H, J=6 Hz), 7.63-7.58 (m, 1H), 7.50 (t, 2H, J=6 Hz), 7.41 (s, 1H), 6.57 (s, 1H), 6.37-6.36 (m, 1H), 6.33-6.31 (m, 1H), 6.2O (t, 1H, J=6 Hz), 5.76 (d, 1H, J=6 Hz), 5.37-5.23 (m, 2H), 5.02 (d, 1H, J=9 Hz), 4.71 (bs, 1H), 4.57 (dd, C-7 프로톤 1H, J=4.2, JH-F=46.8 Hz), 4.36 (ABq 의 A, 1H, J=8.7 Hz), 4.27 (ABq 의 B, 1H, J=8.1 Hz), 4.04 (d, 1H, J=7.2 Hz), 3.28 (bs, 1H), 2.59-2.20 (m, 5H, 2.41 (3H), 2.21 (3H)에서 단일선을 포함), 1.85 (s, 3H), 1.43-1.17 (m, 18H);13C-NMR (75.6 MHz, CDCl3): δ 205.7. 169.2, 169.0, 167.1, 142.3, 140.6, 133.5, 132.1, 130.0, 129.1, 128.6, 110.5, 107.2, 95.9, 93.6, 81.8, 80.6, 78.5, 77.8, 77.7, 74.7, 72.1, 71.6, 56.9, 55.8, 51.5, 42.5, 39.9, 35.4, 33.8, 33.5, 28.0, 27.9, 25.6, 22.2, 20.9, 20.7, 14.5, 14.1, 14.0; MH+(C43H53NO15F)에 대한 HRMS 계산치: 842.3399; 실측치: 842.3389.
[실시예 12]
7-α-플루오로-3'-데페닐-3'-(2-티엔일)-N-데벤조일-N-t-부톡시탁솔 (If)
실시예 11 에 기재된 방식으로 제조하였고, 백색 발포체로서 표제의 생성물을 분리하였다 (22.5 mg, Y: 61%);1H-NMR (300 MHz, CDCl3): δ 8.12 (d, 2H, J=9 Hz), 7.64-7.59 (m, 1H), 7.50 (t, 2H, J=9 Hz), 7.28-7.26 (m, 2H), 7.09-7.07 (m, 1H), 7.01-6.98 (m, 1H), 6.56 (s, 1H), 6.19 (t, 1H, J=9 Hz), 5.76 (d, 1H, J=6 Hz), 5.53 (bd, 1H, J=12 Hz), 5.35 (d, 1H, J=9 Hz), 5.00 (d, 1H, J=9 Hz), 4.65-4.63 (m, 1.5H, C-7 프로톤 히든), 4.48 (d, 0.5H, J=9 Hz), 4.36 (ABq 의 A, 1H, J=8.7 Hz), 4.27 (ABq 의 B, 1H, J=8.1 Hz), 4.04 (d, 1H, J=7.2 Hz), 3.28 (bs, 1H), 2.59-2.20 (m, 5H 2.39 (3H), 2.18 (3H)에서 단일선을 포함), 1.72 (s, 3H), 1.43-1.17 (m, 18H);13C-NMR (75.6 MHz, CDCl3): δ 205.6, 172.1, 169.3, 169.0, 167.0, 141.5, 140.6, 133.6, 132.1, 130.1, 129.3, 129.0, 128.6, 126.9, 125.2, 125.1, 95.9. 93.5, 81.8, 80.8, 80.2, 78.5, 77.8, 77.7, 77.3, 76.8, 74.7, 73.3, 72.2, 56.9, 52.5, 42.5, 39.9, 35.5, 33.8, 33.5, 28.0, 27.9, 25.6, 22.3, 20.9, 20.7, 14.6, 14.1, 14.0; [α]D=-156°(c. 0.25 mg/mL, CH2Cl2).
[실시예 13]
히드로벤즈아미드, PhCH(-N=CHPh)2의 제조
교반장치와 온도계가 설치된 3 L 짜리 3-목 플라스크에 진한 NH4OH (약 30%) (14.8 mol) 1 L 를 첨가하였다. 2-프로판올 500 mL 내 벤즈알데히드 (265 g, 2.50 mol) 용액을 일부 첨가하였다. 혼합물을 약 22℃ 에서 43 시간 동안 세게 교반하였다. 얻어진 슬러리를 여과하고 여과기 케이크를 물 (1 L)로 세척하였다. 진공에서 건조후에, 히드로벤즈아미드 242.4 g 을 백색 고체 (mp 100-1O2℃)로서 97.4% 수율로 얻었다.
상기의 방법에 따라 다음의 일반식 RgCH (-N=CHRg)2의 비스아민이 제조될 수 있다:
히드로푸르아미드 (Rg=2-푸릴)
히드로티엔아미드 (Rg=2-티엔일)
[실시예 14]
(±)-시스-3-아세틸록시-1-[(페닐)(벤질리덴이미노)메틸)-4-페닐아제티딘-2-온 (XXXVa)
온도계, 자석 교반기 및 적가 깔대기가 설치된 1 L짜리, 3-목 둥근 밑면 플라스크에 히드로벤즈아미드 (30.00 g, 100.5 mmol)와 에틸 아세테이트 (150 mL)를 첨가하였다. 교반하면서 아르곤의 블랭킷하에 반응 혼합물을 5℃ 로 냉각하였고 트리에틸아민 (16.8 mL, 121 mmol)을 첨가하였다. 그후 에틸 아세테이트 (300 mL)내 아세톡시아세틸 클로라이드 (12.4 mL, 116 mmol) 용액을 90 분에 걸쳐 적가하였다. 이온도에서 16 h 후에, 반응 혼합물을 20℃ 로 가열하고 (1.5 h) 분리 깔대기로 이송하였다. 유기층을 NH4Cl 수용액 (포화) (150 mL, 100 mL), NaHC03수용액 (포화) (120 mL) 및 염수 (120 mL)로서 연속적으로 세척하였다. 특성화의 목적을 위해, 이 단계에서 유기상을 MgS04위에서 건조시키고, 여과한 다음, 진공하에 용매를 제거함으로서 표제의 화합물을 분리할수 있다. 이것은 적색 유리로서 정량적인 원화합물의 수율로 원하는 생성물을 제공하였다.
HPLC 순도 (면적): 87.9% (디아스테레오머의 1:1 혼합물);1H-NMR (CDCl3, 200 MHz): δ 8.45 (s, 1H, N=CH), 7.80-7.85 (m, 1H, Ph), 7.60-7.65 (m, 1H, Ph), 7.26-7.50 (m, 9H, Ph), 7.00-7.10 (m, 4H, Ph), 6.28 (s, 0.5H, NCHN), 6.23 (s, 0.5H, NCHN), 5.81 (d, J=4.8 Hz, 0.5H, H-3), 5.76 (d, J=4.8 Hz, 0.5H, H-3), 5.30 (d, J=4.8 Hz, 0.5H, H-4), 4.75 (d, J=4.8 Hz, 0.5H, H-4), 1.63 (s, 3H, CH3CO); IR (KBr): ν (cm-1)=1763(C=O), 1641 (C=N); UV (메탄올): λ max (nm)=216, 252.
[실시예 15]
(±)-시스-3-아세틸록시-4-페닐아제티딘-2-온 (XXXVIa)
상기에서 에틸 아세테이트 (500 mL)내 실시예 14 의 화합물의 용액을 조심스럽게 아르곤 기류하에 활성탄위 1O% 팔라듐 (6.00 g)을 함유한 2.0 L Parr 플라스크로 이동시켰다. 이 혼합물을 20 h 동안 수소 (4기압)로서 처리하고 이때 촉매를 CeliteR(규조토, Johns Manville)의 패드를 통해 여과시켜 제거하였다. 여과기 케이크를 에틸 아세테이트 (200 mL)에서 슬러리화하고, 교반한 다음 (10분) 여과하였다. 여과기 케이크를 에틸 아세테이트 (100 mL)로서 린스한다음 여과액을 결합하였다. 유기층을 10% HCl (300 mL)로서 세척하였고 소결된 유리 깔대기를 통해 두층을 모두 여과시켜 백색의 침전물 (디벤질아민ㆍHCl)을 제거하고 에틸 아세테이트 (100 mL)로서 린스하였다. 상을 분리하고 유기층을 또다른 일부의 10% HCl (200 mL)로서 세척하였다. 결합된 10% HCl 세척액을 에틸 아세테이트 (200 mL)로서 재추출하고 결합된 유기층을 NaHC03수용액 (포화) (300 mL)과 염수 (250 mL)로서 세척하였다. 유기층을 MgS04에서 건조시키고, 여과한다음 최종 부피 75 mL 로 진공 농축하였다. 이 혼합물을 4℃ 로 냉각하고 침전된 생성물을 여과에 의해 분리하였다. 여과기 케이크를 헥산 (200 mL)으로 세척하여 백색 침상체로서 표제의 화합물 16.12 g (히드로벤즈아미드로 부터 전체 수율 78.1%)을 제공하였다.
mp = 150-151 ℃; HPLC 순도 (면적): 99.8%;1H-NMR (CDCl3, 200 MHz): δ=7.30-7.38 (m, 5H, Ph), 6.54 (bs, 교환가능함, 1H, NH), 5.87 (dd, J=2.7, 4.7 Hz, 1H, H-3), 5.04 (d, J=4.7 Hz, 1H, H-4), 1.67 (s, 3H, CH3CO); IR (KBr): ν (cm-1)=3210 (N-H), 1755, 1720 (C=0); KF: 0.17%;
C11H11N03에 대한 분석 계산치: C, 64.38; H, 5.40; N, 6.83.
실측치: C, 64.07; H, 5.34; N, 6.77.
[실시예 16]
(±)-시스-3-아세틸록시-1-[(2-푸릴)(2-푸릴메틸렌이미노)메틸]-4-(2-푸릴)아제티딘-2-온 (XXXVb)
히드로푸르아미드를 히드로벤즈아미드 대신에 사용하고 반응을 18.6 mmol (100 mmol 에 대해)의 규모로 수행한 것을 제외하고 실시예 14 에 기재된 방법에 따라 표제의 화합물을 제조하였다. 따라서, 히드로푸르아미드 (5.00 g, 18.6 mmol), 트리에틸아민 (3.11 mL, 22.3 mmol) 및 아세톡시 아세틸 클로라이드 (2.30 mL, 21.4 mmol)는 엷은 적색 시럽으로서 표제의 화합물 6.192 g (90.4%)을 제공하였다.
디아스테레오머의 1:1 혼합물로서 얻었다;1H-NMR (CDCl3; 200 MHz): δ 8.211 (s, 0.5H, N=CH), 8.208 (s, 0.5H, N=CH), 7.14-7.59 (m, 3H, 푸릴), 6.90 (d, J=4.9 Hz, 0.5H, H-3), 6.83 (d, J=3.5 Hz, 0.5H, 푸릴), 6.10 - 6.53 (m, 6H, 푸릴, NCHN), 5.90 (d, J=4.9 Hz, 0.5H, H-3), 5.86 (d, J=4.8 Hz, 0.5H, H-3), 5.35 (d, J=4.8 Hz, 0.5H, H-4), 4.90 (d, J=4.9 Hz, 0.5H, H-4), 1.91 (s, 1.5H, CH3CO), 1.88 (s, 1.5H, CH3CO); IR (필름): ν (cm-1)=1778, 1753 (C=O), 1642 (C=N); UV (메탄올): λ max 9nm) = 220, 278.
[실시예 17]
(±)-시스-3-(아세톡시)-4-(2-푸릴)아제티딘-2-온 (XXXVIb)
예비 TLC 에 의해 생성물을 분리하고 반응을 히드로푸르아미드의 초기의 양을 기초로 2.7 mmol 의 스케일로 수행한 것을 제외하고 실시예 15에 기재된 방법에 따라 표제의 화합물을 제조하였다. 따라서, 실시예 16 (1.00 g)의 원생성물을 에틸 아세테이트 (50 mL)에 재용해시키고 활성 탄위 10% 팔라듐 (150 mg)에 첨가하였다. 예비 TLC (2 mm 실리카 겔, 1 : 1 에틸 아세테이트/헥산)에 의해 원고체의 정제는 황색 고체로서 표제의 화합물 386 mg (히드로푸르아미드로 부터 보정된 전체 수율 65.8%)을 제공하였다.
mp=118-119℃; HPLC 순도 (면적): 99.4%;1H-NMR (CDCl3, 200 MHz): δ 7.44 (t, J=1.3 Hz, 2H, 푸릴), 6.39 (d, J=1.3 Hz, 1H, 푸릴), 6.21 (bs, 교환가능함, 1H, NH), 5.88 (dd, J=2.2, 4.6 Hz, 1H, H-3), 5.05 (d, J=4.6 Hz, 1H, H-4), 1.92 (s, 3H, CH3CO); IR (KBr): ν (cm-1) = 3203 (N-H), 1756, 1726 (C=O); UV (메탄올): λ max (nm)=222.
[실시예 18]
(±)-시스-3-아세틸록시-1-[(2-티엔일)(2-티엔일메틸렌이미노)메틸]-4-(2-티엔일)아제티딘-2-온 (XXXVc)
히드로벤즈아미드 대신에 히드로티엔아미드를 사용한 것을 제외하고 실시예 14 에 기재된 방법에 따라 표제의 화합물을 제조하였다. 따라서, 히드로티엔아미드 (30 g, 94.7 mmol), 티에틸아민 (15.84 mL, 114 mmol) 및 아세톡시아세틸 클로라이드 (11.6 mL, 108 mmol)는 점성 오일로서 표제의 화합물을 제공한다. 얻어진 생성물은 디아스테레오머의 혼합물을 함유하였다.1H-NMR (CDCl3): δ8.52 (s, 1H), 8.502 (s, 1H), 7.51 (d, J=4.9 Hz, 1H), 7.45 (d, J=4.4 Hz, 1H), 7.41 (d, J=3.1 Hz, 1H), 7.37 (d, 1H), 7.30 (m, 3H), 7.16 (m, 1H), 7.16 (m, 3H), 7.09 (m, 2H), 6.94 (m, 1H), 6.89 (m, 1H), 6.81-6.74 (m, 4H), 6.48 (s, 1H), 6.43 (s, 1H), 5.85 (m, 2H), 5.59 (d, J=4.8 Hz, 1H), 5.17 (d, J=4.8 Hz, 1H), 1.87 (s, 3H), 1.86 (s, 3H).
[실시예 19]
(±)-시스-3-(아세틸록시)-4-(2-티엔일)아제티딘-2-온 (XXXVIc)
초산 70% 수용액 (빙초산 0.35 mL 및 물 0.15 mL)을 일부 디클로로메탄 (2.93 mL)내 화합물 (XXXVc) (0.431 g, 1.03 mmol)의 교반 용액에 25 ℃ 에서 첨가하였다. 반응 혼합물을 환류시킨다음 2.5 h 동안 교반하였다. 반응물을 디클로로메탄 50 mL 로서 희석한다음 소디움 바이카보네이트 포화수용액 두개의 75 mL 부분 및 그후 포화 염수 한개의 50 mL 부분으로 세척하였다. 유기 추출물을 갈색 오일로 진공 농축하고, 디클로로메탄 최소량에 용해시킨다음, 4" x 0.5" 치수의 실리카 겔 컬럼에 넣었다. 헥산내 10 내지 60% EtOAc 의 기울기를 사용하여 용출하면 극성이 적은 부산물 및 그후 백색 고체로서 표제의 화합물 (0.154 g, Y: 75%)을 제공하였다.1N-NMR (CDCl3): δ 7.32 (dd, J=4.7, 1.5 Hz, 1H), 7.03 (m, 2H), 6.75 (bs, 1H), 5.86 (dd, J=4.6, 2.7 Hz, 1H), 5.27 (d, J=5.3 Hz, 1H), 1.83 (s, 3H);13C-NMR (CDCl3): δ 169.3, 165.5, 138.4, 127.1, 127.07, 126.2, 78.3, 54.0, 20.0,
[실시예 20]
7-α-플루오로-10-데스아세틸록시탁솔 (Ic)
건조 디클로로메탄 (3.5 mL)내 10-데스아세틸탁솔 (VIa) (140 mg, 0.173 mmol)을 0℃ 에서 피리딘 (0.028 mL, 0.346 mmol) 및 트리클로로에틸 클로로포르메이트 (0.0724 mL, 0.260 mmol)로서 처리하였다. 이 온도에서 1 h 후에, 냉각조를 제거하고 혼합물을 상온에서 밤새 교반하였다. 용매를 증발시키고 잔류물을 실리카 겔 컬럼 (헥산내 30-50% 에틸 아세테이트로서 용출됨)에서 크토마토그래피하여 발포체로서 화합물 (XⅢa) 92.3 mg (Y: 46%)을 제공하였다. 또한 용출을 계속하면 발포체로서 수율 16% 에 화합물 (VⅡa)을 제공하였다.
건조 디클로로메탄 (2 mL)내 화합물 (XⅢa) (92.3 mg, 0.079 mmol)을 1,1,2-트리플루오로-2-클로로트리에틸아민 (0.0384 mL, 0.238 mmol)으로서 처리하였다. 용액을 밤새 교반하고, 용매를 증발시킨 다음 잔류물을 실리카 겔 크로마토그래피 (헥산내 25% 에틸 아세테이트로서 용출됨)에 의해 정제하여 백색 고체로서 화합물 (VⅢa) 42.8 mg (Y: 47%)을 얻었다.
디엔온 (VⅢa) (39 mg, 0.034 mmol)을 메탄올 (0.5 mL) 및 초산 (0.5 mL)에 용해시켰다. 아연 분말 (66.4 mg, 1.02 mmol)을 첨가하고, 혼합물의 온도를 40℃에 1 h 동안 유지하였다. 불용성 물질을 여과에 의해 제거하였다. 여과액을 농축하고 잔류물의 실리카 겔 크로마토그래피 (헥산내 60% 에틸 아세테이트로서 용출됨)는 발포체로서 화합물 (IXa) 22 mg (Y: 81.5%)을 제공하였다.
에틸 아세테이트 (0.7 mL)내 디엔온 (IXa) (22 mg, 0.028 mmol)을 목탄위 10% 팔라듐 (14.7 mg)의 존재하에 1 기압을 약간 상회하여 상온에서 5.5 h 동안 수소화하였다. 여과에 의한 촉매의 제거, 및 실리카 겔 크로마토그래피 (1:1 에틸 아세테이트/핵산으로 용출됨)에 의한 생성물의 정제는 발포체로서 화합물 (Xa) 15 mg (Y: 68%)을 제공하였다.
디클로로메탄 (1 mL)내 화합물 (Xa) (27 mg, 0.034 mmol)을 벤질 클로로 포르메이트 (0.0146 mL, 0.102 mmol), 이어서 디이소프로필에틸아민 (0.0177 mL, 0.102 mmol)으로서 처리하였다. 반응 혼합물을 0℃ 에서 45 분, 및 상온에서 12 h 동안 교반하였다. 용매의 증발 및 실리카 겔 크로마토그래피 (헥산내 40% 에틸 아세테이트로서 용출됨)는 발포체로서 화합물 (XIa) 25.5 mg (Y: 81%)을 제공하였다.
0℃ 에서 디클로로메탄 (0.8 mL)내 화합물 (XIa) (25.5 mg, 0.028 mmol)을 DAST (0.0071 mL, 0.055 mmol)로서 처리하였다. 0℃ 에서 45 분 후에, 상온에서 5 h 동안 반응을 진행시켰다. 용매의 증발과 크로마토그래피는 원발포체로서 화합물 (XⅡa)을 제공하였다. 이 화합물을 에틸 아세테이트 (1 mL)에 용해시키고 목탄위 팔라듐 (1O%, 8.9 mg)의 존재하에 상온에서 12 h 동안 수소 1 기압을 약간 상회하여 교반하였다. 촉매를 여과에 의해 제거하였고 생성물의 실리카 겔 크로마토그래피는 발포체로서 화합물 (Ic) 10 mg (Y: 두단계에 걸쳐 40%)을 제공하였다:1H-NMR (CDCl3) δ 8.08 (d, 2H) 7.70 (d, 2H) 7.68-7.28 (m, 11H) 7.04 (d, 1H) 6.04 (bt, 1H) 5.75 (dd, 1H) 5.69 (d, 1H) 4.92 (d, 1H), 4.72 (dd, 1H) 4.55 (dd, JH-F=47 Hz) 4.30-4.21 (m, 3H) 3.81 (dd, 1H) 3.47 (d, exch, 1H) 3.37 (bd, 1H) 2.48-1.30 (m, 13H, 2.30, 1.72, 1.61 에서 단일선을 포함) 1.07 (s, 3H) 1.02 (s, 3H); MH+에 대한 HRMS 계산치: 798.3290, 실측치 798.3264.
[실시예 21]
7-α-플루오로-10-데스아세틸탁솔 (Id)
디클로로메탄 (2 mL)내 화합물 (VⅡa) (상기에 기재된 바와 같이 얻어짐, 120 mg, 0.103 mmol) 용액을 0℃ 에서 냉각하고 DAST (0.0266 mL, 0.207 mmol)로서 처리하였다. 용액을 0℃ 에서 30분간 및 상온에서 4 h 동안 교반하였다. 물 (0.05 mL)을 첨가하여 반응물을 냉각하였다. 반응 혼합물을 농축하고 잔류물을 실리카 겔 크로마토그래피 (헥산내 30% 에틸 아세테이트로서 용출됨)에 의해 정제하여 발포체로서 화합물 (XIVa) 81 mg (Y: 68%)을 제공하였다. 이 화합물 (63 mg, 0.054 mmol)을 메탄올(0.5 mL) 과 초산 (0.5 mL)에 용해시킨다음 아연 분말 (104 mg, 1.62 mmol)로서 45 ℃에 90 분간 처리하였다. 반응 혼합물을 여과한다음 여과액을 농축하였다. 잔류물의 실리카 겔 크로마토그래피 (60% 에틸 아세테이트내 40% 헥산으로서 용출됨)는 백색 고체로서 화합물 (Id) 38 mg (Y: 86%)을 제공하였다;1H-NMR (CDCl3) δ 8.17 (d, 2H) 7.78 (d, 2H) 7.66-7.26 (m, 11H) 7.15 (d, 1H) 6.20 (bt, 1H) 5.83 (dd, 1H) 5.76 (d, 1H) 5.22 (s, 1H) 5.01 (d, 1H) 4.80 (m, 1H) 4.56 (dd, JH-F=47 Hz) 4.40 (m, 2H) 4.10 (d plus exch. s, 2H) 3.55 (d, exch. 1H) 2.66-1.70 (m, 13H, 2.41, 1.82, 1.76 에서 incl. s) 1.12 (s, 3H) 1.03 (s, 3H); MH+에 대한 HRMS 계산치; 814.3239, 실측치 814.3214.
[실시예 22]
(±)-시스-3-트리에틸실릴록시-4-(2-푸릴)-아제티딘-2-온 (XXXVⅡa)
메탄올 60 mL 내 아세톡시 락탐 (XXXVIb) (3.78 g, 19.4 mmol)을 K2CO3(20 mg, 0.14 mmol)과 함께 90 분간 교반한 다음 용액을 Dowex 50W-X8 로서 중화하고 여과하였다. 여과액을 농축하고 잔류물을 무수 THF 80 mL 에 용해시킨 다음 0℃ 에서 이미다졸 (1.44 g, 21.2 mmol)과 TESC1 (3.4 mL, 20.2 mmol)과 함께 30 분간 교반하였다. 용액을 에틸 아세테이트로서 희석하고 염수로 세척한 다음 MgS04에서 건조하고 농축하였다. 잔류물을 실리카 겔에서 크로마토그래피하여 (3:1 헥산/에틸 아세테이트로서 용출함) 무색 오일로서 표제의 화합물 4.47 g (Y: 86%)을 제공하였다; IR (필름) 3976(broad), 1768, 1184, 732 cm-1;1H-NMR (CDCl3, 300 MHz) δ 7.38 (s, 1H), 6.39 (bs, 1H), 6.35 (s, 2H), 5.05 (dd, J=4.6, 2.3 Hz, 1H), 4.78 (d, J=4.6 Hz, 1H), 0.82 (t, J-8.5 Hz, 6H), 0.50 (dq, J=8.5, 1.8 Hz, 9H);13C-NMR (CDCl3, 75.5 Hz) δ 169.6, 150.4, 142.6, 110.5, 109.1, 79.6, 53.2, 6.4, 4.4.
[실시예 23]
(±)-시스-3-트리에틸실릴록시-4-(2-푸릴)-N-t-부톡시카르보닐아제티딘-2-온 (XVb)
디클로로메탄 30 mL 내 TES 락탐 (XXXVⅡa)(2.05 g, 7.7 mmol)을 0℃ 에서 디메틸아미노피리딘 (DMAP)의 촉매량에 더하여 디이소프로필에틸 아민 (1.5 mL, 8.6 mmol)과 디-t-부틸카르보네이트 (2.0 g, 9.2 mmol)와 함께 교반하였다. 용액을 디클로로메탄으로 희석하고 염수로 세척하고, MgS04에서 건조시키고 농축하였다. 잔류물을 실리카 겔에서 크로마토그래피하여 (8:1 헥산/에틸 아세테이트로서 용출됨) 왁스상 고체로서 표제의 화합물 2.0 g (Y: 70%)을 제공하였다.
[실시예 24]
(±)-시스-3-트리에틸실릴록시-4-(2-티엔일)-아제티딘-2-온 (XXXVⅡb)
3-아세톡시 락탐 (XXXVIc) (2.5 g, 11.8 mmol)의 용액을 메탄올 (10 mL) 에 용해시키고 소디움 바이카보네이트 포화수용액 (10 mL)으로서 처리하고 얻어진 슬러리를 주위 온도에서 3 h 동안 교반하였다. 그후 반응물을 에틸 아세테이트 (20 mL)로서 희석하고 물 (15 mL)로서 세척하였다. 수성 유분을 에틸 아세테이트로서 수회 역추출하고 결합된 유기 유분을 건조시키고 (MgS04) 농축하여 황색 고체 (Y: 1.7 g)를 제공하였다. 원물질을 건조 테트라히드로푸란 (20 mL)에 용해시키고 용액을 얼음/수조에서 5℃로 냉각하였다. 이미다졸 (752 mg, 1.1 eq.)을 첨가하였다. 5 분간 교반후에, 트리에틸클로로실란 (1.85 mL, 1.1 eq.)을 적가하였다. 얻어진 현탁액을 그 온도에서 3 h 동안 교반한다음; 고체를 여과에 의해 제거하였다. 유기 유분을 물 (2 × 20 mL)로서 세척한 다음 건조시키고 (MgS04) 농축하였다. 원생성물을 실리카 겔 컬럼 크로마토그래피 (헥산/에틸 아세테이트 7:3 으로서 용출됨)에 의해 정제시켜 무색 고체로서 원하는 생성물 (1.5 g, Y: 45%)을 제공하였다. m.p. 70-71℃;1H-NMR (300 MHz, CDCl3): δ 7.32-7.30 (m, 1H); 7.05-6.98 (m, 2H), 5.06-5.05 (m, 2H), 0.82 (t, 9H, J=8 Hz), 0.55-0.46 (m, 6H);13C-NMR (75.6 MHz, CDCl3): δ 169.1, 139.1, 126.5, 126.4, 125.8, 79.4, 55.1, 6.3, 4.4.
[실시예 25]
(±)-시스-3-트리메틸실릴록시-4-(2-티엔일)-N-t-부톡시카르보닐아제티딘-2-온 (XVc)
실릴 아제티디논 (XXXVⅡb) (425.7 mg, 1.48 mmol)의 용액을 디클로로메탄 (10 mL)에 용해시킨 다음 얼음/수조에서 5℃ 로 냉각하었다. 반응물을 촉매량의 DMAP 이어서 디이소프로필에틸아민 (0.25 mL, 1.0 eq) 그후 디-t-부틸카르보네이트 (388.4 mg, 1.2 eq)로서 처리하였다. 그 온도에서 2 h 후에 반응물을 소디움 바이카보네이트 포화수용액 (5 mL)으로서 냉각하고 유기 유분을 물 (5 mL)로서 세척한 다음 건조시키고 (MgS04), 실리카 겔의 짧은 플러그를 통과시킨다음 농축하여 무색의 오일로서 원하는 생성물 (525.3 mg, Y: 93%)을 제공하였다;1H-NMR (300 MHz, CDCl3): δ 7.31-7.29 (m, 1H), 7.08-7.07 (m, 1H), 7.00-6.58 (m, 1H). 5.31 (d, 1H, J=6 Hz), 5.03 (d, 1H, J=6 Hz), 1.40 (s, 9H), 0.83 (t, 9H, J=8 Hz), 0.56-0.47 (m, 6H);13C-NMR (75.6 MHz, CDCl3): δ 165.5, 147.5, 136.4, 127.6, 126.2, 126.1, 83.3, 77.3, 57.9, 27.7, 6.2, 4.3.
[실시예 26]
여기서 기재된 방법 및 실시예에 따라, 다음의 일반식(I)의 특정 탁솔 유도체를 합성할 수 있다:
7-α-플루오로-3'-데페닐-3'-(2-티엔일)탁솔 (Rg= 2-티엔일, R1= 벤조일, R2= 0Ac)
7-α-플루오로-3'-데페닐-3'-(2-푸릴)탁솔 (Rg= 2-푸릴, R1= 벤조일, R2= OAc)
7-α-플루오로-10-데스아세틸-10-벤조일-3'-데페닐-3'-(2-푸릴)탁솔 (Rg=2-푸릴, R1= 벤조일, R2= -OCOC6H5)
7-α-플루오로-10-데스아세틸-10-벤조일-3'-데페닐-3'-(2-티엔일)탁솔(Rg=2-티엔일, R1= 벤조일, R2= -OCOC6H5)
7-α플루오로-10-데스아세틸-10-메틸-3'-데페닐-3'-(2-티엔일)탁솔 (Rg=2-티엔일, R1= 벤조일, R2= OCH3)
7-α-플루오로-10-데스아세틸-10-페닐메틸카르보닐-3'-데페닐-3'-(2-푸릴)탁솔 (Rg= 2-푸릴, R1= 벤조일, R2= -OC(=0)OCH2C6H5)
7-α플루오로-10-데스아세틸-10-n-부틸카르보닐-3'-데페닐-3'-(2-티엔일) 탁솔 (Rg= 2-티엔일, R1= 벤조일, R2= OCOCH2CH2CH2CH3)
7-α-플루오로-10-데스아세틸-10-메틸술폰일-3'-데페닐-3'-(2-푸릴)탁솔 (Rg= 2-푸릴, R1= 벤조일, R2= -OS02CH3)
[실시예 27]
10-데스아세틸박카틴의 C-10 위치를 선택적으로 유도하는 대표예
10-벤조일-10-데스아세틸-7-트리에틸실릴박카틴 (XXXIXa)
아르곤 분위기하에, R3가 SiEt3인 일반식 (XXXVⅢ)의 박카틴 유도체 (43.5 mg, 0.066 mmol)를 건조 테트라히드로푸란 (1.0 mL)에 용해시켰다. 용액을 -40℃ 로 냉각하고 n-BuLi (0.050 mL, 0.82 mmol, 1.6 M 용액)를 천천히 첨가하였다. 교반 5 분후에, 벤조일 클로라이드 (0.030 mL, 0.26 mmol)를 첨가한 다음 반응 혼합물을 0℃ 로 가열하였다. 암모늄 클로라이드 포화 용액 (2 mL)으로 냉각전에 반응 혼합물을 1.5 h 동안 교반하였다. 수성 매질을 에틸 아세테이트 (2 x 5mL)로 추출하고, 건조한 다음 (마그네슘 술페이트), 증발시켜 오일을 제공하였다. 섬광 실리카 겔 크로마토그래피 (헥산내 50% 에틸 아세테이트로서 용출함)는 발포체로서 표제의 화합물 (30 mg, Y: 60%, R3=Si(Et)3, Rm=0COC6H5인 일반식 (XXXIX) 의 화합물)을 제공하였다;1N-NMR (CDCl3): δ 8.17-8.05 (m, 4H), 7.64-7.42 (m, 6H), 6.67 (s, 1H), 5.67 (d, 1H), 4.95 (d, 1H), 4.81 (m, 1H), 4.56 (dd, 1H), 4.30 (d, 1H), 4.81 (m, 1H), 4.56 (dd, 1H), 4.30 (d, 1H), 4.14 (d, 1H), 3.92 (d, 1H), 2.50 (m, 1H), 2.30-2.0 (m, 18H), 1.92-1.80 (m, 1H), 1.72-1.62 (bs, 4H), 1.30 (s, 3H), 1.00 (s, 3H), 0.89 (t, 3H), 0.56 (q, 6H); HRMS (FAB/NOBA): C42H54011Si(MH+)에 대한 계산치: 762.3435. 실측치 762.3427.
이 방법을 이용하여, C-10 카보네이트, 술포네이트, 카르바메이트, 에테르등을 제조할 수 있다. 수율은 리튬 헥사메틸디실라잔이 사용될 때 보다 잉호하다고 발견될 것이다.
생물학적 데이타
시험관네 세포독성 데이타
본 발명의 7-플루오로탁솔 유도체는 사람의 결장암 세포 HCT-116 및 HCT-116/VM46에 대해 시험관내 세포독성 활성을 보여주었다. HCT-116/VM46 세포는 이전에 테니포시드 내성을 위해 선택된 세포이며 탁솔에 대한 내성을 비롯하여, 다약물 내성 표현형을 발현한다. 세포독성을 HCT-116 사람의 결장암 세포에서 D.A. Scudiero, et al., "Evalution of soluble tetrazolium/formazen assay for cell growth and drug sensitivity in culture using human and other tumor cell lines', Cancer Res. 48: 4827-4833, 1988 에 기록된 바와 같이 XTT (2,3-비스(2-메톡시-4-니트로-5-술프페닐)-5-[(페닐아미노)카르보닐]2H-테트라졸리움 히드록사이드) 시험에 의해 시험하였다. 세포를 96 웰 마이크로타이트 플레이트에서 4000 세포/웰에서 플레이트화한 다음 24 시간 후에 약물을 첨가하여 일련의 희석을 수행하였다. 세포를 37℃ 에서 테트라졸리움 염료, XTT를 첨가할 때 72 시간 배양하였다. 생세포내 데히드로게나제 효소는 XTT 를 스펙트로메트리로 정량화될 수 있는, 450 nm 에서 빛을 흡수하는 형태로 환원시킨다. 흡수도가 클수록, 생세포의 수가 커진다. 그 결과를 IC50으로 표시하며, 이것은 미처리 대조세포의 50% 로 세포 증식 (즉, 450 nm에서 흡광도)을 억제하는데 필요한 악물 농도이다. 본 시험에서 평가된 화합물에 대한 IC50치를 표 1 에 제시한다.
[표 I]
*괄호 수치는 HCT-116 세포에 대한 중첩 내성임.
새앙쥐 M1O9 모델
Balb/c x DBA/2 F1히브리드 새앙쥐를 William Rose 에 의해 Evaluation of Madison 109 Lung Carcinoma as a Model for Screening Antitumor Drugs, Cancer Treatment Reports, 65, No. 3-4 (1981)에 기재된 바와 같이, M1O9 폐암의 2% (w/v) 브레이(brei) 0.5 mL로서 복강내 이식하였다.
새앙쥐를 연구중인 화합물로서 종양 이식후 1, 5 및 9 일 또는 이식후 5 및 8 일에 다양한 투여량의 복강내 주사액을 섭취시켜 처리하였다. 새앙쥐를 매일 종양 이식후 약 75-90 일까지 생존에 대해 추적하였다. 실험마다 일군의 새앙쥐를 미처리하고 대조군으로서 취하였다.
화합물-처리 (T) 새앙쥐의 중간생존시간을 대조 (C) 새앙쥐의 중간생존시간과 비교하였다. 새앙쥐의 각 화합물 처리군에 대한 두개의 값에 대한 비율을 100 으로 곱하여 대표 화합물에 대해 표 Ⅱ 에서 퍼센트 (즉 %T/C)로서 표시하였다.
[표 II]
본 발명의 일반식 (I) 화합물은 포유류에 종양 억제 활성을 가지고 있다. 따라서, 본 발명의 또다른 일예는 일반식 (I) 화합물에 과민한 포유류 종양을 억제하는 방법에 관한 것이다. 본 발명은 또한 일반식 (I)의 7-플루오로 탁솔 유도체를 제조하는데 유용한 중간체를 제공한다.
일반식 (I)의 화합물은 또한 수용성 전구약물을 제조하는데 사용될 수 있다. 여러가지의 탁솔 수용성 전구약물이 기재된 바 있다. 참조예, 1991. 10.22 자에 Kingston et al 에게 발행된 미국특허 제 5,059,699호; 1990. 7. 17 자에 Haugwitz et al 에게 발행된 미국특허 제 4,492,184호; 1990. 10. 2 자에 Stella et al 에게 발행된 미국특허 제 4,960,790호; 세가지 미국 특허 모두는 전적으로 참고로서 속한다. 상기에 언급된 세가지 미국특허에 기재된 물에 녹는 성분은 또한 일반식 (I)의 화합물의 2'- 및/또는 10-히드록시기에 연결되어 수용성을 더욱 증가시킬 수 있다. 따라서, 본 발명은 그들의 전구약물을 제조하는데 사용될 수 있는 항종양 화합물을 제공한다.
본 발명은 또한 한가지 또는 그 이상의 약리적으로 허용되는, 불활성 또는 생리적으로 활성인, 담체, 부형제, 희석제 또는 보조약과 조합하여 일반식 (I)의 화합물을 함유한 악제 조성물 (배합물)을 제공한다. 탁솔 또는 그에 관련된 유도체를 배합하는 실예 (가능한 투여량을 포함)는 여러가지 문헌, 예를들어 미국특허 제 4,960,790 호 및 제 4,814,470 호에 기재되어 있으며 이러한 실에는 본 발명의 화합물을 배합하는데 따를 수 있다. 예를들어, 신규 화합물은 정제, 환약, 분말 혼합물, 캡슐, 주사액, 액제, 좌제, 에멀젼, 분산액, 식품 프리믹스, 및 다른 적합한 형태로 투여될 수 있다. 본 화합물을 함유한 약제제는 편리하게도 비독성 약제 유기 담체 또는 비독성 약제 무기 담체와 함께, 통상적으로 약 0.01 mg-2500 mg까지, 또는 투여량 단위당 그 이상, 바람직하게는 50-500 mg 혼합된다. 전형적인 약리적으로 허용되는 담체는 예를들어, 만니톨, 우레아, 덱스트란, 락토스, 감자 및 옥수수 전분, 마그네슘 스테아레이트, 탈크, 식물성 오일, 폴리알킬렌 글리콜, 에틸 셀룰로스, 폴리(비닐피롤리돈), 칼슘 카보네이트, 에틸 올레에이트, 이소프로필 미리스테이트, 벤질 벤조에이트, 소디움 카보네이트, 젤라틴, 포타슘 카보네이트, 규산, 및 다른 종래에 사용된 허용가능한 담체이다. 약제제는 또한 예를들어 소르비탄 모노라우레이트, 트리에탄올아민 올레에이트, 폴리옥시에틸렌 모노스테아레이트, 글리세릴 트리팔미테이트, 디옥틸 소디움 술포숙시네이트등과 같이 유화제, 방부제, 습윤제등과 같은 비독성 보조 물질을 함유할 수 있다.
본 발명의 화합물은 또한 동결 건조될 수 있으며, 필요하다면, 다른 약리적으로 허용되는 부형제와 결합하여 비경구, 주사 투여에 적합한 배합물을 제조할 수 있다. 이러한 투여에 대해, 배합물은 물(통상, 식염수), 또는 물과 유기 용매의 혼합물, 이를테면 프로필렌 글리콜, 에탄올등에서 재구성될 수 있다.
본 발명의 화합물은 실제로 포유류 종양을 처리하는데 탁솔과 동일한 방식으로 사용될 수 있다. 사람의 암환자에서 탁솔의 투여에 대한 모드, 투여량 및 스케쥴이 광범위하게 연구된 바 있다. 참조예 Ann. Int. Med., 111, pp 273-279 (1989). 본 발명의 화합물에 대해, 단일 투여량, 복수 투여량, 또는 일간 투여량이든지, 투여될 투여량은 물론 화합물의 효능 변화, 선택된 투여 경로, 레시피언트의 크기 및 환자 상태의 특성때문에 사용된 특정 화합물에 따라 변할 것이다. 투여될 투여량은 경계를 한정시키는 것이 쉽지 않으나, 통상적으로 유효량, 또는 그의 원하는 약리적 및 생리적 효과를 성취하기 위하여 활성 약물의 대사적 방출시 투여량 배합물로 부터 제조된 약리적으로 활성이 없는 형태의 몰기초로 당량일 것이다. 투여될 투여량은 일반적으로 체중에 대해 0.8-8 mg/kg 또는 환자에 대해 약 50-275 mg/m2일 것이다. 암치료 기술에 숙련된 온콜로지스트는 부당한 실험없이 탁솔 및 그의 유도체에 대한 초기 연구에 관련하여 본 발명의 화합물의 효과적인 추여에 대한 적합한 프로토콜을 확인할 수 있을 것이다.

Claims (12)

  1. 상기식에서,
    R1은 -CORz이고, Rz는 R0- 또는 R 이며;
    Rg는 C1-6알킬, C2-6알켄일, C2-6알킨일, C3-6시클로알킬, 또는 식 -W-Rx의 라디칼이며, 여기서 W 는 결합을 나타내고, C2-6알켄디일, 또는 -(CH2)t- 이며, t 는 1-6 이고; Rx는 나프틸, 푸릴, 티엔일 또는 페닐이며, 또한 Rx는 임의로 1-3 개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환될 수 있으며;
    R2는 -OCOR, H, 0H, -0R, -OS02R, -OCONROR, -OCONHR, -0COO(CH2)tR, 또는 -OCOOR 이며;
    R 과 R0는 각각 C1-6알킬, C2-6알켄일, C3-6시클로알킬, C2-6알킨일, 또는 페닐이며, 임의로 1-3개가 같거나 서로 다른 C1-6알킬, C1-6알콕시, 할로겐 또는 -CF3기로 치환된다.
  2. 제1항에 있어서, R1은 t-부톡시카르보닐 또는 C6H5CO- 이고; R2는 -OCOCH3, H, 또는 OH이며; Rg는 페닐, 2-티엔일 또는 2-푸릴인 화합물.
  3. 제2항에 있어서, 7-α-플루오로탁솔인 화합물.
  4. 제2항에 있어서, N-데벤조일-N-t-부톡시카르보닐-7-α-플루오로탁솔인 화합물.
  5. 제2항에 있어서, 7-α-플루오로-10-데스아세틸록시탁솔인 화합물.
  6. 제2항에 있어서, 7-α-플루오로-10-데스아세틸탁솔인 화합물.
  7. 제2항에 있어서, 7-α-플루오로-3'-데페닐-3'-(2-푸릴)-N-데벤조일-N-t-부톡시카르보닐탁솔인 화합물.
  8. 제2항에 있어서, 7-α-플루오로-3'-데페닐-3'-(2-티엔일)-N-데벤조일-N-t-부톡시카르보닐탁솔인 화합물.
  9. 제2항에 있어서, 7-α-플루오로-3'-데페닐-3'-(2-티엔일)탁솔인 화합물.
  10. 제2항에 있어서, 7-α-플루오로-3'-데페닐-3'-(2-푸릴)탁솔인 화합물.
  11. 활성 성분으로, 제1-10항 중 어느 한 항에 의한 화합물을 포유류의 종양에 민감한 양으로 함유하고, 이와 함께 약리학적으로 허용되는 담체, 부형제 또는 희석제 중 한가지 이상을 함유하는, 포유류 종양 치료제.
  12. 일반식(Ⅳ)의 플루오로박카틴 Ⅲ
KR1019930011874A 1992-07-01 1993-06-28 플루오로탁솔 KR100292331B1 (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US90726192A 1992-07-01 1992-07-01
US907,261 1992-07-01
US99544392A 1992-12-23 1992-12-23
US995,443 1992-12-23
US07/996,445 US5305523A (en) 1992-12-24 1992-12-24 Method of direct transferring of electrically conductive elements into a substrate
US996,445 1992-12-24
US642393A 1993-01-19 1993-01-19
US006,423 1993-01-19
US08/029,819 US5254580A (en) 1993-01-19 1993-03-11 7,8-cyclopropataxanes
US029,819 1993-03-11
US08/062,687 US5294637A (en) 1992-07-01 1993-05-20 Fluoro taxols
US062,687 1993-05-20
US996,455 1993-11-24

Publications (2)

Publication Number Publication Date
KR940005605A KR940005605A (ko) 1994-03-21
KR100292331B1 true KR100292331B1 (ko) 2001-09-17

Family

ID=37526256

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930011874A KR100292331B1 (ko) 1992-07-01 1993-06-28 플루오로탁솔

Country Status (1)

Country Link
KR (1) KR100292331B1 (ko)

Also Published As

Publication number Publication date
KR940005605A (ko) 1994-03-21

Similar Documents

Publication Publication Date Title
US5294637A (en) Fluoro taxols
US5254580A (en) 7,8-cyclopropataxanes
EP0600517B1 (en) 6,7-Modified paclitaxels
RU2125998C1 (ru) 6,7-модифицированные паклитакселы и промежуточные соединения
KR100291771B1 (ko) 데옥시탁솔
US5395850A (en) 6,7-epoxy paclitaxels
US5478854A (en) Deoxy taxols
EP0604910A1 (en) Phosphonooxymethyl ethers of taxane derivatives
EP0639577A1 (en) Phosphonooxymethyl or methylthiomethyl ethers of taxane derivatives as antitumor agents
EP0577082B1 (en) Fluoro taxols with antitumor activity
JPH08239373A (ja) 7−o−エーテルタキサン誘導体
JP3208517B2 (ja) 7,8−シクロプロパタキサン類
KR100292331B1 (ko) 플루오로탁솔
RU2131874C1 (ru) Фторотаксолы, промежуточные соединения, фармацевтическая композиция и способ лечения

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040310

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee