KR100291850B1 - The automaticcompensation method of force and torque sensor for gravity weight - Google Patents

The automaticcompensation method of force and torque sensor for gravity weight Download PDF

Info

Publication number
KR100291850B1
KR100291850B1 KR1019980040197A KR19980040197A KR100291850B1 KR 100291850 B1 KR100291850 B1 KR 100291850B1 KR 1019980040197 A KR1019980040197 A KR 1019980040197A KR 19980040197 A KR19980040197 A KR 19980040197A KR 100291850 B1 KR100291850 B1 KR 100291850B1
Authority
KR
South Korea
Prior art keywords
angle sensor
reverse angle
coordinate system
sensor
axis
Prior art date
Application number
KR1019980040197A
Other languages
Korean (ko)
Other versions
KR20000021209A (en
Inventor
박종오
장성훈
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019980040197A priority Critical patent/KR100291850B1/en
Publication of KR20000021209A publication Critical patent/KR20000021209A/en
Application granted granted Critical
Publication of KR100291850B1 publication Critical patent/KR100291850B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 로봇을 사용한 자동화 공정에 있어서 임의의 형상물에 대한 역각 센서의 자동중력보상방법에 관한 것이다. 공구나 센서의 무게나 형상에 의해 왜곡되는 외력을 보상할 수 있도록 공구의 무게벡터 및 무게중심까지의 거리벡터, 로봇의 자세변화를 가지고 중력보상에 필요한 값을 계산한다. 상기의 무게벡터 와 거리벡터를 구하기 위해 센서좌표계의 X축과 절대좌표계의 Z축이 서로 평행하도록 로봇을 이동시켜서 계산하고, 로봇 제어기로부터 현재 로봇 정보를 읽어들여 센서좌표계와 절대좌표계 사이의 변환을 구하여 중력보상에 필요한 변환된 무게벡터와 토크벡터를 계산하여 중력보상을 하는 역각 센서의 자동중력보상방법을 제시한다.The present invention relates to an automatic gravity compensation method of a reverse angle sensor for an arbitrary shape in an automated process using a robot. In order to compensate for the external force distorted by the weight or shape of the tool or sensor, the required value of gravity compensation is calculated from the weight vector of the tool, the distance vector to the center of gravity, and the attitude change of the robot. To calculate the weight vector and distance vector, the robot is calculated by moving the X axis of the sensor coordinate system and the Z axis of the absolute coordinate system to be parallel to each other, and the current robot information is read from the robot controller to convert between the sensor coordinate system and the absolute coordinate system. In this paper, we present an automatic gravity compensation method for a reverse angle sensor that calculates the weight and torque vectors required for gravity compensation.

Description

역각센서의 자동중력보상방법{The automaticcompensation method of force and torque sensor for gravity weight}The automatic compensation method of force and torque sensor for gravity weight

본 발명은 로봇을 사용한 자동화 공정에 있어서 임의의 형상물에 대한 역각 센서의 자동중력보상방법(The automatic compensation method of force and torque sensor for gravity weight)에 관한 것이다.The present invention relates to an automatic compensation method of force and torque sensor for gravity weight for an arbitrary shape in an automated process using a robot.

인간의 작업을 대신하기 위하여 산업 현장에서는 산업용 로봇을 이용하여 자동화 작업을 수행한다. 자동화 작업을 하기위하여 산업용 로봇은 로봇 제어기에 부착된 교시기를 사용하여 작업자가 정보를 주는 방법으로 작업을 수행한다.In order to replace human work, industrial robots perform automation work using industrial robots. In order to perform automated tasks, industrial robots use a teaching tool attached to a robot controller to perform tasks in a manner that informs the operator.

그러나, 상기 방법은 작업자 측면에서 매우 힘든 작업이다. 따라서, 작업 경로를 교시하는 데 있어서 작업자의 편이성을도모하기 위해 역각센서를 이용한 다관절 로봇의 자동 프로그래밍 모듈을 개발하게 되었다. 상기 자동 프로그래밍 모듈에서는 역각센서에 사용하고자 하는 공구나 다른 센서를 부착하여 작업자가 공구나 센서를 손으로 이동시키면, 역각센서에얻어지는 외력을 측정하며 필요한 로봇의 위치, 자세와 이동 속력을 계산하는 방법이 사용된다.However, this method is a very difficult task from the worker side. Therefore, in order to facilitate the operator's convenience in teaching the work path, an automatic programming module of an articulated robot using an inversion sensor has been developed. The automatic programming module attaches a tool or other sensor to be used for a reverse angle sensor, and when a worker moves the tool or sensor by hand, it measures the external force obtained by the reverse angle sensor and calculates the required position, posture and moving speed of the robot. This is used.

상기의 역각센서에 의한 외력측정은 로봇이 임의의 자세로 변할 때 공구의 무게에 의한 영향 때문에 정확하게 외력을 측정할 수 없게 되며, 공구가 교체되면 그 무게에 따라 역각센서 출력값에 주는 영향 정도가 달라지는 문제점이 있었다.The external force measurement by the reverse angle sensor is not able to accurately measure the external force due to the influence of the weight of the tool when the robot is changed to a certain posture. There was a problem.

본 발명은 상기와 같은 문제점을 해결하고자 제시된 것으로서, 본 발명의 목적은 공구나 센서의 무게나 형상에 의해 왜곡되는 외력을 보상할 수 있도록 공구의 무게벡터 및 무게중심까지의 거리벡터, 로봇의 자세변화를 가지고 중력보상에 필요한 값을 계산한다. 상기의 무게벡터 와 거리벡터를 구하기 위해 센서좌표계의 X축과 절대좌표계의 Z축이 서로 평행하도록로봇을 이동시켜서 계산하고, 로봇 제어기로부터 현재 로봇 정보를 읽어들여 센서좌표계와 절대좌표계 사이의 변환을 구하여 중력보상에 필요한 변환된 무게벡터와 토크벡터를 계산하여 중력보상을 하는 역각 센서의 자동중력보상방법을 제공하는 데 있다.The present invention is proposed to solve the above problems, an object of the present invention is to compensate for the external force distorted by the weight or shape of the tool or sensor, the weight vector and the distance to the center of gravity vector, the attitude of the robot Take the change and calculate the value needed for gravity compensation. To calculate the weight vector and distance vector, calculate the robot by moving the robot so that the X axis of the sensor coordinate system and the Z axis of the absolute coordinate system are parallel to each other, and read the current robot information from the robot controller to convert between the sensor coordinate system and the absolute coordinate system. The present invention provides an automatic gravity compensation method of an inverse angle sensor that performs gravity compensation by calculating the converted weight and torque vectors required for gravity compensation.

도 1은 각 좌표계의 설정 예시도1 is an example of setting each coordinate system

도 2 ~ 4는 역각센서의 자세에 따른 하중 관계도2 to 4 is a load relationship diagram according to the attitude of the reverse angle sensor

도 5는 센서 좌표계의 X축과 절대 좌표계의 -Z축을 일치시키는 방법을 설명하는 예시도5 is an exemplary view for explaining a method of matching the X axis of the sensor coordinate system and the -Z axis of the absolute coordinate system.

도 6은 힘의 크기에 대한 회전각의 비례상수를 구하는 방법을 설명하는 예시도6 is an exemplary view for explaining a method for obtaining a proportional constant of the rotation angle with respect to the magnitude of the force.

도 7은 센서좌표계와 절대좌표계가 일치되었을 때 각 좌표계간의 초기관계를 나타내는 예시도7 is an exemplary view showing the initial relationship between each coordinate system when the sensor coordinate system and the absolute coordinate system match.

도 8은 로봇의 임의의 자세로 이동하였을 때 각 좌표계간의 관계를 나타내는 예시도8 is an exemplary view showing a relationship between coordinate systems when the robot moves to an arbitrary posture.

도 9는 본 발명인 역각센서의 자동중력보상방법을 수행하는 시스템 구성도9 is a system configuration for performing the automatic gravity compensation method of the present inventors reverse angle sensor

도 10은 본 발명인 역각센서의 자동중력보상방법을 설명하기 위한 흐름도10 is a flow chart for explaining the automatic gravity compensation method of the present inventors reverse angle sensor

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

5 : 로봇 10 : 기준좌표계5: robot 10: reference coordinate system

15 : 역각센서 20 : 끝단좌표계15: reverse angle sensor 20: end coordinate system

25 : 공구 30 : 센서좌표계25 tool 30 sensor coordinate system

35 : 제어컴퓨터 40 : 절대좌표계35: control computer 40: absolute coordinate system

45 : 역각센서제어기 50 : 로봇제어기45: reverse angle sensor controller 50: robot controller

: 중점거리벡터: 토크벡터 : Center distance vector : Torque vector

: 힘벡터 x, y, z : 좌표축 : Force vector x, y, z: axes

GC : 무게중심GC: center of gravity

이하에서는 본 발명의 실시예의 구성 및 작용에 관하여 첨부된 도면을 참조하여 설명하기로 한다.Hereinafter, with reference to the accompanying drawings with respect to the configuration and operation of the embodiment of the present invention will be described.

도 1은 각 좌표계의 설정 예시도이다.1 is an exemplary diagram for setting each coordinate system.

도 2 ~ 4는 역각센서의 자세에 따른 하중 관계도이다.2 to 4 is a load relationship diagram according to the attitude of the reverse angle sensor.

도 5는 센서 좌표계의 X축과 절대 좌표계의 -Z축을 일치시키는 방법을 설명하는 예시도이다.5 is an exemplary view for explaining a method of matching the X axis of the sensor coordinate system and the -Z axis of the absolute coordinate system.

도 6은 힘의 크기에 대한 회전각의 비례상수를 구하는 방법을 설명하는 예시도이다.6 is an exemplary view for explaining a method for obtaining a proportional constant of the rotation angle with respect to the magnitude of the force.

도 7은 센서좌표계와 절대좌표계가 일치되었을 때 각 좌표계간의 초기관계를 나타내는 예시도이다.7 is an exemplary diagram illustrating an initial relationship between each coordinate system when the sensor coordinate system and the absolute coordinate system coincide with each other.

도 8은 로봇의 임의의 자세로 이동하였을 때 각 좌표계간의 관계를 나타내는 예시도이다.8 is an exemplary view showing a relationship between coordinate systems when the robot moves to an arbitrary posture.

도 1 ~ 8을 참조하여 설명하면, 도 1은 로봇(5)을 기준으로 하는 기준좌표계(10)와, 로봇(5)의 끝단을 기준으로 하는 끝단좌표계(20)와, 로봇 끝단에 부착된 센서를 기준으로 하는 센서좌표계(30)와, 지구를 중심으로 하는 절대좌표계(40)를나타낸다. 로봇(5) 끝단과 역각센서(15)는 서로 고정되어 있어서 끝단좌표계(20)와 센서좌표계(30)의 관계는 불변한다고가정한다. 로봇(5)의 기준좌표계(10)와 절대좌표계(40)의 관계도 불변한다고 가정한다. 본 발명인 중력보상을 하기 위해서는 임의의 형상을 가진 공구(25)의 무게벡터()와 센서좌표계(30)로부터 공구(25)의 무게중심(GC)까지의 거리벡터()를구해야 한다. 도 2에서 센서좌표계(30)의 X축이 절대좌표계(40)의 -Z축과 평행하다면, 역각센서(15)에서는 다음과 같은값이 출력된다.1 to 8, FIG. 1 is attached to a reference coordinate system 10 based on the robot 5, an end coordinate system 20 based on the end of the robot 5, and a robot end. The sensor coordinate system 30 based on the sensor and the absolute coordinate system 40 centered on the earth are shown. It is assumed that the end of the robot 5 and the reverse angle sensor 15 are fixed to each other so that the relationship between the end coordinate system 20 and the sensor coordinate system 30 is unchanged. It is assumed that the relationship between the reference coordinate system 10 and the absolute coordinate system 40 of the robot 5 is also unchanged. In order to compensate the gravity of the inventors of the weight vector of the tool 25 having an arbitrary shape ( ) And the distance vector (GC) from the sensor coordinate system 30 to the center of gravity GC of the tool 25. Should be obtained. In FIG. 2, if the X axis of the sensor coordinate system 30 is parallel to the -Z axis of the absolute coordinate system 40, the following values are output from the reverse angle sensor 15.

즉, In other words,

상기의 힘 벡터, 토크 벡터, 거리 벡터의 관계를 이용하면를 구할 수 있다. 상기의 결과는 [수학식 1] 및 [수학식 2]에의해서 구해진다.Using the relationship between the force vector, torque vector, and distance vector Can be obtained. The above result is calculated | required by [Equation 1] and [Equation 2].

또한, 도 3은 센서좌표계(30)의 Z축을 회전축으로 90˚만큼 센서를 회전시킨 상태이며, 를 구할 수 있다. 상기의 결과는[수학식 3] 및 [수학식 4]에 의해서 구해진다. 상기에서 는 [수학식 2]에서 구한 값과 비교하여 계산된 값의 오차 정도를알 수 있다.3 is a state in which the sensor is rotated by 90 degrees with respect to the Z axis of the sensor coordinate system 30 as the rotation axis. The above result is calculated | required by [Equation 3] and [Equation 4]. In the above it can be seen the degree of error of the calculated value compared with the value obtained in [Equation 2].

상기의 수학식에서 출력된 결과값을 이용하여 중력보상을 하기 위해서는 도 5와 도 6과 같이 로봇(5)이 임의의 자세로 이동되어 좌표계의 변화가 생기는 경우 센서좌표계(30)가 변환된 관계행렬()이 필요하다. 상기의는 다음과 같이 계산하여구한다. 즉, 상기에서 절대좌표계(40)와 로봇(5)의 기준좌표계(10)의 관계는 변하지 않으므로 초기 자세와 임의의 자세의관계를 [수학식 5]로 구하면 다음과 같다.In order to perform gravity compensation using the result value output from the above equation, as shown in FIGS. 5 and 6, when the robot 5 is moved to an arbitrary posture and a change in the coordinate system occurs, the relation matrix in which the sensor coordinate system 30 is converted ( ) Is required. Above Is calculated as follows. That is, since the relationship between the absolute coordinate system 40 and the reference coordinate system 10 of the robot 5 does not change, the relationship between the initial posture and the arbitrary posture is expressed by Equation 5 as follows.

또한, 로봇(5) 끝단좌표계(20)와 센서좌표계(30)는 고정되어 있고, 상기 두 좌표계의 관계행렬()이 단위행렬이라고 가정하면,는 다음의 [수학식 6] 의 결과와 같다.In addition, the robot 5 end coordinate system 20 and the sensor coordinate system 30 are fixed, and the relation matrix of the two coordinate systems ( ) Is a unit matrix, Is the same as the result of Equation 6 below.

상기은 로봇제어기(50)로부터 얻을 수 있으며은 초기 자세에서 가정한 값을 갖는다.가 계산되면, 임의의 자세에서 중력보상에 필요한 값을 계산할 수 있다. 상기의 과정에 의해 중력보상된 역각센서(15)의 출력값은 [수학식 7]과 같다.remind and Can be obtained from the robot controller 50, Has the value assumed for the initial posture. Once is calculated, the value required for gravity compensation in any posture can be calculated. The output value of the inverse angle sensor 15 gravitationally compensated by the above process is shown in [Equation 7].

상기에서,는 중력보상된 역각센서의 값이고,In the above, Is the value of gravity compensated inverse sensor,

는 역각센서의 출력값이고,는 공구의 무게벡터이고,는 센서좌표계의 원점에서 공구의 무게 중심까지의 거리벡터이다. Is the output value of the reverse angle sensor, Is the weight vector of the tool, Is the distance vector from the origin of the sensor coordinate system to the center of gravity of the tool.

상기와 같은 과정에 의해 절대좌표계와 센서좌표계간의 상대적인 변환관계와 공구의 특성치(무게벡터, 무게중심까지의 거리벡터)를 구하는 방법이 이루어진다. 상기에서, 본 발명이 올바로 수행되려면 선행조건이 필요하다. 즉, 상기의 무게벡터와 무게중심(GC)까지의 거리벡터를 구하기 위해서는 센서좌표계(30)의 X축과 절대좌표계(40)의 -Z축이 평행해야 한다.또한, 일반적인 역각센서(15)에서 처음 센서를 구동시켰을 때의 출력값은 그 상황에서 역각센서(15)가 받고 있는 하중과는 다르다. 상기와 같은 특성으로 인하여, 기준값을 설정하여 다른 하중이 작용하는 경우 기준값과의 상대적인 차를 계산하여 역각센서(15)의 출력값으로 한다. 본 발명에서는 도 2의 상태에서 첫 번째로 기준값을 설정한다. 상기에 의해 기준값이 설정되면, 도 2의 역각센서(15)에서의 출력값은 모두 0이 되며, 센서좌표계(30)의 Z축을 도 4와 같이 180°회전시키면, 역각센서(15)의 출력값의 크기는 도 2 상태에서 역각센서(15)에 공구(25)가 작용하는 힘의 2배가 된다. 도 2에서 절대좌표계(40)의 Z축과 센서좌표계(30)의 X축이 평행을 이루었다면, 도 4의 역각센서(15)의 출력값 중성분은 0 이 되어야 한다. 상기 결과가 0 이 아니라면 그 상태의값을 이용하여 다음과 같이 로봇(5)을 이동하여 Z축과 X축의 평행이 이루어지도록 한다.By the above process, the relative conversion relationship between the absolute coordinate system and the sensor coordinate system and the characteristic value of the tool (weight vector, distance vector to the center of gravity) are obtained. In the above, a prerequisite is required for the present invention to be carried out correctly. That is, in order to obtain the distance vector between the weight vector and the center of gravity GC, the X axis of the sensor coordinate system 30 and the -Z axis of the absolute coordinate system 40 must be parallel to each other. The output value when the sensor is first driven at is different from the load being received by the reverse angle sensor 15 in that situation. Due to the above characteristics, the reference value is set to calculate the relative difference with the reference value when another load acts as the output value of the reverse angle sensor 15. In the present invention, the reference value is first set in the state of FIG. When the reference value is set by the above, the output values of the reverse angle sensor 15 of FIG. 2 are all 0, and when the Z axis of the sensor coordinate system 30 is rotated 180 degrees as shown in FIG. 4, the output value of the reverse angle sensor 15 The magnitude is twice the force exerted by the tool 25 on the reverse angle sensor 15 in FIG. 2. In FIG. 2, if the Z axis of the absolute coordinate system 40 and the X axis of the sensor coordinate system 30 are parallel to each other, among the output values of the reverse angle sensor 15 of FIG. 4. The component must be zero. If the result is not 0, the state By using the value, the robot 5 is moved as follows so that the Z-axis and the X-axis are parallel.

즉, 도 5와 도 6에 나타낸 바와 같이 센서좌표계(30)의 Y축, Z축에 대해 작은 사이각(θ)에 대한 힘 변화량을 구한다. 상기에서 힘 변화량을 구하면, 도 4에서 얻은에 대한 각각의 회전각을 구하여 로봇(5)을 상기 각 만큼 이동시켜서 도 3의형태의 자세가 나오도록 센서좌표계(30)의 Z축을 회전축으로 180°회전시켜 센서의 값을 측정한 뒤 다시 -180°회전시킨다. 상기에 의해 출력되는성분값이 0 이 아니라면, 위의 작업을 반복해서 0 이 나오도록 한다. 상기의 반복작업이 끝나게 되면 로봇(5)의 자세가 센서좌표계(30)의 X축과 절대좌표계(40)의 Z축이 평행해진 것이다. 상기의 X, Z축이 평행해찐자세에서 좌표계간의 관계를 도 7의 초기상태로 설정하고, 상기 상태에서의 역각센서(15)의 출력값이 공구(25)에 의한 무게, 토크가 나오도록 기준값을 재설정한다. 이상의 과정에 의해 센서좌표계(30)의 X축과 절대좌표계(40)의 Z축이 평행해졌으므로 상술한 방법으로 임의의 형상을 가진 공구의 무게와 무게중심의 위치정보를 계산할 수 있다. 상기에 의해 공구(25)의 특성치(무게벡터, 무게중심까지의 거리벡터)를 구하는 작업이 끝나게 되면 도 7 및 도 8에서의 로봇정보를 로봇제어기(50)로부터 읽어들여 중력보상을 하게 되며, 그 계산식은 상기의 수학식에 서술한 바와 같다.That is, as shown in FIG. 5 and FIG. 6, the force change amount with respect to the small angle (theta) with respect to the Y-axis and Z-axis of the sensor coordinate system 30 is calculated | required. Obtaining the force variation in the above, obtained in Figure 4 Obtain the angle of rotation for each and move the robot 5 by the above angle to rotate the Z-axis of the sensor coordinate system 30 180 degrees to the axis of rotation so that the posture in the form of FIG. Rotate 180 °. Output by the above If the component is nonzero, repeat the above operation to get zero. When the repetitive operation is completed, the attitude of the robot 5 is parallel to the X axis of the sensor coordinate system 30 and the Z axis of the absolute coordinate system 40. In the posture in which the X and Z axes are parallel to each other, the relationship between the coordinate systems is set to the initial state of FIG. 7, and the output value of the reverse angle sensor 15 in this state is a reference value such that the weight and torque of the tool 25 are obtained. Reset it. Since the X axis of the sensor coordinate system 30 and the Z axis of the absolute coordinate system 40 are parallel by the above process, the weight and position information of the center of gravity of a tool having an arbitrary shape can be calculated by the above-described method. When the operation of obtaining the characteristic value (weight vector, distance vector to the center of gravity) of the tool 25 is completed, the robot information in FIGS. 7 and 8 is read from the robot controller 50 to perform gravity compensation. The calculation formula is as described in the above formula.

본 발명인 역각센서의 자동중력보상방법에 관하여 도 9의 시스템 구성도 및 도 10의 흐름도를 참조하여 상세히 설명하면다음과 같다.The automatic gravity compensation method of the reverse angle sensor of the present invention will be described in detail with reference to the system configuration of FIG. 9 and the flowchart of FIG. 10.

도 9는 본 발명인 역각센서의 자동중력보상방법을 수행하는 시스템 구성도이다.9 is a system configuration for performing the automatic gravity compensation method of the inverse angle sensor of the present invention.

도 10은 본 발명인 역각센서의 자동중력보상방법을 설명하기 위한 흐름도이다.10 is a flow chart for explaining the automatic gravity compensation method of the inverse angle sensor of the present invention.

먼저, 도 9를 참조하여 설명하면, 역각센서(15)는 로봇(5) 끝단에 부착되고 역각센서제어기(45)는 상기 역각센서(15)의자세를 변환시키며, 상기 역각센서(15)에서 측정된 신호를 받아 처리한 후 제어컴퓨터(25)로 인가한다. 상기 제어컴퓨터(25)는 응용프로그램과 중력보상알고리즘, 역각센서(15)의 출력값을 바탕으로 자세, 위치를 계산하여 로봇제어기(50)에출력시키고, 상기 로봇제어기(50)는 계산한 결과값에 맞도록 로봇(5)의 이동을 제어한다.First, referring to FIG. 9, the reverse angle sensor 15 is attached to the end of the robot 5, and the reverse angle sensor controller 45 converts the posture of the reverse angle sensor 15, and at the reverse angle sensor 15. After receiving and processing the measured signal is applied to the control computer (25). The control computer 25 calculates a posture and a position based on an output value of the application program, the gravity compensation algorithm, and the inverse angle sensor 15, and outputs the result to the robot controller 50, and the robot controller 50 calculates the calculated value. The movement of the robot 5 is controlled to fit.

상기와 같은 시스템 구성에 의해 본 발명은 이루어지며 본 발명은 크게 3가지의 단계로 이루어진다. 첫번째 과정(A100)은센서좌표계(30)의 X축과 절대좌표계(40)의 Z축이 평행하도록 로봇(5) 끝단의 자세를 찾는 과정이다. 상기 과정에서는 역각센서(15)의 기준값을 설정해야 한다. 두번째 과정(A200)은 역각센서(15)에 부착된 임의의 형상을 가진 공구(25)의 특성치(무게벡터, 무게중심까지의 거리벡터)를 계산한다. 즉, 첫번째과정(A100)에서 로봇(5)의 자세를 초기상태로 하고, 공구(25)의 무게(W)와 무게벡터의 두 성분()을 계산한다. 상기 이후에 로봇(5)을 센서좌표계(30)의 Z축을 회전축으로 90°회전시켜 무게 벡터의 나머지 성분()를 계산한다. 세번째 과정(A300)은 두번째과정(A200)에서 계산한 정보를 바탕으로 로봇이 임의의 자세로 이동하였을 때 역각센서(15)에 가해지는 공구의 영향을 소거하여, 역각센서(15)가 공구(25)의 무게를제외한 외력을 측정할 수 있도록 한다.The present invention is made by the system configuration as described above, and the present invention consists of three steps. The first process (A100) is a process of finding the attitude of the end of the robot 5 such that the X axis of the sensor coordinate system 30 and the Z axis of the absolute coordinate system 40 are parallel to each other. In the above process, the reference value of the reverse angle sensor 15 should be set. The second process A200 calculates the characteristic value (weight vector, distance vector to the center of gravity) of the tool 25 having an arbitrary shape attached to the reverse angle sensor 15. That is, in the first step A100, the attitude of the robot 5 is set to an initial state, and the two components of the weight W and the weight vector of the tool 25 ( Calculate After the above, the robot 5 rotates the Z axis of the sensor coordinate system 30 by 90 ° to the rotation axis, thereby remaining the components of the weight vector ( Calculate The third process A300 cancels the influence of the tool applied to the reverse angle sensor 15 when the robot moves to an arbitrary position based on the information calculated in the second process A200, so that the reverse angle sensor 15 has a tool ( 25) Measure external force except weight.

상기의 3가지의 과정으로 이루어지는 본 발명을 도 10을 참조하여 각각 상세히 설명하면 다음과 같다.The present invention consisting of the above three processes will be described in detail with reference to FIG. 10 as follows.

첫번째 과정인 좌표축일치과정(A100)은 다음과 같다.The first axis coordinate matching process (A100) is as follows.

로봇(5)과 역각센서(15)를 초기화한다(S100).Initializes the robot 5 and the reverse angle sensor 15 (S100).

상기 과정 S100에서 초기화되면, 역각센서(15)의 센서좌표계(30)의 X축이 절대좌표계(40)의 Z축과 일치하도록 역각센서(15)를 이동시킨다(S200).When initialized in the process S100, the reverse angle sensor 15 is moved so that the X axis of the sensor coordinate system 30 of the reverse angle sensor 15 coincides with the Z axis of the absolute coordinate system 40 (S200).

상기 과정 S200에서 역각센서(15)가 이동되면, 현재의 역각센서(15)의 기준값을 설정한다(S300).When the reverse angle sensor 15 is moved in step S200, a reference value of the current reverse angle sensor 15 is set (S300).

상기 과정 S300에 의해 기준값이 설정되면, 역각센서(15)의 센서좌표계(30)의 Z축을 회전축으로 90°회전시킨다(S400).When the reference value is set by the process S300, the Z axis of the sensor coordinate system 30 of the reverse angle sensor 15 is rotated 90 ° to the rotation axis (S400).

상기 과정 S400에 의해 Z축을 회전축으로 90°회전되면, 현재의 역각센서(15)의 출력값을 리드한다(S500).When the Z axis is rotated by 90 ° by the process S400, the output value of the current reverse angle sensor 15 is read (S500).

상기 과정 S500에서 출력값이 리드되면, 역각센서(15)의 센서좌표계(30)의 X축이 절대좌표계(40)의 Z축과 일치하도록 역각센서(15)를 재 이동시킨다(S600).When the output value is read in the process S500, the reverse angle sensor 15 is moved again so that the X axis of the sensor coordinate system 30 of the reverse angle sensor 15 coincides with the Z axis of the absolute coordinate system 40 (S600).

상기 과정 S600에서 역각센서(15)가 재 이동되면, 상기 과정 S400에서 역각센서(15)의 출력값 중가 0 인가를 판단한다(S700).If the reverse angle sensor 15 is moved again in step S600, the output value of the reverse angle sensor 15 is moved in step S400. It is determined whether is 0 (S700).

상기 과정 S700에서 판단한 결과에 따라서, 상기가 0 이면 후술하는 과정 S800으로 이동하고, 상기가 0 이 아니라면 상기에 비례하여 역각센서(15)를 이동시킨(S800) 후 상기 과정 S300부터 반복수행한다.According to the result determined in step S700, the If 0, go to step S800 to be described later. If is not 0 After moving the reverse angle sensor 15 in proportion to (S800), the process is repeated from S300.

상기 첫번째 과정에 이어 두번째 과정인 공구특성치계산과정(A200)은 다음과 같다.The tool characteristic value calculation process A200, which is the second process following the first process, is as follows.

상기 과정 S700에서 판단한 결과에 따라서, 역각센서(15)의 기준값을 재설정한다(S900).According to the result determined in step S700, the reference value of the reverse angle sensor 15 is reset (S900).

상기 과정 S900에서 기준값이 재설정되면, 공구(25)의 무게(W) 및 거리벡터성분 중을 계산한다(S1000).If the reference value is reset in the process S900, out of the weight (W) and the distance vector component of the tool 25 To calculate (S1000).

상기 과정 S1000에서 무게 및 거리벡터성분이 계산되면, 역각센서(15)를 Z축을 회전축으로 90°회전시킨다(S1100).When the weight and distance vector components are calculated in the process S1000, the reverse angle sensor 15 is rotated 90 degrees to the rotation axis (S1100).

상기 과정 S1100에 의해 Z축을 회전축으로 90°회전되면, 거리벡터성분중 를 계산한다(S1200).When the Z axis is rotated 90 degrees to the rotation axis by the process S1100, the distance vector component Calculate the (S1200).

상기 과정 S1200에서 거리벡터성분이 계산되면, 초기 자세로 로봇(5)을 이동시킨다(S1300).When the distance vector component is calculated in step S1200, the robot 5 is moved to an initial posture (S1300).

상기 두번째 과정에 이어 세번째 과정(A300)인 중력보상실행과정은 다음과 같다.Following the second process, the third process (A300), the gravity compensation execution process is as follows.

상기 과정 S1300엣 로봇(5)이 초기자세가 되면, 초기자세의 로봇(5)의 위치정보를 리드한다(S1400).When the robot S5 of the process S1300 is the initial posture, the position information of the robot 5 of the initial posture is read (S1400).

상기 과정 S1400에서 위치정보가 리드되면, 임의의 자세로 로봇(5)을 이동시킨다(S1500).When the position information is read in step S1400, the robot 5 is moved to an arbitrary posture (S1500).

상기 과정 S1500에서 로봇(5)이 이동되면, 이동한 로봇(5)의 위치정보를 리드한다(S1600).When the robot 5 is moved in the process S1500, the position information of the moved robot 5 is read (S1600).

상기 과정 S1600에서 위치정보가 리드되면, 센서좌표계(30)와 절대좌표계(40)간의 변환관계를 계산한다(S1700).When the position information is read in step S1600, a conversion relationship between the sensor coordinate system 30 and the absolute coordinate system 40 is calculated (S1700).

상기 과정 S1700에서 변환관계가 계산되면, 공구(25)의 무게에 의한 역각센서(15)의 값인 힘(F)과 토크(T)를 계산한다(S1800).When the conversion relationship is calculated in the process S1700, the force (F) and the torque (T), which is the value of the inverse sensor 15 by the weight of the tool 25 is calculated (S1800).

상기 과정 S1800에서 힘과 토크가 계산되면, 역각센서(15)의 출력값과 상기 계산값인 힘(F)과 토크(T)에 차에 의해 중력보상이 된다(S1900).When the force and torque are calculated in the process S1800, gravity compensation is performed by the difference between the output value of the reverse angle sensor 15 and the calculated force F and torque T (S1900).

상기의 모든 과정을 거쳐서 본 발명이 의도하는 데로 역각센서의 자동중력보상방법을 제공하는 데 있다.Through all the above process to provide an automatic gravity compensation method of the reverse angle sensor as intended by the present invention.

이상의 설명에서 알 수 있는 바와 같이 본 발명은 공구나 센서의 무게나 형상에 의해 왜곡되는 외력을 보상할 수 있도록공구의 무게벡터 및 무게중심까지의 거리벡터, 로봇의 자세변화를 가지고 중력보상에 필요한 값을 계산한다. 상기의 무게벡터 와 거리벡터를 구하기 위해 센서좌표계의 X축과 절대좌표계의 Z축이 서로 평행하도록 로봇을 이동시켜서 계산하고,로봇 제어기로부터 현재 로봇 정보를 읽어들여 센서좌표계와 절대좌표계 사이의 변환을 구하고 중력보상에 필요한 변환된무게벡터와 토크벡터를 계산하여 중력보상을 하여 다관절 로봇의 자동 프로그래밍 모듈에서 중량과 형상에 관계없이 공구를 선택하여 작업할 수 있는 효과와, 역각센서를 사용하여 힘을 제어하여 가공을 하는 공정에도 적용할 수 있으며, 평면가공이 아닌 곡면가공에도 사용할 수 있는 효과가 있다.As can be seen from the above description, the present invention is required to compensate for gravity with the weight vector of the tool and the distance vector to the center of gravity, and the attitude of the robot to compensate for the external force distorted by the weight or shape of the tool or sensor. Calculate the value. To calculate the weight vector and distance vector, calculate by moving the robot so that the X axis of the sensor coordinate system and the Z axis of the absolute coordinate system are parallel to each other, and read the current robot information from the robot controller to convert between the sensor coordinate system and the absolute coordinate system. Gravity compensation by calculating the converted weight and torque vector required for gravity compensation, and the effect of selecting a tool regardless of weight and shape in the articulated robot's automatic programming module, and using the force angle sensor It can be applied to the process of controlling by controlling the, there is an effect that can be used in the surface processing rather than planar processing.

Claims (7)

로봇을 사용한 자동화작업공정에서 외력에 의한 작업공정의 왜곡을 방지하는 보정방법에 있어서,In the correction method for preventing the distortion of the work process by the external force in the automated work process using the robot, 센서좌표계(30)의 X축과 절대좌표계(40)의 Z축이 평행하도록 로봇(5) 끝단의 자세를 찾는 좌표축일치과정(A1OO)과,Coordinate axis matching process (A1OO) of finding the attitude of the end of the robot 5 such that the X axis of the sensor coordinate system 30 and the Z axis of the absolute coordinate system 40 are parallel, 상기 좌표축일치과정에서 두 좌표축이 일치되면, 역각센서(15)에 부착된 임의의 형상을 가진 공구(25)의 특성치(무게벡터, 무게중심까지의 거리벡터)를 계산하는 공구특성치계산과정(A2OO)과,When the two coordinate axes coincide in the coordinate axis matching process, a tool characteristic value calculation process of calculating a characteristic value (weight vector, distance vector to the center of gravity) of a tool 25 having an arbitrary shape attached to the reverse angle sensor 15 (A2OO). )and, 상기 공구특성치계산과정에서 공구의 특성치가 계산되면, 계산한 정보를 바탕으로 로봇이 임의의 자세로 이동하였을 때 역각센서(15)에 가해지는 공구의 영향을 소거하여, 역각센서(15)가 공구(25)의 무게를 제외한 외력을 측정하는 중력보상실행과정(A300)을 포함하는 역각센서의 자동중력보상방법.When the characteristic value of the tool is calculated in the process of calculating the characteristic value of the tool, the influence of the tool applied to the reverse angle sensor 15 when the robot moves to an arbitrary posture based on the calculated information is eliminated, so that the reverse angle sensor 15 causes the tool to stop. Automatic gravity compensation method of the reverse angle sensor including a gravity compensation execution process (A300) for measuring the external force except the weight of (25). 청구항 1항에 있어서, 상기 좌표축일치과정(A1OO)은,The method according to claim 1, wherein the coordinate axis matching process (A1OO), 로봇(5)과 역각센서(15)를 초기화하는 초기화과정(S100)과,Initialization process (S100) for initializing the robot 5 and the reverse angle sensor 15, 상기 초기화과정에서 초기화되면, 역각센서(15)의 센서좌표계(30)의 X축이 절대좌표계(40)의 Z축과 일치하도록 역각센서(15)를 이동시키는 좌표계일치시도과정(S200)과,When initialized in the initialization process, the coordinate system matching attempt process (S200) for moving the reverse angle sensor 15 so that the X axis of the sensor coordinate system 30 of the reverse angle sensor 15 coincides with the Z axis of the absolute coordinate system 40; 상기 좌표계일치시도과정에서 역각센서(15)가 이동되면, 현재의 역각센서(15)의 기준값을 설정하는 기준값설정과정(S300)과,When the reverse angle sensor 15 is moved in the coordinate system matching attempt process, a reference value setting process (S300) of setting a reference value of the current reverse angle sensor 15; 상기 기준값설정과정에 의해 기준값이 설정되면, 역각센서(15)의 센서좌표계(30)의 Z축을 회전축으로 90°회전시키는 센서좌표계회전과정(S400)과,When the reference value is set by the reference value setting process, the sensor coordinate system rotation process (S400) for rotating the Z axis of the sensor coordinate system 30 of the reverse angle sensor 15 by 90 degrees to the rotation axis, 상기 센서좌표계회전과정에 의해 Z축을 회전축으로 90°회전되면, 현재의 역각센서(15)의 출력값을 리드하는 센서출력값인식과정(S500)과,When the Z-axis is rotated by 90 ° by the sensor coordinate system rotation process, the sensor output value recognition process (S500) for reading the output value of the current reverse angle sensor 15, 상기 센서출력값인식과정에서 출력값이 리드되면, 역각센서(15)의 센서좌표계(30)의 X축이 절대좌표계(40)의 Z축과 일치하도록 역각센서(15)를 이동시키는 좌표축재일치시도과정(S600)과,When the output value is read in the sensor output value recognition process, the coordinate axis matching attempt process of moving the reverse angle sensor 15 such that the X axis of the sensor coordinate system 30 of the reverse angle sensor 15 coincides with the Z axis of the absolute coordinate system 40. (S600), 상기 좌표축재일치시도과정에서 역각센서(15)가 재 이동되면, 상기 센서출력값인식과정에서 역각센서(15)의 출력값 중 fx, fy가 0 인가를 판단하는 힘성분제로판단과정(S700)과,When the reverse angle sensor 15 is moved again in the coordinate axis reconciliation attempt process, in the process of recognizing the sensor output value, zero force component judging process (S700) determines whether f x , f y is 0 among the output values of the reverse angle sensor 15. and, 상기 힘성분제로판단과정에서 판단한 결과에 따라서, 상기 fx, fy가 0이면 공구특성치계산과정(A2OO)으로 이동하고, 상기 fx, fy가 0이 아니라면 상기 fx, fy에 비례하여 역각센서(15)를 이동시키는 역각센서이동과정(S800) 후 상기 기준값설정과정부터 반복수행하는 것을 특징으로 하는 역각센서의 자동중력보상방법.The force component zero it is determined in the determination process depending on the result, the f x, if f y is zero and go to the tool characteristic value calculation processing (A2OO), wherein f x, f y is not 0, proportional to the f x, f y Automatic gravity compensation method of a reverse angle sensor, characterized in that for repeating from the reference value setting process after the reverse angle sensor moving process (S800) to move the reverse angle sensor (15). 청구항 1항에 있어서, 상기 공구특성치계산과정(A2OO)은,The method of claim 1, wherein the tool characteristic value calculation process (A2OO), 상기 좌표축일치과정(A100)에서 판단한 결과에 따라서, 역각센서(15)의 기준값을 재설정하는 기준값재설정과정(S900)과,A reference value reset process (S900) for resetting the reference value of the reverse angle sensor 15 according to the result determined in the coordinate axis matching process (A100), 상기 기준값재설정과정에서 기준값이 재설정되면, 공구(25)의 무게(W) 및 거리벡터성분 중 ry, rz을 계산하는 무게거리벡터계산과정(S1000)과,When the reference value is reset in the reference value reset process, a weight distance vector calculation process (S1000) for calculating r y and r z of the weight W and the distance vector component of the tool 25; 상기 무게거리벡터계산과정에서 무게 및 거리벡터성분이 계산되면, 역각센서(15)를 Z축을 회전축으로 90°회전시키는 센서좌표계재회전과정(S1100)과,When the weight and distance vector components are calculated in the weight distance vector calculation process, the sensor coordinate system rotation process (S1100) rotates the reverse angle sensor 15 by 90 ° on the Z axis. 상기 센서좌표계재회전과정에 의해 Z축을 회전축으로 90°회전되면, 거리벡터성분 중 rx를 계산하는 거리벡터잔여성분계산과정(S1200)과,When the Z axis is rotated by 90 ° by the sensor coordinate system rotation process, a distance vector residual calculation step (S1200) for calculating r x of the distance vector components, 상기 거리벡터잔여성분계산과정에서 거리벡터성분이 계산되면, 초기 자세로 로봇(5)을 이동시키는 초기자세이동과정(S1300)으로 구성된 것을 특징으로 하는 역각겐서의 자동중력보상방법When the distance vector component is calculated in the distance vector residual feasibility calculation process, the automatic gravity compensation method of the reverse angle genser, comprising an initial posture moving process (S1300) for moving the robot 5 to an initial posture. 청구항 1항에 있어서, 상기 중력보상실행과정(A3OO)은,The method of claim 1, wherein the gravity compensation process (A3OO), 상기 공구특성치계산과정(A2OO)에서 로봇(5)이 초기자세가 되면, 초기자세의 로봇(5)의 위치정보를 리드하는 초기자세정보리드과정(S1400)과,When the robot 5 becomes the initial posture in the tool characteristic value calculation process A2OO, an initial posture information read process S1400 for reading position information of the robot 5 in the initial posture, 상기 초기자세정보리드과정에서 위치정보가 리드되면, 임의의 자세로 로봇(5)을 이동시키는 임의자세이동과정(S1500)과,When the position information is read in the initial posture information reading process, a random posture moving process (S1500) for moving the robot 5 in an arbitrary posture, 상기 임의자세이동과정에서 로봇(5)이 이동되면, 이동한 로봇(5)의 위치정보를 리드하는 이동자세정보리드과정(S1600)과,When the robot 5 is moved in the arbitrary posture moving process, a moving posture read process (S1600) for reading the position information of the moved robot 5, 상기 이동자세정보리드과정에서 위치정보가 리드되면, 센서좌표계(30)와 절대좌표계(40)간의 변환관계를 계산하는 변환관계계산과정(S1700)과,When the position information is read in the moving posture information reading process, a conversion relationship calculating process (S1700) for calculating a conversion relationship between the sensor coordinate system 30 and the absolute coordinate system 40; 상기 변환관계계산과정에서 변환관계가 계산되면, 공구(25)의 무게에 의한 역각센서(15)의 값인 힘(F)과 토크(T)를 계산하는 힘토크계산과정(S1800)과,When the conversion relationship is calculated in the conversion relationship calculation process, the force torque calculation process (S1800) for calculating the force (F) and torque (T), which is the value of the inverse sensor (15) by the weight of the tool 25, 상기 힘토크계산과정에서 힘과 토크가 계산되면. 역각센서(15)의 출력값과 상기 계산값인 힘(F)과 토크(T)에 차에 의해 중력보상을 하는 중력보상과정(S1900)으로 구성된 것을 특징으로 하는 역각센서의 자동중력보상방법.When the force and torque are calculated in the force torque calculation process. An automatic gravity compensation method of a reverse angle sensor (15) comprising a gravity compensation process (S1900) which compensates gravity by a difference between the output value of the reverse angle sensor (15) and the calculated force (F) and torque (T). 청구항 4항에 있어서, 상기 변환관계계산과정에 사용되는 변환관계 행렬식은 수학식 The conversion relationship determinant of claim 4, wherein the conversion relationship calculation method is used. Is the equation 에 의해 계산하는 것을 특징으로 하는 역각센서의 자동중력보상방법. Automatic gravity compensation method of the reverse angle sensor, characterized in that calculated by. 청구항 4항에 있어서 , 상기 중력보상과정은,The method of claim 4, wherein the gravity compensation process, 수학식,Equation , 에 의해 실행되는 것을 특징으로 하는 역각센서의 자동중력보상방법. Automatic gravity compensation method of the reverse angle sensor, characterized in that carried out by. 청구항 2항에 있어서, 상기 센서좌표계회전과정(S400)에서의 회전각도가 180°인 경우,The method of claim 2, wherein the rotation angle in the sensor coordinate system rotation process (S400) is 180 °, 상기 fx, fy는 fyfz인 것을 특징으로 하는 역각센서의 자동중력보상방법.Wherein f x , f y is f y f z Automatic gravity compensation method for a reverse angle sensor.
KR1019980040197A 1998-09-28 1998-09-28 The automaticcompensation method of force and torque sensor for gravity weight KR100291850B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980040197A KR100291850B1 (en) 1998-09-28 1998-09-28 The automaticcompensation method of force and torque sensor for gravity weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980040197A KR100291850B1 (en) 1998-09-28 1998-09-28 The automaticcompensation method of force and torque sensor for gravity weight

Publications (2)

Publication Number Publication Date
KR20000021209A KR20000021209A (en) 2000-04-25
KR100291850B1 true KR100291850B1 (en) 2001-06-01

Family

ID=19552123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980040197A KR100291850B1 (en) 1998-09-28 1998-09-28 The automaticcompensation method of force and torque sensor for gravity weight

Country Status (1)

Country Link
KR (1) KR100291850B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061198B2 (en) 2003-07-08 2006-06-13 Samsung Electronics Co., Ltd. Method of controlling biped walking robot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471610B2 (en) 2015-06-16 2019-11-12 Samsung Electronics Co., Ltd. Robot arm having weight compensation mechanism
CN107433590B (en) * 2017-07-31 2020-08-18 上海宇航系统工程研究所 Gravity compensation method based on mechanical arm load mass and sensor null shift online identification
KR102543596B1 (en) 2018-08-31 2023-06-19 삼성전자주식회사 An electronic device and a method for caculating at least one parameter for measuring an external force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061198B2 (en) 2003-07-08 2006-06-13 Samsung Electronics Co., Ltd. Method of controlling biped walking robot

Also Published As

Publication number Publication date
KR20000021209A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
CN107225569B (en) Positioning device
US9517563B2 (en) Robot system using visual feedback
US7904202B2 (en) Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination
WO2019087357A1 (en) Calibration device, calibration method, and control device
Miller et al. Integration of vision, force and tactile sensing for grasping
JPH05216514A (en) Method for calibrating position of robot-arm joint for gravity vector
US20210260759A1 (en) Estimation of payload attached to a robot arm
EP0519081A1 (en) Method of correcting deflection of robot
US6477445B1 (en) Method and apparatus for controlling an industrial robot
KR101876676B1 (en) 6-axis compliance device with force/torque sensing capability
KR100291850B1 (en) The automaticcompensation method of force and torque sensor for gravity weight
JPH0768480A (en) Method for controlling articular angle of manipulator
CN113319855B (en) Gravity compensation method under compliance control mode of multi-joint diagnosis and treatment robot
JPH0445841B2 (en)
JP2640339B2 (en) Automatic correction method for robot constants
WO2019017416A1 (en) Work robot and method for controlling work robot
CN110871456B (en) Robot
JPH06304893A (en) Calibration system for positioning mechanism
RU2671787C1 (en) Method for increasing accuracy of positioning industrial robots
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
Fedele et al. On-line processing of position and force measures for contour identification and robot control
JPH0727408B2 (en) Robot handling device with fixed 3D vision
JP3187191B2 (en) Robot finger grip force detection device
JPS62199383A (en) Control system of robot
KR100213918B1 (en) The measuring method of robot kinematic parameter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070228

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee