KR100288826B1 - A Manufacturing Method for Lithium Tetrafluoroborate - Google Patents

A Manufacturing Method for Lithium Tetrafluoroborate Download PDF

Info

Publication number
KR100288826B1
KR100288826B1 KR1019990002631A KR19990002631A KR100288826B1 KR 100288826 B1 KR100288826 B1 KR 100288826B1 KR 1019990002631 A KR1019990002631 A KR 1019990002631A KR 19990002631 A KR19990002631 A KR 19990002631A KR 100288826 B1 KR100288826 B1 KR 100288826B1
Authority
KR
South Korea
Prior art keywords
libf
lif
gas
lithium
solvent
Prior art date
Application number
KR1019990002631A
Other languages
Korean (ko)
Other versions
KR20000051923A (en
Inventor
나두찬
우병원
박순홍
이준호
Original Assignee
박대치
울산화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박대치, 울산화학주식회사 filed Critical 박대치
Priority to KR1019990002631A priority Critical patent/KR100288826B1/en
Publication of KR20000051923A publication Critical patent/KR20000051923A/en
Application granted granted Critical
Publication of KR100288826B1 publication Critical patent/KR100288826B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 LiF와 불화붕소(BF3)를 유기용매 중에서 반응시켜 사불화붕산리튬(LiBF4)를 제조하는 방법에 있어서, LiF와 불화붕소·에테레이트를 에테르 용매 중에서 반응시켜 얻은 고상(固相)의 LiBF4를 무수불산(HF)에 용해시키고 -10~-30℃로 냉각시킨 후 여기에 F2개스를 도입, 교반시키고 -80~0℃에서 재결정하여 고순도의 LiBF4를 고수율로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lithium tetrafluoroborate (LiBF 4 ) by reacting LiF with boron fluoride (BF 3 ) in an organic solvent, wherein the solid phase obtained by reacting LiF with boron fluoride and etherate in an ether solvent LiBF 4 )) was dissolved in hydrofluoric anhydride (HF) and cooled to -10 ~ -30 ℃, F 2 gas was introduced, stirred and recrystallized at -80 ~ 0 ℃ to produce high purity LiBF 4 in high yield It is about how to.

조(Crude) LiBF4를 무수불산에 용해 재결정하는 공정을 통하여 조 LiBF4에 함유되어 있는 미반응 LiF를 용해시켜 LiF 등 고체원료 및 용매 등이 함유하는 금속성분이나 탄산리튬과 같은 불순물을 거의 완벽하게 제거시켜 줄수 있고 반응계를 F2개스로 처리하여 주므로서 옥시불화붕산리튬과 같은 부반응물 및 수분을 제거시켜 줄수 있어 고순도의 LiBF4를 고수율로 제조할 수 있다는 장점이 있다.Crude LiBF 4 is dissolved and recrystallized in hydrofluoric anhydride to dissolve the unreacted LiF contained in the crude LiBF 4 to almost completely eliminate the metallic components contained in solid materials such as LiF and solvents and impurities such as lithium carbonate. It can be removed and the reaction system is treated with F 2 gas to remove the side reactions and moisture such as lithium oxyborate, there is an advantage that can be produced in high yield LiBF 4 in high yield.

Description

사불화붕산리튬의 제조방법{A Manufacturing Method for Lithium Tetrafluoroborate}Manufacture method for lithium tetrafluoroborate {A Manufacturing Method for Lithium Tetrafluoroborate}

본 발명은 리튬이온 이차전지 및 리튬폴리머 전지를 구성하는 필수구성 요소중의 하나인 사불화붕산리튬(LiBF4)을 고수율, 고순도로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lithium tetrafluoroborate (LiBF 4 ), which is one of essential components constituting a lithium ion secondary battery and a lithium polymer battery, with high yield and high purity.

리튬이온전지나 리튬폴리머전지는 기본적으로 Li금속의 산화물(LiCoO2, NiNiO2, LiMn2O4등)의 양극(Anode)과 흑연(Graphite)과 같은 탄소재의 음극(Cathode) 및 전해질을 유기용매에 용해시켜서 된 전해액으로 구성되며, 유기용매로는 에틸렌 카보네이트(Ethylene Carbonate : 이하 EC라 한다)와 디메틸카보네이트(Dimethyl Carbonate : 이하 DMC라 한다)의 혼합용매나 EC와 디에틸카보네이트(Diethyl Carbonate : 이하 DEC라 한다)의 혼합용매 등 비수용성 혼합용매가 사용되며 전해질로서는 사불화붕산리튬, 육불화인산리튬 등이 사용되고 있다.Lithium ion battery or lithium polymer battery basically uses anode of Li metal oxide (LiCoO 2 , NiNiO 2 , LiMn 2 O 4, etc.) and carbon cathode and electrolyte such as graphite. It is composed of an electrolyte solution dissolved in an organic solvent, and as an organic solvent, a mixed solvent of ethylene carbonate (hereinafter referred to as EC) and dimethyl carbonate (hereinafter referred to as DMC), or EC and diethyl carbonate (hereinafter referred to as A non-aqueous mixed solvent such as a mixed solvent of DEC) is used, and lithium tetrafluoroborate, lithium hexafluorophosphate, or the like is used as an electrolyte.

이들 전지는 충전시 양극의 Li이온이 음극의 카본재의 공극사이로 삽입부착되며 방전시는 음극의 Li이온이 양극으로 되돌아간다. 이때 Li이온은 전해액을 통하여 이동하게 되므로 전지의 수명(Life cycle)등 성능유지를 위하여 여기에 사용되는 전해질의 순도 등 규격은 매우 엄격하게 제한되어 있다.In these batteries, Li ions of the positive electrode are inserted into and attached between the pores of the carbon material of the negative electrode during charging, and Li ions of the negative electrode return to the positive electrode during discharge. At this time, since Li ions are moved through the electrolyte, the specifications such as purity of the electrolyte used here are very strictly limited in order to maintain performance such as battery life cycle.

LiBF4의 제조방법으로는 비수용액법, 수용액법, 기상법 등이 알려져 있으며 비수용법으로는 불화리튬(LiF)을 유기용매에 분산시킨 후 불화붕소(BF3) 개스를 도입하여 LiBF4를 제조하는 방법이 알려져 있다(일본 공개특허공보 소56-145113).By the production process of LiBF 4 is a like non-aqueous solution method, an aqueous solution method, a gas phase method is known and non suyongbeop as is was dispersed lithium fluoride (LiF) in an organic solvent by introducing a boron trifluoride (BF 3) gas for producing a LiBF 4 The method is known (Japanese Patent Laid-Open No. 56-145113).

이 비수용액법에서는 에테르, 알콜 등의 유기 용매를 사용하는데 용매로 사용되는 이 유기용매의 정제 및 수분제거가 용이하지 않으며, 특히 수분제거용으로 사용하는 알카리 금속이 유기용매중에 남아 있을 가능성이 높으며, 원료 물질인 LiF 및 유기용매 자체에 포함되어 있는 금속 성분도 전해질의 금속 성분의 함량을 높이는 요인이 되는 문제가 있다.In this non-aqueous solution method, organic solvents such as ether and alcohol are used, and it is not easy to purify and remove water from the organic solvent used as a solvent. In particular, alkali metals used for water removal are likely to remain in the organic solvent. In addition, the metal component included in the raw material LiF and the organic solvent itself also has a problem of increasing the content of the metal component of the electrolyte.

이들 금속 성분은 유기 용매중에 이온 상태으로 존재하기 때문에, 아무리 정밀한 증류를 한다고 해도 증류방법으로는 전지급의 규격을 만족시킬 수 없으며, LiF에 포함된 금속성분 역시 정제하기가 매우 어렵다.Since these metal components are present in an ionic state in an organic solvent, no matter how precise distillation is, the distillation method cannot satisfy battery-level specifications, and the metal components contained in LiF are also very difficult to purify.

그리고 유기용매법으로 제조된 LiBF4는 유기용매와 『LiBF4·용매』의 형태로 배위 결합을 형성하고 있기 때문에 전해질로 사용하기에 적합치 않다. 따라서 배위 결합을 이루고 있는 용매의 배위 결합을 깨트려서 순수한 LiBF4를 제조하여야 하는데, 그 방법은 온도를 가하면서 진공건조를 하는 것이 지금까지의 유일한 방법이다. 그러나 열적으로 불안정한 LiBF4가 가열 진공건조 공정 중에서 분해되는 단점이 있다.In addition, LiBF 4 prepared by the organic solvent method is not suitable for use as an electrolyte because it forms a coordination bond in the form of an organic solvent and "LiBF 4 solvent". Accordingly, pure LiBF 4 should be produced by breaking the coordination bond of the solvent constituting the coordination bond, which is the only method up to now by vacuum drying while applying temperature. However, there is a disadvantage in that thermally unstable LiBF 4 is decomposed during the heating vacuum drying process.

열분해 결과 LiF와 BF3개스로 분해되며 그 결과 수율 및 순도 저하의 요인이 된다.Pyrolysis results in the decomposition of LiF and BF 3 gases, resulting in lower yield and purity.

저급 알콜과 같은 용매를 사용하여 LiBF4를 정제하는 방법도 알려져 있지만(일본 공개특허공보 소58-190820), 알콜 속의 수분은 알콜과 수소결합을 형성하여, 공비 혼합물을 이루기 때문에 증류에 의해 수분을 제거하기가 매우 어렵고, LiBF4를 제조한 후 용매인 알콜을 다시 제거시켜 주어야 하는데 이때에도, 100~130℃로 가열하면서 진공건조를 해야하기 때문에 상기 설명한 내용과 같이 LiBF4가 분해되어 수율이 저하되는 단점이 있다.A method of purifying LiBF 4 using a solvent such as a lower alcohol is also known (Japanese Patent Laid-Open No. 58-190820), but since water in the alcohol forms a hydrogen bond with the alcohol to form an azeotropic mixture, water is distilled away. It is very difficult to remove, and after preparing LiBF 4 , the alcohol, which is a solvent, must be removed again. In this case, LiBF 4 is decomposed as described above because the vacuum drying is performed while heating to 100-130 ° C., so that the yield is reduced. There is a disadvantage.

수용액법은 붕산, 불산수용액 및 탄산리튬을 수용액 중에서 반응시켜 LiBF4를 제조하고, 수분을 농축, 증류 제거하는 방법으로 BF3개스를 사용하는 비수용액법에 비해 고가의 BF3개스를 사용하지 않아 가격 면에서 유리한 이점은 있지만, 원천적으로 반응계에 수분이 포함되어 있기 때문에 철저히 건조를 행한다고 해도 생성되는 LiBF4가 분해되어 수율이 매우 낮을 뿐만 아니라, 수분 함량이 20PPM 이하인 LiBF4를 제조하기가 어렵다는 문제가 있다.Aqueous solution method is boric acid, hydrofluoric acid aqueous solution and reacted in an aqueous solution of lithium carbonate producing the LiBF 4, and do not use expensive BF 3 gas as compared to the non-aqueous method using a concentrated, BF 3 gas as a way of distilled water but is favorable advantage in cost, inherently is LiBF 4 that even if performing a thorough drying, because it is the water produced is decomposed in the reaction system, the yield is not only very low, is difficult to the water content produced a 20PPM than LiBF 4 there is a problem.

기상법(J. Am. Chem. Soc 1953, 75, 1753)은 300℃의 고온에서 탄산리튬과 BF3개스를 반응시켜서 LiBF4를 제조하는 방법인데 고온에서 반응시키므로, LiBF4의 열적 불안정성 때문에 LiF와 BF3개스로 분해가 일어날 수 있고, 특히 고가인 BF3개스를 과잉으로 사용해야 하는 단점이 있다.The gas phase method (J. Am. Chem. Soc 1953, 75, 1753) is a method for producing LiBF 4 by reacting lithium carbonate and BF 3 gas at a high temperature of 300 ℃, because it reacts at a high temperature, LiBF 4 due to the thermal instability of LiBF 4 Decomposition may occur with BF 3 gas, and in particular, there is a disadvantage in that an expensive BF 3 gas is used excessively.

사불화붕산리튬을 제조하는 공정에서 사용하는 원료가 함유하고 있는 금속성분이나 장치의 부식으로 인해 유입되는 금속 성분은 Li 금속과 이온화 포텐셜(Ionic potential)이 서로 달라 이것이 전해질 중에 함유되게 되면 전지의 수명(Cycle Life)를 단축시킨다.Lithium metal and ionizing potential (Ionic potential) are different from the metal components contained in the raw materials used in the process of manufacturing lithium tetrafluoroborate or the corrosion of the device, so that the battery life if it is contained in the electrolyte Shorten (Cycle Life)

또한 최종 제품에 수분이 함유되게 되면 LiBF4가 수분에 의해 LiF, HF, BF3로 분해되며 이들은 개스상태로 전이 되기 때문에 전지내에 내압이 형성되며, 특히 HF는 유기용매와 반응을 할 뿐만 아니라 전지를 감싸고 있는 케이스(case)의 부식에 영향을 주기 때문에 전체적으로 전지의 안정성에 나쁜 영향을 주게 된다. 따라서 LiBF4를 제조하는 반응계 중에는 수분은 없을 수록 좋다. 이러한 이유로 전해질로 사용되는 사불화붕산리튬(LiBF4)은 순도, 수분, 금속함량, 유리불산 등의 규격을 엄격히 제한하고 있다.In addition, when moisture is contained in the final product, LiBF 4 is decomposed into LiF, HF, and BF 3 by moisture, and since they are transferred to a gas state, internal pressure is formed in the battery. In particular, HF not only reacts with an organic solvent, Because it affects the corrosion of the case surrounding the case (case) it will adversely affect the stability of the battery as a whole. Therefore, in the reaction system for producing LiBF 4 , the less moisture, the better. For this reason, lithium tetrafluoroborate (LiBF 4 ) used as an electrolyte strictly limits the specifications of purity, moisture, metal content, and free hydrofluoric acid.

본 발명의 목적은 LiF와 불화붕소의 에테르화합물(Et2O·BF3: 이하 불화붕소에터레이트(etherate)라 한다)를 용매중에서 반응시켜 LiBF4를 합성하고, 용매로 사용된 에테르를 제거한 다음, 이 반응에서 얻어진 LiBF4를 불소수지(Polytetra-fluoroethylene:이하PTFE라 한다)로 피복된 재결정조에 넣고, F2로 건조된 HF에 용해시킨 후 여기에 F2개스를 도입하여 반응시 유입된 수분 및 원료 자체가 함유한 수분으로 인해 생성되는 옥시불화붕산리튬(LiBOxFy)를 제거하고, 무수불산을 용매로 사용하여, 저온에서 LiBF4를 재결정시켜 LiBF4에 함유되어 있는 미반응 LiF 및 고체원료 및 용매 등이 함유하는 금속성분을 제거함으로써 고순도의 LiBF4를 제조하는 방법을 제공하는데 있다.An object of the present invention is to synthesize LiBF 4 by reacting LiF and an ether compound of boron fluoride (Et 2 O.BF 3 : hereinafter referred to as boron fluoride etherate) in a solvent to remove the ether used as a solvent. Next, the LiBF 4 obtained in this reaction was placed in a recrystallization bath coated with fluorine resin (hereinafter referred to as PTFE), dissolved in HF dried with F 2, and then introduced into the reaction with F 2 gas. Unreacted LiF contained in LiBF 4 by removing the lithium oxyborate fluoride (LiBO x F y ) produced by moisture and moisture contained in the raw material itself and recrystallizing LiBF 4 at low temperature using hydrofluoric anhydride as a solvent. And it provides a method for producing a high purity LiBF 4 by removing metal components contained in a solid raw material, a solvent and the like.

특히 본 발명에서는 수분 뿐만 아니라, 금속성분을 철저히 제거하는 것을 목적으로 하기 때문에 F2개스로 수분을 완전히 제거한 무수불산을 사용하는 것과 공정의 모든 장치들을 불소수지로 피복한 반응기 및 재결정 장치를 사용하는데 그 특징이 있다.In particular, in the present invention, since it is intended to thoroughly remove not only moisture but also metal components, it is necessary to use hydrofluoric anhydride which completely removes moisture with F 2 gas, and to use a reactor and a recrystallization apparatus in which all the apparatuses of the process are covered with fluorine resin. It has its features.

비수용액법에서는 LiF를 에테르나 알콜 등의 유기 용매중에서 BF3와 반응시켜 LiBF4를 제조하는데(LiF+BF3→LiBF4) 반응완료 후에도 반응계 중에는 미반응 LiF가 잔존하며, 또한 Na, K, Fe 등의 금속성분이 불순물로 상당량 함유되어 있다. 반응계에 상기와 같은 미반응 LiF 및 금속성분이 함유되어 있는 상태에서 LiBF4를 재결정하여 주게 되면 LiBF4제품에도 상당량의 불순물이 함유되게 된다.In the non-aqueous solution method, LiF is reacted with BF 3 in an organic solvent such as ether or alcohol to produce LiBF 4 (LiF + BF 3 → LiBF 4 ) .After completion of the reaction, unreacted LiF remains in the reaction system, and Na, K, Metallic components, such as Fe, are contained in considerable quantity as an impurity. When LiBF 4 is recrystallized in the state where the unreacted LiF and the metal component are contained in the reaction system, a considerable amount of impurities are contained in the LiBF 4 product.

본 발명에서는 LiBF4를 건조된 HF로 재결정하면 미반응 LiF 및 불순물 금속성분은 모액에 남게 되므로 LiBF4중에 함유되는 미반응 LIF 및 금속성분의 양을 줄여 줄수 있다. 이때 반응계중에 함유되어 있는 탄산리튬과 같은 불순물은 HF와 반응하여 물을 발생시킨다(Li2CO3+ HF → LiF + CO2+ H2O).In the present invention, when the recrystallized LiBF 4 with dried HF, the unreacted LiF and impurity metal components remain in the mother liquor, thereby reducing the amount of unreacted LIF and metal components contained in LiBF 4 . At this time, impurities such as lithium carbonate contained in the reaction system react with HF to generate water (Li 2 CO 3 + HF → LiF + CO 2 + H 2 O).

발생된 물은 F2개스로 처리함으로써 완전히 제거시킬 수 있다.The generated water can be completely removed by treatment with F 2 gas.

본 발명에서 무수불산을 사용하는 이유는 고순도의 LiBF4를 제조하기 위해 저가인 공업용 LiF를 사용하는데, 이 공업용 LiF에는 불순물로서 금속성분의 함량이 매우 높아 상기 전술한 내용과 같이 전지의 성능을 저하시키는 요인이 된다.The reason for using the hydrofluoric anhydride in the present invention is to use a low-cost industrial LiF to produce high-purity LiBF 4 , which has a very high content of metal as an impurity to deteriorate the performance of the battery as described above It becomes a factor.

그러나 이 금속성분들은 모두 무수불산에 용해되는 것이기 때문에 재결정 후 여과하면 쉽게 제거할 수 있고, 또한 본 발명에서 사용하는 유기용매에는 미 반응물로 남아 있는 LiF가 용해되지 않고 불순물로 존재하기 때문에 무수불산에서 재결정시킴으로써 고순도의 제품을 제조할 수 있는 장점을 가지고 있기 때문이다.However, since all of these metal components are dissolved in hydrofluoric anhydride, they can be easily removed by filtration after recrystallization.In addition, in the organic solvent used in the present invention, LiF remaining as an unreacted substance does not dissolve and is present as an impurity. This is because it has the advantage of producing a high purity product by recrystallization.

그렇지만 일반적인 불산을 전지급의 제품을 생산하기 위한 정제용으로 사용하기에는 수분 및 금속의 함량이 높다는 단점이 있다.However, in order to use general hydrofluoric acid for purification to produce battery-class products, there is a disadvantage in that the content of water and metal is high.

그 이유는 일반적으로 불산 제조공정에서 수분을 제거하기 위해 무수황산에 통과시키는 건조 공정이 있지만, 이 건조된 불산의 수분은 통상적으로 100PPM 이상의 수분을 함유하고 있고, 황산을 통과했기 때문에 고비물인 H2SO4가 일정량(50PPM)이상 항상 포함되어 있다.The reason for this is that in the hydrofluoric acid manufacturing process, there is a drying process that passes through anhydrous sulfuric acid in order to remove water. However, the dried hydrofluoric acid typically contains water of 100 PPM or more, and H 2, which is a heavy matter, is passed through sulfuric acid. SO 4 is always included above a certain amount (50 PPM).

또한 전술한 바와같이 전지급의 전해질은 금속성분 함량이 매우 중요하다.In addition, as described above, in the battery-grade electrolyte, the metal content is very important.

그러나 HF 제조공정의 모든 설비는 철(Steel)로 이루어져 있기 때문에 불산 자체에 금속성분을 함유하고 있다.However, all the facilities in the HF manufacturing process are made of iron, so the hydrofluoric acid itself contains metals.

수분 함량, H2SO4, 금속성분 함량이 높은 이유로 공정에서 나온 무수 불산은 전지급 전해질 제조 원료로 직접 사용하기에는 적합치 않으며, 다시 한번 건조 및 정제가 필요하다.Hydrofluoric anhydride from the process due to its high moisture content, H 2 SO 4 , and metal content is not suitable for direct use as a raw material for battery-grade electrolytes, and once again needs drying and purification.

따라서 본 발명에서는 전해조로 부터 얻은 순수한 F2개스를 사용하여, 무수불산을 전지급으로 철저히 건조 시켰으며, 건조 후 증류를 함으로써 H2SO4및 금속성분의 함량을 최대한 줄일 수 있었다.Therefore, in the present invention, using pure F 2 gas obtained from the electrolytic cell, the hydrofluoric anhydride was thoroughly dried to the battery level, by drying and distillation was able to reduce the content of H 2 SO 4 and metal components to the maximum.

본 발명에서 무수불산 중의 잔류 수분이 건조되는 반응식은 다음과 같다.In the present invention, a reaction scheme in which residual moisture in hydrofluoric anhydride is dried is as follows.

H2O(in HF) + 2F2→ 2HF + OF2(↑)H 2 O (in HF) + 2F 2 → 2HF + OF 2 (↑)

건조조건 : F2개스 버블링시간 : 1~3hrDrying Condition: F 2 Gas Bubbling Time: 1 ~ 3hr

온도 : -10~-30℃Temperature: -10 ~ -30 ℃

유량 : 1~1000g/hrFlow rate: 1 ~ 1000g / hr

불산중의 수분은 F2가스와 반응하여 불산으로 전환되면서 불화산소(OF2)를 방출하게 되며 이 불화산소는 비점(-145℃)이 매우 낮아 반응후 쉽게 휘발 제거된다.Moisture in the hydrofluoric acid reacts with the F 2 gas to be converted to hydrofluoric acid, releasing oxygen fluoride (OF 2 ), and the oxygen fluoride has a very low boiling point (-145 ° C.) and is easily volatilized after the reaction.

본 발명의 두번째 특징은 금속성분 관리를 위해서 공정의 모든 장치들을 PTFE로 피복한 것이나 피.에프.에이수지(Tetrafluoroethylene Perfluoro-alkylvinylether Copolymer : 이하 PFA수지라 한다) 제 배관을 사용했다는 점이다. 먼저 모든 장치를 불소수지 피복이나 PFA수지제 배관을 한 이유는 다음과 같다.A second feature of the present invention is the use of PTFE coated or P. F. resin (PFA resin) for the metal component management. First, all the devices are coated with fluorocarbon resin or PFA resin piping for the following reasons.

기존의 방법에서는 무수불산(HF)에 견딜수 있는 재질 즉, 모넬금속(Monel metal), Ni, Cr 등의 합금 재질 반응기를 사용했지만, 이들 재질은 매우 고가이기 때문에 상업적으로 불리할 뿐만 아니라, 만약 공정상의 문제점, 즉 누설(Leak)이나 공기 중에 노출될 경우등, 재질들이 수분과 만나 무수불산에 의해 부식될 우려가 높다.Conventional methods used reactors capable of withstanding hydrofluoric anhydride (HF), that is, alloy materials such as Monel metal, Ni, Cr, etc., but these materials are very expensive and are not only commercially disadvantaged. There is a high possibility that materials will meet moisture and be corroded by hydrofluoric anhydride, such as phase problems, ie leakage or exposure to air.

반응장치가 부식되면 필연적으로 제품이 부식된 물질에 의해 오염되게 되며, 이들 오염물질은 제품의 금속 성분 함량을 증가시키는 요인으로 작용하게 된다.When the reactor is corroded, the product is inevitably contaminated by the corroded material, and these contaminants act as a factor to increase the metal content of the product.

장치가 오염되면 전공정을 다시 보수해야 되므로 유기 보수비가 크게 증가하게되며, 이것은 결국 공정의 비효율을 가져오게 된다.If the equipment is contaminated, the maintenance cost of the whole process must be repaired again, which leads to a significant increase in organic maintenance costs, which in turn leads to inefficiency of the process.

본 반응의 반응식 및 정제 조건은 다음과 같다.The reaction scheme and purification conditions of the reaction are as follows.

가. 반응식end. Scheme

▶ 1단계 : LiF/디에틸에텔 + Et2O·BF3→ LiBF4 ▶ Step 1: LiF / diethyl ether + Et 2 O · BF 3 → LiBF 4

2단계 : LiBF4용액 + F2개스Step 2: LiBF 4 solution + F 2 gas

▶ 반응조건 : 1단계 : 반응온도 : -30℃~상온▶ Reaction condition: 1st step: Reaction temperature: -30 ℃ ~ Room temperature

반응압력 : 상압Reaction pressure: Normal pressure

반응시간 : 1~10시간Reaction time: 1 ~ 10 hours

2단계 : 반응온도 : -10℃~0℃, F2개스 유량 : 1~1000g/hrStage 2: Reaction temperature: -10 ℃ ~ 0 ℃, F 2 gas flow rate: 1 ~ 1000g / hr

접촉시간 : 10분~3시간Contact time: 10 minutes ~ 3 hours

나. 정제 : LiBF4를 무수불산 속에서 재결정I. Purification: Recrystallization of LiBF 4 in hydrofluoric anhydride

앞에서 언급된 두가지 큰 특징을 가진 본 발명은 고수율(95%이상), 고순도(99.8% 이상), 저수분(20ppm이하), 저유리 HF(150ppm) 및 고순도의 불화붕산리튬(LiBF4)을 제조하는 방법에 관한 것이다.The present invention, which has the two great features mentioned above, has high yield (more than 95%), high purity (more than 99.8%), low moisture (less than 20 ppm), low glass HF (150 ppm) and high purity lithium fluoride (LiBF 4 ). It relates to a manufacturing method.

본 발명의 방법과 이미 알려져 있는 방법을 대비해 보면 아래 [표 1]과 같다.In contrast to the method of the present invention and known methods are shown in Table 1 below.

본 발명과 기존 방법과의 대비Comparison of the present invention with existing methods 특징Characteristic 본발명Invention 일본공개특허(소56-145113)Japanese Laid-Open Patent (S56-145113) 일본공개특허(소58-190820)Japanese Laid-Open Patent (S58-190820) 수용액법Aqueous solution method 기상법(J.Am.Chem.Soc, 1953, 75, 1753)Meteorological law (J.Am. Chem. Soc, 1953, 75, 1753) 원료물질Raw material ①F2로 건조된 HF②LiF/Et2O③Et2O·BF3④F2개스①F 2 HF②LiF / Et 2 O③Et 2 O ・ BF 3 ④F 2 gas ①LiF②BF3개스③유기용매①LiF②BF 3 gas ③organic solvent ①LiBF4·H2O②저급 알콜① LiBF 4 · H 2 O ② Low alcohol ①HBF4solution②Li2CO3③H2O①HBF 4 solution②Li 2 CO 3 ③H 2 O ①Li2CO3②BF3개스①Li 2 CO 3 ②BF 3 gas 핵심기술Core technology F2개스 사용(HF 건조 및 반응물에 F2통과)Use F 2 gas (HF drying and F 2 pass through reactant) LiBF4의 용해도가 큰 유기용매를 사용하는 방법Method of using organic solvent with high solubility of LiBF 4 저급 알콜을 사용하는 방법How to use lower alcohol 수용액상에서 합성하는 방법Synthesis in aqueous solution 기상·고상으로의 반응 방법Reaction method to gas phase, solid state 수율yield 95%이상More than 95% 41.5%41.5% 83.3%83.3% -- -- 순도water 99.8%이상99.8% or more 99.8%99.8% -- -- -- 장점Advantages ·고수율,고순도의 LiBF4제조가능·금속성분 제어가능·수분제어가능High yield, high purity LiBF 4 can be manufactured, metal component can be controlled, moisture can be controlled -- -- ·저가의 LiBF4를제조할 수 있음Low cost LiBF 4 can be manufactured -- 단점Disadvantages -- ·저수율·유기용매 정제시 금속성분 유입 및 제거 불가능·수분함량 제어불가능Low yield, inflow and removal of metal components during organic solvent refining ·알콜의 수분제거 불가능·금속 성분·LiBF4의 분해It is impossible to remove water from alcohol.Metal component.Decompose LiBF 4 ·저수율·수분함량을 제어 불가능Low yield and moisture content cannot be controlled ·미반응 탄산리튬의 제거 불가능·금속 성분 제거불가능·LiBF4의 분해Inability to remove unreacted lithium carbonate, inability to remove metal components, decomposition of LiBF 4

<실시예 1><Example 1>

<무수불산의 건조><Drying of hydrofluoric anhydride>

20kg들이 탄소강(Caron steel) 용기 내부에 PFA수지제의 버블링튜브(Bubbling tube)를 장치하고, 여기에 불산(Bp : 19.2℃, 수분함량 100ppm) 18kg를 투입한다.20 kg of carbon steel (Caron steel) container inside the bubbling tube (Pubbling tube) made of PFA resin, and the hydrofluoric acid (Bp: 19.2 ℃, water content 100ppm) is added to 18kg.

이 용기를 수욕(Water bath)에 담그고 0℃~10℃ 사이로 유지시킨다.The vessel is immersed in a water bath and kept between 0 ° C and 10 ° C.

F2전해조를 가동시켜 발생시킨 순도가 99% 이상이고 농도도 99% 이상인 F2개스를 용기내로 도입 버블링하여 불산과 접촉시킨다.The purity is caused to activate the electrolytic cell F 2 greater than 99% and a concentration of 99% or higher F 2 gas is brought into contact with hydrofluoric acid to ring introducing bubbles into the container.

이때 반응조건은 F2개스유량 61g/hr, 접촉시간은 30분 정도이다.The reaction conditions are F 2 gas flow rate 61g / hr, the contact time is about 30 minutes.

<무수불산의 증류><Distillation of hydrofluoric anhydride>

F2로 건조된 HF가 들어있는 용기를 20~130℃로 가열한다.Heat the vessel containing HF dried with F 2 to 20-130 ° C.

용기내의 압력을 1kg/cm2G 내외로 유지하여 HF를 증발응축시켜 증류된 HF를 비탁법으로 수분 분석한 결과 10ppm 미만의 수분 함량을 보였으며, 1ppm 미만인 극미량의 금속성분(Fe, Mn, Ca, Na, K, Pb, Zn, Cd, Ni, Mg, Ca, Al)을 함유하고 있었다. 여기에서 건조, 정제된 HF를 정제공정에서 LiBF4를 재결정 정제하는데 용매로 사용하였다.HF was evaporated and condensed by maintaining the pressure in the container at about 1 kg / cm 2 G, and the water content of the distilled HF was analyzed by the turbidity method. The water content was less than 10 ppm, and the trace amount of metallic components (Fe, Mn, Ca) was less than 1 ppm. , Na, K, Pb, Zn, Cd, Ni, Mg, Ca, Al). Here, dried and purified HF was used as a solvent for recrystallization of LiBF 4 in a purification process.

<사불화 붕산 리튬(LiBF4)의 제조><Production of Lithium Tetrafluoride (LiBF 4 )>

PTFE로 피복된 1.5ℓ 반응기에 자기회전막대(magnetic stirring bar)를 넣고, 여기에 LiF 6.51g(0.25mol)을 넣고, 반응기를 조립한 후 반응기 분위기를 질소가스로 치환하고, 디에틸에테르 60g을 투입하고 30~200RPM의 속도로 교반하여 분산시킨다.A magnetic stirring bar was placed in a 1.5 L reactor coated with PTFE, and 6.51 g (0.25 mol) of LiF was added thereto. After the reactor was assembled, the reactor atmosphere was replaced with nitrogen gas, and 60 g of diethyl ether was replaced. Inject and stir at a rate of 30-200 RPM to disperse.

또한 미리 준비된 PTFE로 피목된 용기에 수분이 유입되는 것을 최대한 방지하면서, BF3·에테레이트 39.16g(0.27mol)을 넣고, 디에틸에테르 10g을 주입하여 희석시킨다. BF3와 배위결합된 에테르(Ether)는 디에틸에테르(diethylether)이다.In addition, 39.16 g (0.27 mol) of BF 3 · etherate is added thereto, and 10 g of diethyl ether is added thereto to dilute the water, while preventing the inflow of water into the container prepared with PTFE in advance. Ether coordinated with BF 3 is diethylether.

여기에서 BF3·디에틸에테레이트(diethyletherate)를 사용하는 이유는 BF3는 비점(-101℃)이 낮아 상온에서 개스이나 BF3·에테레이트는 상온에서 액체이므로 BF3대신 BF3·에테레이트를 사용하는 것이 반응에 이용하기에 취급이 용이하기 때문이다.Here, reasons for using etherate (diethyletherate) to BF 3 · diethyl is BF 3 gas and the BF 3 · etherate in the lower boiling point (-101 ℃) at room temperature because it is liquid at room temperature instead of BF 3 BF 3 · ethenyl This is because the use of the rate is easy to handle because it is used for the reaction.

이 용기를 반응기에 PFA로 피복된 튜브로 연결하고, 반응기를 -30℃로 냉각한다. 반응기의 온도가 -30℃에 이르면 용기의 벨브를 열고 10분간(feed 속도 : 4.92g/min)에 걸쳐 BF3·에테레이트를 공급한다.This vessel is connected to the reactor with a tube coated with PFA and the reactor is cooled to -30 ° C. When the temperature of the reactor reaches −30 ° C., the valve of the vessel is opened and BF 3 · etherate is fed over 10 minutes (feed rate: 4.92 g / min).

BF3·에테레이트의 투입이 완료되면 대기중에서 상온으로 승온시킨 다음, 그 온도에서 4시간 반응시킨다.When the addition of BF 3 · etherate is completed, the temperature is raised to room temperature in the air, and then the reaction is conducted at that temperature for 4 hours.

반응이 종료되면, 여과한 다음, 미반응 BF3·에테레이트 및 용매를 제거하고, 디에틸에테르로 세척한 후 진공 건조하여 잔류 용매를 완전히 제거하였다.After the reaction was completed, the resultant was filtered, unreacted BF 3 · etherate and solvent were removed, washed with diethyl ether, and then dried in vacuo to completely remove residual solvent.

이때 얻어진 화합물은 22.74g이었고 수율은 96.65%였다.The obtained compound was 22.74 g and the yield was 96.65%.

<사불화 붕산 리튬(LiBF4)의 정제><Refining of lithium tetrafluoroborate (LiBF 4 )>

상기 반응에서 얻어진 반응물을 다시 불소수지로 피복된 재결정조로 옮기고, PFA 튜브를 통해 무수불산을 투입하여 반응물을 용해시킨다.The reactant obtained in the reaction is transferred to a recrystallization bath coated with fluorine resin again, and hydrofluoric anhydride is added through a PFA tube to dissolve the reactant.

그리고 재결정조를 0℃로 냉각시킨 다음, 여기에 F2개스를 (35L/hr, 30분) 도입하여 교반하고, -40℃에서 재결정하여 순수한 LiBF4를 얻었으며, 모액에 남아있는 LiBF4는 모액을 농축하고, 다시 재결정하여 85%이상 수득하였다.The recrystallization bath was cooled to 0 ° C., and then F 2 gas (35 L / hr, 30 minutes) was added thereto, stirred, and recrystallized at −40 ° C. to obtain pure LiBF 4 , and LiBF 4 remaining in the mother liquor was The mother liquor was concentrated and recrystallized again to give 85% or more.

재결정된 LiBF4를 진공 건조한 후 분석한 결과 순도(99.8%), 수분함량(13~18ppm), HF(130ppm), 고순도의 LiBF4를 얻었으며, 이것을 전해액을 제조하여 전기전도를 측정한 결과, 전기전도도는 5.6~5.8mS/cm였다. 또한 합성한 LiBF4의 구조 분석을 NMR(19F-NMR,11B-NMR,7Li-NMR) 등으로 했으며, 그 결과 표준 물질과 잘 일치함을 알 수 있었다.The recrystallized LiBF 4 was vacuum-dried and analyzed to obtain purity (99.8%), moisture content (13-18 ppm), HF (130 ppm) and high purity LiBF 4 , which were prepared as an electrolyte and measured for electrical conductivity. Electrical conductivity was 5.6 ~ 5.8mS / cm. In addition, the structural analysis of the synthesized LiBF 4 was performed by NMR ( 19 F-NMR, 11 B-NMR, 7 Li-NMR), etc. As a result, it can be seen that it is in good agreement with the standard material.

조(Crude) LiBF4를 무수불산에 용해 재결정하는 공정을 통하여 조 LiBF4에 함유되어 있는 미반응 LiF 용매 및 고체원료인 LiF에 함유된 금속성분이나 탄산리튬과 같은 불순물을 완전히 제거시켜 줄수 있고 반응계를 F2개스로 처리하여 주므로서 옥시불화붕산리튬과 같은 부반응물 및 수분을 제거시켜 줄수 있어 고순도의 LiBF4를 고수율로 제조할 수 있다는 장점이 있다.Crude LiBF 4 is dissolved and recrystallized in hydrofluoric anhydride to completely remove impurities such as unreacted LiF solvent contained in crude LiBF 4 and metallic components or lithium carbonate contained in solid raw material LiF. By treating with F 2 gas can remove the side reactions such as lithium oxyfluoride and water, there is an advantage that can be produced in high yield LiBF 4 of high purity.

Claims (2)

LiF와 불화붕소(BF3)를 유기용매 중에서 반응시켜 사불화붕산리튬(LiBF4)를 제조하는 방법에 있어서, LiF와 불화붕소·에테레이트를 에테르 용매 중에서 반응시켜 얻은 고상(固相)의 LiBF4를 F2개스로 버블링시켜 건조시킨 무수불산(HF)에 용해시키고 -10~-30℃로 냉각시킨 후 여기에 F2개스를 도입, 교반시키고 -80~0℃에서 재결정하여 LiBF4를 제조하는 방법.In the method for producing lithium tetrafluoroborate (LiBF 4 ) by reacting LiF and boron fluoride (BF 3 ) in an organic solvent, solid LiBF obtained by reacting LiF with boron fluoride etherate in an ether solvent 4 was bubbled into F 2 gas and dissolved in dried hydrofluoric anhydride (HF), cooled to -10 to -30 ° C, and then F 2 gas was introduced and stirred, and recrystallized at -80 to 0 ° C to form LiBF 4 . How to manufacture. 제1항에 있어서, 무수불산이 -10~-30℃의 온도에서 1~1000g/hr 유량으로 F2개스로 1~3시간 버블링시켜 건조시킨 무수불산인 LiBF4를 제조하는 방법.The method for producing LiBF 4 according to claim 1, wherein the hydrofluoric anhydride is hydrofluoric anhydride dried by bubbling with F 2 gas for 1 to 3 hours at a flow rate of 1 to 1000 g / hr at a temperature of -10 to 30 ° C.
KR1019990002631A 1999-01-27 1999-01-27 A Manufacturing Method for Lithium Tetrafluoroborate KR100288826B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990002631A KR100288826B1 (en) 1999-01-27 1999-01-27 A Manufacturing Method for Lithium Tetrafluoroborate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990002631A KR100288826B1 (en) 1999-01-27 1999-01-27 A Manufacturing Method for Lithium Tetrafluoroborate

Publications (2)

Publication Number Publication Date
KR20000051923A KR20000051923A (en) 2000-08-16
KR100288826B1 true KR100288826B1 (en) 2001-04-16

Family

ID=19572561

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990002631A KR100288826B1 (en) 1999-01-27 1999-01-27 A Manufacturing Method for Lithium Tetrafluoroborate

Country Status (1)

Country Link
KR (1) KR100288826B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091589B1 (en) 2009-06-18 2011-12-13 오스템임플란트 주식회사 Implants coated with low crystalline hydroxyapatite in form of a network or an island and a method for coating the same
CN108912156B (en) * 2018-09-20 2020-09-18 武汉海斯普林科技发展有限公司 Preparation method of lithium bis (oxalato) borate
CN116102028B (en) * 2022-12-12 2023-12-12 湖南法恩莱特新能源科技有限公司 Preparation method of lithium tetrafluoroborate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151024A (en) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk Production of high purity lithium fluoride complex salt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151024A (en) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk Production of high purity lithium fluoride complex salt

Also Published As

Publication number Publication date
KR20000051923A (en) 2000-08-16

Similar Documents

Publication Publication Date Title
KR100288825B1 (en) Method for producing lithium hexafluorophosphate
CN105731399B (en) A kind of preparation method of double fluorine sulfimide lithiums
KR101603376B1 (en) Method for producing tetrafluoroborate
CN111646453B (en) Preparation method and purification process of lithium difluorophosphate
CN114590785B (en) Preparation method of lithium bis (fluorosulfonyl) imide and lithium ion battery
CN101570327A (en) Method for producing lithium hexafluorophosphate
CN101863489A (en) Method for preparing anhydrous high-purity lithium tetrafluoroborate
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
KR20200114962A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
CN101570328A (en) Method for preparing lithium hexafluorophosphate
CN113912028B (en) Method for purifying difluoro sulfimide
WO2016072158A1 (en) Method for purifying electrolyte solution and method for producing electrolyte solution
CN112661791B (en) Preparation method of difluoro lithium bisoxalato phosphate
KR100288826B1 (en) A Manufacturing Method for Lithium Tetrafluoroborate
CN115367718B (en) Purification method of lithium bis (fluorosulfonyl) imide
CN111393464A (en) Method for optimizing production of lithium bis (fluorooxalate) borate
KR20230172541A (en) Lithium difluorophosphate and its production method and application
CN114560452B (en) Preparation method of lithium bis (fluorosulfonyl) imide
CN116750780B (en) Preparation method of hexafluorophosphate, electrolyte and secondary battery
CN116365033A (en) Preparation method of low-water high-purity electrolyte imine lithium salt
CN113089021B (en) Method for recycling waste in sulfur hexafluoride production process
CN115259182B (en) Method for preparing fluorosulfonate solution by adopting fluorosulfonate
CN108178139A (en) A kind of method that product yield is improved during difluorophosphate is prepared
CN117486240A (en) Preparation method of sodium hexafluorophosphate
CN116081654A (en) Method for safely and efficiently recycling lithium resources and fluorine resources in electrolyte and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20180206

Year of fee payment: 18

EXPY Expiration of term