KR100288503B1 - Method for the preparation of allylaromatic compounds using indium - Google Patents

Method for the preparation of allylaromatic compounds using indium Download PDF

Info

Publication number
KR100288503B1
KR100288503B1 KR1019990011595A KR19990011595A KR100288503B1 KR 100288503 B1 KR100288503 B1 KR 100288503B1 KR 1019990011595 A KR1019990011595 A KR 1019990011595A KR 19990011595 A KR19990011595 A KR 19990011595A KR 100288503 B1 KR100288503 B1 KR 100288503B1
Authority
KR
South Korea
Prior art keywords
allyl
general formula
indium
aromatic compound
represented
Prior art date
Application number
KR1019990011595A
Other languages
Korean (ko)
Other versions
KR20000065376A (en
Inventor
김유승
강순방
금교창
임환정
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019990011595A priority Critical patent/KR100288503B1/en
Publication of KR20000065376A publication Critical patent/KR20000065376A/en
Application granted granted Critical
Publication of KR100288503B1 publication Critical patent/KR100288503B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • C07C2/68Catalytic processes with halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 용매 존재하에 또는 비존재하에 금속 인듐(Indium) 단독, 인듐과 고체염기, 인듐과 염기 및 분자체중에서 선택되는 촉매를 사용하여 알킬화 반응시켜 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법에 관한 것으로, 이들 화합물은 여러 가지 공업용 화공약품 생산시에 중간 매체나 최종 생산물로 사용될 수 있으며, 고분자 공업, 세척제, 계면 활성제, 윤활유 공업 등에서 유용하게 사용할 수있다.The present invention relates to an allyl halide represented by the general formula (I) and an aromatic compound represented by the general formula (II) in the presence or absence of a solvent. Indium alone, indium and a solid base, indium and base, and molecular weight The present invention relates to a method for preparing an allyl aromatic compound represented by formula (III) by alkylation using a catalyst selected from the group. These compounds may be used as intermediates or final products in the production of various industrial chemicals. It can be usefully used in industry, detergent, surfactant, lubricant industry.

Description

인듐을 이용한 알킬 방향족 화합물의 제조방법{METHOD FOR THE PREPARATION OF ALLYLAROMATIC COMPOUNDS USING INDIUM}METHOD FOR THE PREPARATION OF ALLYLAROMATIC COMPOUNDS USING INDIUM}

본 발명은 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 용매 존재하에 또는 비존재하에 금속 인듐(Indium) 단독, 인듐과 고체염기, 인듐과 염기 및 분자체중에서 선택되는 촉매를 사용하여 알킬화 반응시켜 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to an allyl halide represented by the general formula (I) and an aromatic compound represented by the general formula (II) in the presence or absence of a solvent. Indium alone, indium and a solid base, indium and base, and molecular weight It relates to a method for producing an allyl aromatic compound represented by formula (III) by alkylation reaction using a catalyst selected from.

일반적으로, 알릴 방향족 화합물은 상업적으로 여러 가지 공업용 화공약품 생산시에 중간 매체나 최종 생산물로 사용되고 있으며 고분자 공업, 세척제, 계면 활성제, 윤활유 공업 등에서 유용하게 사용되는 출발물질이다. 예로서, 1-알킬 방향족 화합물은 점도가 크고 생분해성을 나타내는 계면활성제로 알려져 있으며, 알릴 및 이소프로페닐화된 방향족 화합물은 자연계에 널리 존재하는 화합물이다. 또한 알킬 페놀은 항산화제, DDT, 치아 항플라그제 등의 항생제로 유용하게 사용된다.In general, allyl aromatic compounds are commercially used as intermediates or end products in the production of various industrial chemicals, and are useful starting materials in the polymer industry, detergents, surfactants, lubricants, and the like. By way of example, 1-alkyl aromatic compounds are known as surfactants having high viscosity and biodegradability, and allyl and isopropenylated aromatic compounds are compounds widely present in nature. Alkyl phenols are also useful for antibiotics such as antioxidants, DDT, and dental antiplaques.

방향족 화합물의 알릴화 반응은 대별하여 프리델-크래프쯔(Friedel-Crafts) 반응과 알릴 금속 화합물을 사용하는 방법의 두가지 방법이 있다. 알릴 할라이드나 알릴 알코올과 루이스 산 촉매를 이용하는 프리델-크래프쯔 반응(G. Olah 등, Comprehensive Organic Synthesis, Pergamon Press, B. M. Trost Eds., New York, 1991, Vol 3, pp 293-339)은 이중결합과 알릴 위치의 탄소에 모두 반응이 일어나거나, 수소전이, 이중결합 이동 그리고 산화환원 반응 등의 경쟁 또는 복잡한 반응이 일으나고 특히 알릴 할라이드 화합물을 사용하는 반응에서는 반응 중에 할로겐화 수소가 형성되어 이중결합에 부가되어 여러 가지 부산물이 형성되기 때문에 산업화에 유용하지 않다. 이를 향상시키기 위해, 실리카 젤과 알루미나에 입힌 고체 산과 고체 염기[ZnCl2-SiO2와 K2CO3-Alumina]를 사용하여 반응 중에 생기는 염화수소 가스를 포착하는 방법[J. Chem. Soc. Chem. Comm., 1895 (1995)]과 알릴 알코올로부터 제올라이트[J. Org. Chem., 58, 7688 (1993)]나 점토[J. Chem. Comm. Perkin Trans., 1, 3519 (1994)]를 고체 산 지지체로 사용하는 방법이 기재되어 있다. 한편, 알릴 금속 화합물을 사용하는 경우에는 알릴 탈륨 화합물[Thallium(III)trifluoroacetate, Tetrahedron Lett., 22, 4491 (1981)], 알릴 페닐 요오드 화합물(Tetrahedron Lett., 22, 667 (1981)], 알릴 철 화합물[(η3-allyl)Fe(CO)4BF4, Tetrahedron Lett., 28, 5415 (1987)], 구리 화합물[Cu/Cu(ClO4)2, Tetrahedron Lett., 36, 8509 (1995)], 그리고 알릴 납 화합물[Pb3BrF5, 일본 특허 95-51250]등이 소개되고 있다. 알킬 페놀의 제조는 산소에 알릴화한 후 이성질화하는 방법이 미합중국 특허 4,613,703에 기재되어 있다.The allylation reaction of aromatic compounds is roughly divided into two methods, a Friedel-Crafts reaction and an allyl metal compound. Friedel-Crafts reactions using allyl halides or allyl alcohols and Lewis acid catalysts (G. Olah et al., Comprehensive Organic Synthesis, Pergamon Press, BM Trost Eds., New York, 1991, Vol 3, pp 293-339) Reactions occur on both the carbon and the allyl position, or competition or complex reactions such as hydrogen transition, double bond transfer, and redox reactions. Especially, in the case of using an allyl halide compound, hydrogen halide is formed during the reaction. It is not useful for industrialization because it is added to form various by-products. To improve this, a method of capturing the hydrogen chloride gas generated during the reaction using a solid acid and a solid base [ZnCl 2 -SiO 2 and K 2 CO 3 -Alumina] coated on silica gel and alumina [J. Chem. Soc. Chem. Comm., 1895 (1995)] and allyl alcohol from zeolites [J. Org. Chem., 58, 7688 (1993)] or clay [J. Chem. Comm. Perkin Trans., 1, 3519 (1994) is described as a solid acid support. On the other hand, when an allyl metal compound is used, allyl thallium compound [Thallium (III) trifluoroacetate, Tetrahedron Lett., 22, 4491 (1981)], allyl phenyl iodine compound (Tetrahedron Lett., 22, 667 (1981)), allyl Iron compounds [(η 3 -allyl) Fe (CO) 4 BF 4 , Tetrahedron Lett., 28, 5415 (1987)], copper compounds [Cu / Cu (ClO 4 ) 2 , Tetrahedron Lett., 36, 8509 (1995 ), And an allyl lead compound [Pb 3 BrF 5 , Japanese Patent 95-51250], etc. The preparation of alkyl phenols is described in US Pat. No. 4,613,703 in which allylation with oxygen is followed by isomerization.

위에서 열거한 알릴 할로겐, 알릴 알코올 또는 알릴 금속 화합물을 사용하여 방향족 화합물에 알릴화 시키는 여러 가지 방법들은 불활성 조건, 고압 반응 조건, 전자 밀도가 높은 화합물의 제한성, 치환체의 한정성, 당량 반응, 경제성 그리고 산업적인 과량반응 등의 어려움을 가지고 있다. 그러므로 방향족 화합물의 알릴화 반응의 일반적이고 편리한 방법의 개발이 절실히 요구된다.Various methods of allylating aromatic compounds with allyl halogen, allyl alcohol, or allyl metal compounds listed above include inert conditions, high pressure reaction conditions, the limitation of electron dense compounds, the limitation of substituents, equivalent reactions, economics, and Difficulties such as industrial overreaction. Therefore, there is an urgent need for the development of general and convenient methods of allylating reactions of aromatic compounds.

본 발명은 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 알킬화 반응시켜 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to a method for producing an allyl aromatic compound represented by the general formula (III) by alkylating the allyl halide represented by the general formula (I) and the aromatic compound represented by the general formula (II).

본 발명은 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 용매 존재하에 또는 비존재하에 금속 인듐(Indium) 단독, 인듐과 염기, 인듐과 염기 및 분자체 중에서 선택되는 촉매를 사용하여 알킬화 반응시켜 일반식(III)으로 표시되는 알릴 방향족 화합물을 제조하는 방법에 관한 것이다.The present invention relates to an allyl halide represented by the general formula (I) and an aromatic compound represented by the general formula (II) in the presence of a solvent or in the absence of a metal indium alone, indium and base, indium and base, and molecular sieve. It relates to a method for producing an allyl aromatic compound represented by formula (III) by alkylation reaction using a catalyst of choice.

일반식(I)에 있어서, R1과 R2는 각각 수소, 알릴기의 탄소에 치환된 직쇄 또는 측쇄의 C1∼ C5의 탄화수소이며, 예로서 메틸, 에틸, 프로필, 부틸, 펜틸를 표시하며, X는 염소, 브롬, 요오드, 또는 풀루오르를 표시하며, 일반식(II)에 있어서, R3와 R4는 각각 수소, 메틸, 풀루오르, 히드록시 또는 메톡시를 표시하며, 일반식 (III)에 있어서 R1, R2, R3또는 R4는 상기 일반식 (I)과 일반식 (II)에서의 것과 동일한 것이다.In the formula (I), R 1 and R 2 are each hydrogen, and a carbon straight chain or a hydrocarbon group of C 1 ~ C 5 of the side chain substituted at the allyl group, for example methyl, ethyl, propyl, butyl, Pen tilreul display X represents chlorine, bromine, iodine or pullulor, and in general formula (II), R 3 and R 4 represent hydrogen, methyl, pullulor, hydroxy or methoxy, respectively In (III), R <1> , R <2> , R <3> or R <4> is the same as that of the said general formula (I) and general formula (II).

본 발명자들은 공기나 물 등에서도 안정하며 전자공업, 유기합성 화학 등에서 유용한 환경 친화적인 인듐 금속을 이용한 여러 가지 반응을 연구하던차 [김 유승 등의 Tetrahedron Lett., 39, 4367-4368 (1998)] 상기한 종래 기술의 단점을 해결할 수 있는 촉매량의 인듐을 이용하여 여러 가지 방향족 화합물을 알킬화시켜 일반식(III)으로 표시되는 알릴 방향족 화합물을 개발하게 되었다.The present inventors have studied various reactions using environmentally friendly indium metals that are stable in air or water and are useful in electronics industry, organic synthetic chemistry, etc. [Tetrahedron Lett., 39, 4367-4368 (1998)] The use of a catalytic amount of indium, which can solve the disadvantages of the prior art, alkylated various aromatic compounds to develop allyl aromatic compounds represented by the general formula (III).

본 발명은 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 원자번호 49번인 금속 인듐(Indium) 촉매 존재하에 제조공정이 편리하고 회수가 가능하며 안전하고 선택적인 알킬화 반응에 의해 일반식(III)으로 표시되는 알릴 방향족 화합물을 제조하는 방법에 관한 것이다.In the present invention, the allyl halide represented by the general formula (I) and the aromatic compound represented by the general formula (II) in the presence of a metal indium catalyst having an atomic number of 49 are convenient, recoverable, safe and selective A method for producing an allyl aromatic compound represented by general formula (III) by alkylation reaction.

일반식(I)로 표시되는 알릴 할라이드(예 : 염소의 경우)와 일반식(II)로 표시되는 방향족 화합물을 촉매량의 인듐하에 20 ∼ 150℃에서, 1 ∼ 48시간 동안 반응시키면 주생성물로 한 개가 알릴화 된 일반식(III)으로 표시되는 알릴 방향족 화합물이 얻어진다. 이때에 반응을 추적하여 일반식(II)로 표시되는 방향족 화합물의 종류 또는 전자밀도에 따라 적절한 반응 종결점을 결정하여야 하며 더 반응이 진척되면 부생물로서 일반식(III)으로 표시되는 알릴 방향족 화합물의 이중결합에 반응중에 발생되는 염화수소가 부가된 화합물과 여기에 일반식(II)으로 표시되는 방향족 화합물이 추가로 반응을하여 두 개의 방향족 화합물이 결합된 화합물이 총 3 ∼ 10% 정도 형성된다. 이러한 사실은 프리델-크레프츠 반응에 관한 전문자료 (Friedel-Crafts Chemistry; John Wiley & Sons; NY; 1974)에 명기한 것과 같이 반응중에 발생되는 할로겐화수소가 생성물인 일반식(III)으로 표시되는 알릴 방향족 화합물의 이중결합에 부가되기 전후에 이성질화 반응과 전이반응이 일어나서 방향족 알킬 할로겐 화합물이 형성되고 또한 이 화합물들은 다른 방향족 화합물과 두 번째 프리델-크레프츠 반응이 진행되어 두 개의 방향족 화합물이 결합된 탄화수소 화합물이 생성된다고 한다.When the allyl halide represented by the general formula (I) (for example, chlorine) and the aromatic compound represented by the general formula (II) are reacted at 20 to 150 DEG C for 1 to 48 hours under a catalytic amount of indium, An allyl aromatic compound represented by the general formula (III) in which the dog is allylated is obtained. At this time, the reaction should be traced to determine an appropriate reaction end point according to the type or electron density of the aromatic compound represented by the general formula (II), and if the reaction proceeds further, the allyl aromatic compound represented by the general formula (III) as a by-product The compound added with hydrogen chloride generated during the reaction to the double bond of and the aromatic compound represented by the general formula (II) is further reacted to form a total of about 3 to 10% of the compound in which the two aromatic compounds are bonded. This fact is indicated by the allyl represented by the general formula (III), the product of the hydrogen halide generated during the reaction, as specified in the Friedel-Crafts Chemistry (John Wiley &Sons;NY; 1974). Isomerization and transition reactions occur before and after addition to the double bond of an aromatic compound to form an aromatic alkyl halogen compound, which also undergoes a second Friedel-Crefts reaction with another aromatic compound to combine two aromatic compounds. Hydrocarbon compounds are said to be produced.

본 발명에서 상기 일반식(I)로 표시되는 알릴 할라이드에 있어서, 할라이드가 클로라이드, 브로마이드, 풀로라이드 또는 요오다이드를 사용할 수 있으나, 바람직한 것은 클로라이드인 바, 그 이유는 상기에서 설명한 바와 같이 클로라이드를 제외한 다른 할라이드인 경우에는 부산물이 다량 생성된다.In the present invention, in the allyl halide represented by the general formula (I), halide may be used chloride, bromide, pullolide or iodide, but the chloride is preferred, because the chloride as described above Except for other halides, by-products are produced in large quantities.

따라서, 본 발명은 상기한 것처럼 반응과정에서 불가피하게 생성되는 부산물의 생성을 최소화하기 위한 일환으로서 최적의 촉매조건하에서 일반식(III)으로 표시되는 알릴 방향족 화합물을 높은 수율로 얻을 수 있는 것을 주목적으로 하기 때문에 일반식(II)로 표시되는 방향족 화합물과 일반식(I)로 표시되는 알릴 할라이드 그리고 인듐 촉매의 바람직한 몰 비는 10 ∼ 15 : 1 : 0.01 ∼ 2이다. 반응은 반응 용액이 노란 색으로 변하는 것을 반응 종결 점으로 결정할 수 있다. 일정 시간 이상 반응을 계속하면 반응 수율이 감소하고 이중결합에 염화수소화된 부생물의 양이 증가한다. 개기 환경에서 반응이 잘 진행되며 일반식(II)로 표시되는 방향족 화합물의 전자 밀도가 반응에 영향을 미치기 때문에 페놀의 경우에는 실온에서, 애니솔의 경우에는 40℃에서도 반응이 진행된다. 본 발명에 있어서 페놀은 미합중국 특허 제 4,613,703 호와 다르게 일반식(III)으로 표시되는 알릴 방향족 화합물의 산소에 알릴화 된 화합물이 생기지 않으며, 일본특허 제 6-263673 호 등에서와는 달리 일반식(III)으로 표시되는 알릴 방향족 화합물의 파라-위치에 알릴화한 화합물이 얻어진다. 한 개가 치환된 일반식(III)으로 표시되는 알릴 방향족 화합물의 경우에는 오르토-위치에 주로 알릴화 되는 다른 루이스 산의 경우와 달리 파라-위치에 주생성물이 생성되어 약 3 : 1의 비율로 일반식(III)으로 표시되는 알릴 방향족 화합물이 생성된다. 항산화제로 많이 이용되는 2,6-디-t-부틸페놀의 경우에도 상기와 같은 반응이 진행된다. 따라서, 본 발명은 인듐이 루이스 산처럼 작용하는 첫 번째 예이다. 그러나, 촉매인 인듐의 양을 증가시켜도 수율이나 생성물의 이성질체의 비는 변하지 않고 다만 반응 시간을 줄일 수 있다. 또한 특기할 것은 반응 후 회수한 인듐은 촉매 활성도의 감소 없이 재사용 할 수 있다는 장점을 가지고 있다.Therefore, the present invention is to obtain a high yield of the allyl aromatic compound represented by the general formula (III) under the optimum catalytic conditions as part of minimizing the generation of by-products inevitably generated as described above. Therefore, the preferable molar ratio of the aromatic compound represented by general formula (II), the allyl halide represented by general formula (I), and an indium catalyst is 10-15: 1: 0.01-2. The reaction can be determined as the end point of the reaction by which the reaction solution turns yellow. If the reaction is continued for a certain period of time, the reaction yield is decreased and the amount of hydrogen chloride by-products in the double bond is increased. The reaction proceeds well in the open environment and the electron density of the aromatic compound represented by the general formula (II) affects the reaction, so the reaction proceeds at room temperature in the case of phenol and at 40 ° C in the case of anisole. In the present invention, the phenol does not produce an allylated compound in oxygen of the allyl aromatic compound represented by formula (III), unlike in US Pat. No. 4,613,703, and in contrast to Japanese Patent No. 6-263673, etc. The compound which was allylated at the para-position of the allyl aromatic compound represented by) is obtained. In the case of the allyl aromatic compound represented by the general formula (III) in which one is substituted, unlike other Lewis acids which are mainly allylated at the ortho-position, a main product is formed at the para-position, and thus the ratio is about 3: 1. The allyl aromatic compound represented by Formula (III) is produced. In the case of 2,6-di-t-butylphenol which is widely used as an antioxidant, the same reaction proceeds. Thus, the present invention is the first example where indium acts like a Lewis acid. However, even if the amount of indium, which is a catalyst, is increased, the yield and the ratio of the isomers of the product do not change, but the reaction time can be shortened. In addition, indium recovered after the reaction has the advantage that can be reused without reducing the catalytic activity.

앞에서 기술한 바와 같이 본 발명에 의한 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법은 편리하고 유용하지만 소망스러운 수율로 목적화합물을 얻기가 곤란하다. 이러한 단점을 극복하기 위하여 반응 중에 발생하여 원하지 않는 부반응을 일으키는 염화 수소를 제거하여야 하는 바, 본 발명자들이 염화 수소와 물을 포착하고 제거하기 위하여 여러 가지 고체염기를 사용하였다. 본 발명에 사용되는 염기로는 Li, Na, K, Cs, Mg, Ca, Ba 등의 히드록시(OH), 탄산(CO3) 및 탄산수소(HCO3) 등을 포함한 금속 화합물을 고체 염기로 이용하여 인듐 촉매와 함께 병용하면 높은 수율로 목적 화합물을 얻을 수 있으나, 바람직한 고체 염기로는 CaCO3이나 CaCO3/4Å 분자체 시스템이다. 일반식(II)로 표시되는 방향족 화합물과 일반식(I)로 표시되는 알릴 할라이드를 10 몰%의 인듐, 40 몰%의 CaCO3그리고 5 질량%의 4Å 분자체 존재하에서 반응시키면 높은 수율로 알릴화된 일반식(III)으로 표시되는 알릴 방향족 화합물을 얻을 수 있다. 염기인 CaCO3/4Å 분자체 시스템은 공지자료 [J. Chem. Soc. Chem. Comm., 1895 (1995)]의 K2CO3-Al2O3시스템 보다 반응 수율, 사용량 그리고 고체 염기 조제의 불필요성 등에서 훨씬 유리한 방법이다. 다만, 고체 염기는 촉매의 활성도를 감소시키므로 더욱 긴 반응 시간이 소요되나, 인듐을 추가하면 빨라진다. 따라서 염기가 첨가되면 인듐의 양을 10 몰%로 증가되어야 하나 사용된 인듐을 물로 씻은 후 재사용할 수 있다. 이 사실은 다른 프리델-크레프쯔 반응과 다른 점이며 알루미나, 제올라이트, 점토 등에 도핑된 고체염기를 사용하는 이유로서 루이스 산과 염기를 혼합하면 산-염기 반응으로 염기가 산의 촉매 작용을 제어하기 때문이다. 염기의 양은 0.1 ∼ 2 당량까지 바람직하다. 같은 조건에서 4Å 분자체의 양은 1 ∼ 200 질량%까지, 바람직하기로는 5 질량% 범위이며 4Å 분자체의 양이 감소해도 특별히 수율에 영향이 없고 오히려 어떤 경우에는 양이 적을 때 반응 속도가 더 빨라지며 4Å 분자체 없이 반응하였을 때도 만족할 만한 수율을 보였다. 반응이 진행 될 수록 색이 점점 진해지면서 완전히 붉은 색으로 변한 후 30분 정도 지나면 반응이 종결된다. 반응을 너무 일찍 종결하면 수율이 감소하고 너무 오래하면 부 반응이 증가한다. 본 발명은 상기의 조건으로 위에서 사용한 일반식(II)로 표시되는 방향족 화합물과 일반식(I)로 표시되는 알릴 할라이드에 대하여 대부분 만족할 만한 결과를 주는 일반성을 가지고 있다.As described above, the method for preparing the allyl aromatic compound represented by the general formula (III) according to the present invention is convenient and useful, but it is difficult to obtain the target compound in a desired yield. In order to overcome this disadvantage, it is necessary to remove hydrogen chloride which occurs during the reaction to cause unwanted side reactions. The present inventors used various solid bases to capture and remove hydrogen chloride and water. Examples of the base used in the present invention include metal compounds including hydroxy (OH), carbonic acid (CO 3 ), hydrogen carbonate (HCO 3 ), and the like as Li, Na, K, Cs, Mg, Ca, and Ba as solid bases. When used in combination with an indium catalyst to obtain the desired compound in high yield, preferred solid bases are CaCO 3 or CaCO 3 / 4CO molecular sieve system. When the aromatic compound represented by the formula (II) and the allyl halide represented by the formula (I) are reacted in the presence of 10 mol% of indium, 40 mol% of CaCO 3, and 5 mass% of 4 ′ molecular sieve, allyl in high yield The allyl aromatic compound represented by generalized general formula (III) can be obtained. The base CaCO 3 / 4Å molecular sieve system is known from the literature [J. Chem. Soc. Chem. Comm., 1895 (1995)], which is far more advantageous in terms of reaction yield, usage and the need for solid base preparation than the K 2 CO 3 -Al 2 O 3 system. However, the solid base reduces the activity of the catalyst, so it takes longer reaction time, but it is faster by adding indium. Therefore, if the base is added, the amount of indium should be increased to 10 mol%, but the used indium can be washed with water and reused. This is different from other Friedel-Crefts reactions, and the reason is the use of solid bases doped with alumina, zeolites, clays, etc., because mixing bases with Lewis acids controls the catalysis of acids by acid-base reactions. . The amount of base is preferably up to 0.1 to 2 equivalents. Under the same conditions, the amount of 4 μg molecular sieves is in the range of 1 to 200 mass%, preferably in the range of 5 mass%, and the reduction of the amount of 4 μg molecular sieves does not affect the yield in particular, and in some cases the reaction rate is faster when the amount is small. It also showed satisfactory yield when reacted without 4Å molecular sieve. As the reaction proceeds, the color becomes darker and completely red, and after 30 minutes, the reaction is terminated. Terminating the reaction too early decreases the yield and too long increases the side reaction. This invention has the generality which gives the most satisfactory result about the aromatic compound represented by general formula (II) and allyl halide represented by general formula (I) used above on the said conditions.

그러므로 개기 상태에서 촉매량의 인듐을 사용하며 촉매를 회수 재 사용할 수 있고 높은 반응 선택성과 함께 높은 수율로 일반식(III)으로 표시되는 알릴 방향족 화합물을 제조하는 본 발명은 알려진 공지의 다른 방향족 화합물의 알릴화 반응 보다 월등히 우수하다.Therefore, the present invention, which uses a catalytic amount of indium in the open state, recovers and reuses the catalyst and produces an allyl aromatic compound represented by the general formula (III) in high yield with high reaction selectivity, allyl of another known aromatic compound It is much better than the fire reaction.

결론적으로 설명하면, 본 발명은 산업적으로 유용한 여러 가지 치환체가 알릴 방향족 화합물에 도입된 화합물 제조에 적용될 수 있으며, 사용된 촉매를 회수하여 재사용이 가능하며 오로토, 메타 또는 파라 위치에 따라 선택적으로 원하는 목적 화합물을 제조할 수 있다.In conclusion, the present invention can be applied to the preparation of a compound in which a variety of industrially useful substituents have been introduced into the allyl aromatic compound, the catalyst used can be recovered and reused, and optionally selected according to the ortho, meta or para position. The desired compound can be prepared.

본 발명의 제조 방법을 더욱 상세히 설명하면 다음과 같다.Referring to the production method of the present invention in more detail as follows.

일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 1:100 ∼ 100:1의 몰비로 반응용기에 가하고 인듐을 0.01 내지 2 당량 가한다. 염기로 사용될 수 있는 탄산 금속 화합물을 0.1 ∼ 2 당량 사용할 수 있으나 염기를 한가지 또는 두가지 이상의 혼합 염기를 사용할 수 있으며, 4Å 분자체를 1 ∼ 200 질량비로 가하고 20 ∼ 150℃에서 가열 또는 가열 환류 시킨다. 이때에 용매를 가하지 않아도 좋으나 용매를 사용하고자 할 경우에는 벤젠, 풀루오로벤젠, 톨루엔, 크실렌, 클로로포름, 메틸렌 클로라이드, 사염화탄소, 헥산, 시클로헥산, 니트로메탄, 아세토니트릴, 디옥산 및 테트라히드로퓨란 중에서 한가지 또는 두가지 이상의 혼합물을 사용하는 것이 바람직하다. 이때에 교반하거나 하지 않아도 좋으나 교반하는 것이 바람직하다. 반응이 진행 될 수록 반응 용액의 색이 점점 진해진다. 그리고 반응액의 색 변화와 함께 종래의 확인반응에 이용되는 예컨대, GC, HPLC, TLC, 그리고 NMR 등으로 반응 종결 점을 찾는다.The allyl halide represented by the general formula (I) and the aromatic compound represented by the general formula (II) are added to the reaction vessel in a molar ratio of 1: 100 to 100: 1, and indium is added in an amount of 0.01 to 2 equivalents. 0.1 to 2 equivalents of the metal carbonate compound which can be used as the base may be used, but one or two or more mixed bases may be used as the base. The 4 μg molecular sieve is added at a mass ratio of 1 to 200 and heated or heated to reflux at 20 to 150 ° C. It is not necessary to add a solvent at this time, but if you want to use a solvent in benzene, pullulobenzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, hexane, cyclohexane, nitromethane, acetonitrile, dioxane and tetrahydrofuran Preference is given to using one or two or more mixtures. At this time, stirring may be performed, but stirring is preferable. As the reaction proceeds, the color of the reaction solution becomes darker. In addition to the color change of the reaction solution, the end point of the reaction is found by, for example, GC, HPLC, TLC, and NMR used in the conventional identification reaction.

반응 후 실온으로 냉각하고 적절한 내부 표준물질(예 : 톨루엔)을 넣고 GC로 반응 수율을 측정하며, 얻어진 생성물은 증발, 여과, 추출, 크로마토그래피, 증류 및 이들의 조합과 종래의 기술에 의해서 분리 정제할 수 있다. 예를 들면 모액을 얇은 층의 실리카 젤에 깔고 여과한 후 감압하에서 농축 또는 증류한다. 생성물은1H-NMR과 GC/MSD 등의 종래의 방법으로 확인하며 부생물은 소량이어서 GC/MSD로만 확인할 수 있다.After the reaction, the reaction mixture was cooled to room temperature, added with an appropriate internal standard (e.g., toluene), and the reaction yield was measured by GC. The obtained product was separated and purified by evaporation, filtration, extraction, chromatography, distillation, and combinations thereof and conventional techniques. can do. For example, the mother liquor is spread over a thin layer of silica gel, filtered and concentrated or distilled under reduced pressure. The product is identified by conventional methods such as 1 H-NMR and GC / MSD, and the by-products are small and can only be confirmed by GC / MSD.

이하, 다음의 실시 예는 본 발명을 더욱 상세히 설명하여 줄 것이나 본 발명이 반드시 이들 실시예에 한정되는 것은 아니다.The following examples will further illustrate the present invention, but the present invention is not necessarily limited to these examples.

실시예 1Example 1

2-부테닐벤젠의 제조Preparation of 2-butenylbenzene

크로틸 클로라이드 200 mg(2.2 mmol)과 벤젠 3 ml을 반응용기에 넣었다. 여기에 인듐 분말을 각각 2.5 mg(22 μmol), 5 mg, 25 mg, 250 mg 그리고 250 mg을 넣고 환류 냉각기를 설치하고 70℃의 온도에서 가열하였다. 반응은 GC로 추적하며 용기내의 색이 무색에서 노란 색으로, 그 후 붉은 색으로 변하는 것을 확인한 뒤 30분 동안 더 교반한 후(총 2 시간) 상온으로 냉각시켰다. 그 후 내부 표준물인 톨루엔을 1 당량 가하고 충분히 섞어준 후 기체 크로마토그래피로 수율을 구하였다. 그 후 용액을 실리카젤을 얇게 채운 여과기에 거르고 아스피레이터 감압하에 용매를 제거함으로써 인듐 2.5mg 조건에서 최적으로 목적 화합물(38% 수율)을 얻었다. 또한 이 생성물을 GC/MSD로 분석한 결과 목적 화합물 외에 생성물의 이중결합에 HCl이 부가된 부산물이 미량 생성되었음을 확인하였다.200 mg (2.2 mmol) crotyl chloride and 3 ml of benzene were added to the reaction vessel. 2.5 mg (22 μmol), 5 mg, 25 mg, 250 mg and 250 mg of indium powder were added thereto, and a reflux condenser was installed and heated at a temperature of 70 ° C. The reaction was followed by GC and the color in the vessel was changed from colorless to yellow and then changed to red, followed by further stirring for 30 minutes (total 2 hours) and cooled to room temperature. Thereafter, 1 equivalent of toluene, an internal standard, was added and thoroughly mixed, and then the yield was obtained by gas chromatography. The solution was then filtered through a thin filter filled with silica gel and the solvent was removed under aspirator reduced pressure to obtain the target compound (38% yield) optimally at 2.5 mg of indium. As a result of analyzing the product by GC / MSD, it was confirmed that a small amount of by-products in which HCl was added to the double bond of the product other than the target compound was produced.

13C NMR(CDCl3): δ 139.47, 128.73, 128.51, 127.82, 126.88, 126.74, 124.70, 124.27, 37.47, 37.080, 34.32, 31.58, 16.23; 13 C NMR (CDCl 3 ): δ 139.47, 128.73, 128.51, 127.82, 126.88, 126.74, 124.70, 124.27, 37.47, 37.080, 34.32, 31.58, 16.23;

1H-NMR (CDCl3): δ 7.31-7.06 (m, 5H), 5.63-5.40 (m, 2H),3.40-3.37 (d, 2H), 3.31-3.28 (d, 2H), 1.68-1.66 (d, 3H), 3.40-3.37 (d, 2H); 1 H-NMR (CDCl 3 ): δ 7.31-7.06 (m, 5H), 5.63-5.40 (m, 2H), 3.40-3.37 (d, 2H), 3.31-3.28 (d, 2H), 1.68-1.66 ( d, 3H), 3.40-3.37 (d, 2H);

MS : 51, 65, 78, 91 (m/z 100 %), 104, 115, 117, 132 (M+).MS: 51, 65, 78, 91 (m / z 100%), 104, 115, 117, 132 (M + ).

생성물에 HCl이 부가된 물질의 MS : 51, 65, 78, 91(m/z 100%), 103, 117, 132, 168, 170(M+).MS of material with HCl added to product: 51, 65, 78, 91 (m / z 100%), 103, 117, 132, 168, 170 (M + ).

실시예 2Example 2

2-부테닐벤젠의 제조Preparation of 2-butenylbenzene

크로틸 클로라이드 200 mg (2.2 mmol)과 벤젠 3 ml를 반응용기에 넣었다. 여기에 인듐 25 mg(220 μmol)을 가한 후 탄산칼슘을 각각 22 mg, 87(0.4 당량) mg, 109 mg, 218 mg 그리고 436 mg을 넣고 환류 냉각기를 설치하고 80℃의 온도에서 가열하였다. 반응은 GC로 추적하여 용기내의 색이 무색에서 노란 색, 그 후 붉은 색으로 변하는 것을 확인한 뒤 30 분 동안 더 교반한 후 (총 5 시간) 상온으로 냉각시켰다. 그 후 내부 표준 물인 톨루엔을 1 당량 가하고 충분히 섞어준 후 기체 크로마토그래피로 수득율을 구하였다. 그 후 용액을 실리카젤을 얇게 채운 여과기에 여과하고 감압하여 용매를 제거함으로써 탄산칼슘87 mg (0.4 당량) 조건에서 최적으로 실시예 1과 같은 방법으로 목적 화합물 (84 % 수율)을 얻었다.200 mg (2.2 mmol) crotyl chloride and 3 ml of benzene were added to the reaction vessel. 25 mg (220 μmol) of indium was added thereto, and calcium carbonate was added to 22 mg, 87 (0.4 equivalents) mg, 109 mg, 218 mg, and 436 mg, respectively, and a reflux condenser was installed and heated at a temperature of 80 ° C. The reaction was traced by GC to confirm that the color in the vessel changed from colorless to yellow and then red, followed by further stirring for 30 minutes (total 5 hours) and cooling to room temperature. Thereafter, 1 equivalent of toluene, an internal standard water, was added and thoroughly mixed, and then the yield was obtained by gas chromatography. Thereafter, the solution was filtered through a thin-filled filter with silica gel, and the solvent was removed under reduced pressure to obtain the target compound (84% yield) in the same manner as in Example 1 under 87 mg (0.4 equivalent) of calcium carbonate.

실시예 3.Example 3.

2-부테닐 벤젠의 제조Preparation of 2-Butenyl Benzene

3-클로로-1-부텐 200 mg ( 2.2 mmol)과 벤젠 3 ml을 실시예 2와 같은 방법에 4 Å 분자체를 각각 5 mg, 10 mg( 5 질량%), 20 mg, 200 mg 그리고 400 mg을 더 가하고 80 ℃에서 6 시간 반응시켜 실시예 1과 같은 생성물을 4 Å 분자체 10 mg ( 5 질량%) 조건에서 최적으로 목적 화합물(80 % 수율)을 얻었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of benzene were prepared in the same manner as in Example 2 with 5 mg, 10 mg (5% by mass), 20 mg, 200 mg and 400 mg of 4 μg molecular sieves, respectively. Was further added and reacted at 80 ° C. for 6 hours to obtain the target compound (80% yield) in the same manner as in Example 1 under conditions of 10 mg (5% by mass) of 4 μg molecular sieves.

실시예 4.Example 4.

2-부테닐벤젠의 제조Preparation of 2-butenylbenzene

크로틸 클로라이드와 벤젠을 각각 (200 mg/2 ml, 200 mg/3 ml, 200 mg/20 ml, 2 ml/2 ml, 2 ml/200 mg) 반응용기에 넣고 실시예 1과 같은 방법으로 제조하였으며, 실시예 1의 크로틸 클로라이드와 벤젠의 비율이 10 : 1 내지 15 : 1이 최적의 조건이었다.Crotyl chloride and benzene (200 mg / 2 ml, 200 mg / 3 ml, 200 mg / 20 ml, 2 ml / 2 ml, 2 ml / 200 mg), respectively, were added to a reaction vessel and prepared in the same manner as in Example 1. The ratio of crotyl chloride and benzene of Example 1 was 10: 1 to 15: 1.

실시예 5.Example 5.

2-부테닐벤젠의 제조Preparation of 2-butenylbenzene

실시예 1과 같은 조건에서 시험하였다. 다만 차이점은 용매를 클로로포름, 메틸렌 클로라이드, 사염화탄소, 헥산, 시클로헥산, 니트로메탄, 아세토 니트릴, 1,4-디옥산 그리고 테트라히드로퓨란을 각각 3 ml 사용하였으며, 실시예 4의 경우처럼 별도의 용매를 사용하지 않고 방향족 화합물을 과량 사용하는 것이 최적의 조건이었다.It tested under the same conditions as in Example 1. The only difference was that chloroform, methylene chloride, carbon tetrachloride, hexane, cyclohexane, nitromethane, acetonitrile, 3 ml each of 1,4-dioxane and tetrahydrofuran were used, and a separate solvent was used as in Example 4. It was optimal conditions to use an excess of aromatic compound without using it.

실시예 6.Example 6.

2-부테닐벤젠의 제조Preparation of 2-butenylbenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 벤젠 3 ml를 실시예 3과 같은 방법에서 염기를 변화시키면서 70 ℃에서 4 시간 반응시켜 LiOH, NaOH, NaHCO3, Na2CO3, KOH, K2CO3/분자체, CsCO3/분자체, Mg(OH)2그리고 BaCO3조건에서는 소량의 목적 화합물이, 그리고 Ca(OH)2조건에서는 실시예 1과 같은 목적화합물 (54 % 수율)을 얻었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of benzene were reacted at 70 ° C. for 4 hours while changing the base in the same manner as in Example 3 to form LiOH, NaOH, NaHCO 3 , Na 2 CO 3 , KOH, Small amounts of the target compound under K 2 CO 3 / molecular sieve, CsCO 3 / molecular sieve, Mg (OH) 2 and BaCO 3 conditions, and the same target compound as Example 1 under Ca (OH) 2 conditions (54% yield) Got.

실시예 7.Example 7.

2-(2-부테닐) 1,4-디메틸벤젠의 제조Preparation of 2- (2-butenyl) 1,4-dimethylbenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 파라-크실렌 3 ml를 실시예 1과 같은 방법으로 70 ℃에서 3 시간 반응시켜 목적 화합물(90 % 수율)을 제조하였다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of para-xylene were reacted at 70 ° C. for 3 hours in the same manner as in Example 1 to prepare a target compound (90% yield).

13C NMR (CDCl3): δ 137.33, 133.76, 131.43, 129.35, 128.49, 128.26, 127.85, 125.22, 124.40, 35.04, 34.67, 19.40, 17.27, 16.31; 13 C NMR (CDCl 3 ): δ 137.33, 133.76, 131.43, 129.35, 128.49, 128.26, 127.85, 125.22, 124.40, 35.04, 34.67, 19.40, 17.27, 16.31;

1H NMR (CDCl3): δ 7.01-6.88 (q, 4H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H), 1.67-1.6 3 (d, 3H); 1 H NMR (CDCl 3 ): δ 7.01-6.88 (q, 4H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H), 1.67-1.6 3 ( d, 3H);

MS : 51, 65, 77, 91, 105, 115, 130, 145 (m/z 100 %), 160 (M+)MS: 51, 65, 77, 91, 105, 115, 130, 145 (m / z 100%), 160 (M + )

생성물에 HCl이 부가된 물질의 MS : 51, 65, 77, 91, 105, 119 (m/z 100 %), 145, 196, 198 (M+), 196 : 198의 m/z %는 3 : 1임.The m / z% of MS: 51, 65, 77, 91, 105, 119 (m / z 100%), 145, 196, 198 (M + ), 196: 198 of the substance to which HCl was added to the product was 3: 1

실시예 8.Example 8.

2-부테닐-1,4-디메틸벤젠의 제조Preparation of 2-butenyl-1,4-dimethylbenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 파라-크실렌 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 6 시간 반응시켜 실시예 5와 동일한 목적 화합물(93 % 수율)을 얻었다200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of para-xylene were reacted at 80 ° C. for 6 hours in the same manner as in Example 3 to obtain the same target compound (93% yield) as in Example 5.

실시예 9.Example 9.

2-부테닐-1,4-디메틸벤젠의 제조Preparation of 2-butenyl-1,4-dimethylbenzene

크로틸 클로라이드 200 mg (2.2 mmol)과 파라-크실렌 3 ml를 실시예 1과 같은 방법으로 70 ℃에서 3 시간 반응시켜 실시예 5 과 동일한 목적 화합물(59 % 수율)을 얻었다.200 mg (2.2 mmol) of crotyl chloride and 3 ml of para-xylene were reacted at 70 ° C. for 3 hours in the same manner as in Example 1 to obtain the same target compound (59% yield) as in Example 5.

실시예 10.Example 10.

2-부테닐-1,4-디메틸벤젠의 제조Preparation of 2-butenyl-1,4-dimethylbenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 파라-크실렌 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 6 시간 반응시켜 목적 화합물(93 % 수율)을 얻었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of para-xylene were reacted at 80 ° C. for 6 hours in the same manner as in Example 3 to obtain the target compound (93% yield).

실시예 11.Example 11.

2-프로페닐-1,4-디메틸벤젠의 제조Preparation of 2-propenyl-1,4-dimethylbenzene

알릴 클로라이드 115 mg과 파라-크실렌 3ml를 실시예 3과 같은 방법으로 80 ℃에서 4 시간 반응시켜 목적 화합물(45 % 수율)을 제조하였다.115 mg of allyl chloride and 3 ml of para-xylene were reacted at 80 ° C. for 4 hours in the same manner as in Example 3 to obtain a target compound (45% yield).

1H NMR (CDCl3): δ 7.01-6.88 (m, 4H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H); MS : 146 (M+) 1 H NMR (CDCl 3 ): δ 7.01-6.88 (m, 4H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H); MS: 146 (M + )

실시예 12.Example 12.

2-부테닐 플루오로벤젠의 제조Preparation of 2-butenyl fluorobenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 플루오로벤젠 3 ml를 실시예 1과 같은 방법으로 70 ℃ 2.5 시간 반응시켜 목적 화합물(45 % 수율)을 합성하였다. 목적화합물의 오르토-파라 치환 화합물의 비는 5.5 : 1이었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of fluorobenzene were reacted for 2.5 hours at 70 ° C. in the same manner as in Example 1 to synthesize a target compound (45% yield). The ratio of the ortho-para substituted compound of the target compound was 5.5: 1.

1H NMR (CDCl3): δ 7.34-6.93 (m.4H), 5.56-5.50 (m, 2H), 5.56-5.50 (m, 2H), 3.29-3.27 (d, 2H), 1.69-1.68 (d, 3H) 1 H NMR (CDCl 3 ): δ 7.34-6.93 (m.4H), 5.56-5.50 (m, 2H), 5.56-5.50 (m, 2H), 3.29-3.27 (d, 2H), 1.69-1.68 (d , 3H)

실시예 13.Example 13.

2-부테닐 플루오로벤젠의 제조Preparation of 2-butenyl fluorobenzene

3-클로로-1-부텐 200 mg (2.2 mmol)과 플루오로벤젠 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 2.5 시간 반응시켜 목적 화합물(61 % 수율)을 제조하였다. 목적화합물의 오르토-파라 치환 화합물의 비는 5.5 : 1이었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of fluorobenzene were reacted at 80 ° C. for 2.5 hours in the same manner as in Example 3 to obtain a target compound (61% yield). The ratio of the ortho-para substituted compound of the target compound was 5.5: 1.

실시예 14.Example 14.

2-부테닐 페놀의 제조Preparation of 2-Butenyl Phenol

크로틸 클로라이드 200 mg (2.2 mmol)과 페놀 0.42 g (4.4 mmol)을 실시예 1의 방법으로 상온에서 하루동안 반응시켜 목적 화합물(61 % 수율)을 합성하였다. 목적화합물의 오르토-파라 치환 화합물의 비는 1 : 3이다.200 mg (2.2 mmol) of crotyl chloride and 0.42 g (4.4 mmol) of phenol were reacted at room temperature for one day by the method of Example 1 to synthesize a target compound (61% yield). The ratio of the ortho-para substituted compound of the target compound is 1: 3.

1H NMR (CDCl3): δ 7.07-6.76 (m, 2H), 5.56-5.51 (m, 2H), 5.02 (s, 1H), 3.27-3.25 (d, 2H), 1.71-1.69(d, 3H); MS: 51, 65, 77, 91, 107, 115, 119, 133(m/z 100 %), 148(M+) 1 H NMR (CDCl 3 ): δ 7.07-6.76 (m, 2H), 5.56-5.51 (m, 2H), 5.02 (s, 1H), 3.27-3.25 (d, 2H), 1.71-1.69 (d, 3H ); MS: 51, 65, 77, 91, 107, 115, 119, 133 (m / z 100%), 148 (M + )

실시예 15.Example 15.

2-부테닐 아니솔의 제조Preparation of 2-butenyl anisole

크로틸 클로라이드 200 mg (2.2 mmol)과 아니솔 0.45 g (4.4 mmol)을 실시예 1과 같은 방법으로 상온에서 하루동안 반응시켜 목적 화합물(62 % 수율)을 제조하였다. 목적화합물의 오르토-파라 치환 화합물의 비는 1 : 3이었다.200 mg (2.2 mmol) of crotyl chloride and 0.45 g (4.4 mmol) of anisole were reacted at room temperature for one day in the same manner as in Example 1 to obtain a target compound (62% yield). The ratio of the ortho-para substituted compound of the target compound was 1: 3.

1H NMR (CDCl3): δ 7.29-6.81 (m, 4H), 5.50-5.41 (m, 2H), 3.82-3.81 (2s, 3H), 3.50-3.24 (2d, 2H), 1.68-1.65 (2d, 3H) 1 H NMR (CDCl 3 ): δ 7.29-6.81 (m, 4H), 5.50-5.41 (m, 2H), 3.82-3.81 (2s, 3H), 3.50-3.24 (2d, 2H), 1.68-1.65 (2d , 3H)

실시예 16.Example 16.

2-부테닐톨루엔의 제조Preparation of 2-butenyltoluene

크로틸 클로라이드 200 mg (2.2 mmol)과 톨루엔 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 3 시간 반응시켜 목적 화합물(75 % 수율)을 제조하였다. 목적화합물의 오르토-파라 치환 화합물의 비는 1 : 1이었다.200 mg (2.2 mmol) of crotyl chloride and 3 ml of toluene were reacted at 80 ° C. for 3 hours in the same manner as in Example 3 to obtain the target compound (75% yield). The ratio of the ortho-para substituted compound of the target compound was 1: 1.

1H NMR (CDCl3): δ 7.18-7.04 (m, 4H), 5.58-5.44 (m, 2H), 3.29-3.26 (t, 2H), 2.32 (d, 3H), 2.28 (d, 3H), 1.67-1.65 (d, 3H); 1 H NMR (CDCl 3 ): δ 7.18-7.04 (m, 4H), 5.58-5.44 (m, 2H), 3.29-3.26 (t, 2H), 2.32 (d, 3H), 2.28 (d, 3H), 1.67-1.65 (d, 3 H);

MS : 51, 65, 77, 91, 105, 115, 131 (m/z 100 %), 146 (M+)MS: 51, 65, 77, 91, 105, 115, 131 (m / z 100%), 146 (M + )

실시예 17.Example 17.

2-부테닐톨루엔의 제조Preparation of 2-butenyltoluene

3-클로로-1-부텐 200 mg (2.2 mmol)과 톨루엔 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 3 시간 반응시켜 실시예 13과 같은 목적 화합물(86 % 수율)을 얻었다. 목적화합물의 오르토-파라 치환 화합물의 비는 1 : 1이었다.200 mg (2.2 mmol) of 3-chloro-1-butene and 3 ml of toluene were reacted at 80 ° C. for 3 hours in the same manner as in Example 3 to obtain the target compound (86% yield) as in Example 13. The ratio of the ortho-para substituted compound of the target compound was 1: 1.

실시예 18.Example 18.

2-옥테닐벤젠의 제조Preparation of 2-octenylbenzene

1-클로로-2-옥텐 207 mg과 벤젠 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 5 시간 반응시켜 목적 화합물(62 % 수율)을 얻었다.207 mg of 1-chloro-2-octene and 3 ml of benzene were reacted at 80 ° C. for 5 hours in the same manner as in Example 3 to obtain the target compound (62% yield).

1H NMR (CDCl3): δ 7.31-7.06 (m, 5H), 5.63-5.40 (m, 2H), 3.40-3.37 (d, 2H), 3.31-3.28 (d, 2H), 2.5-1.9 (m,6H), 1.68-1.66 (d, 3H); MS :188 (M+) 1 H NMR (CDCl 3 ): δ 7.31-7.06 (m, 5H), 5.63-5.40 (m, 2H), 3.40-3.37 (d, 2H), 3.31-3.28 (d, 2H), 2.5-1.9 (m , 6H), 1.68-1.66 (d, 3H); MS: 188 (M +)

실시예 19.Example 19.

5-메틸-2-헥세닐-1,4-디메틸벤젠의 제조Preparation of 5-methyl-2-hexenyl-1,4-dimethylbenzene

3-클로로-5-메틸-1-헥센 280 mg과 파라-크실렌 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 5 시간 반응시켜 목적 화합물(82 % 수율)을 얻었다.280 mg of 3-chloro-5-methyl-1-hexene and 3 ml of para-xylene were reacted at 80 ° C. for 5 hours in the same manner as in Example 3 to obtain the target compound (82% yield).

1H NMR (CDCl3): δ 7.01-6.88 (q, 3H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H), 1.93 (m, 2H), 1.87 (m, 1H), 1.6-1.3 (2d, 6H); MS : 200 (M+) 1 H NMR (CDCl 3 ): δ 7.01-6.88 (q, 3H), 5.51-5.42 (m, 2H), 3.25-3.22 (d, 2H), 2.27-2.22 (d, 6H), 1.93 (m, 2H ), 1.87 (m, 1 H), 1.6-1.3 (2d, 6 H); MS: 200 (M + )

실시예 20.Example 20.

2-[4-(2,5-디메틸페닐)-2-부테닐]-1,4-디메틸벤젠의 제조Preparation of 2- [4- (2,5-dimethylphenyl) -2-butenyl] -1,4-dimethylbenzene

시스-1,4-디클로로-2-부텐 200 mg (1.6 mmol)과 파라-크실렌 3 ml를 실시예 1과 같은 방법으로 70 ℃에서 7 시간 반응시켜 목적 화합물(31 % 수율)을 얻었다.200 mg (1.6 mmol) of cis-1,4-dichloro-2-butene and 3 ml of para-xylene were reacted at 70 ° C. for 7 hours in the same manner as in Example 1 to obtain the target compound (31% yield).

13C NMR (CDCl3): δ 136.96, 133.62, 131.343 128.31, 128.10, 127.85, 126.92, 125.06, 34.75, 19.25, 17.341, 17.17;1H NMR (CDCl3): δ 7.04-6.90 (m, 6H), 5.58-5.54 (m, 2H), 3.45-3.43 (d, 4H), 3.31-3.29 (d, 4H), 2.29-2.23 (d, 12H); MS : 51, 65, 77, 91, 119, 128, 145 (m/z 100 %), 158, 202, 264 (M+) 13 C NMR (CDCl 3 ): δ 136.96, 133.62, 131.343 128.31, 128.10, 127.85, 126.92, 125.06, 34.75, 19.25, 17.341, 17.17; 1 H NMR (CDCl 3 ): δ 7.04-6.90 (m, 6H), 5.58-5.54 (m, 2H), 3.45-3.43 (d, 4H), 3.31-3.29 (d, 4H), 2.29-2.23 (d , 12H); MS: 51, 65, 77, 91, 119, 128, 145 (m / z 100%), 158, 202, 264 (M + )

실시예 21.Example 21.

2-[4-(2,5-디메틸페닐)-2-부테닐]-1,4-디메틸벤젠의 제조Preparation of 2- [4- (2,5-dimethylphenyl) -2-butenyl] -1,4-dimethylbenzene

시스-1,4-디클로로-2-부텐 200 mg (1.6 mmol)과 파라-크실렌 3 ml를 실시예 3과 같은 방법으로 80 ℃에서 48 시간 반응시켜 실시예 15 과 동일한 목적 화합물(89 % 수율)을 얻었다.200 mg (1.6 mmol) of cis-1,4-dichloro-2-butene and 3 ml of para-xylene were reacted for 48 hours at 80 ° C. in the same manner as in Example 3 to obtain the same target compound as in Example 15 (89% yield) Got.

실시예 22.Example 22.

1,4-디페닐-2-부텐의 제조Preparation of 1,4-diphenyl-2-butene

시스-1,4-디클로로-2-부텐 200 mg (1.6 mmol)과 벤젠 3 ml를 실시예 1과 같은 방법으로 80 ℃에서 2 일간 반응시켜 목적 화합물(21 % 수율)을 얻었다.200 mg (1.6 mmol) of cis-1,4-dichloro-2-butene and 3 ml of benzene were reacted for 2 days at 80 ° C. in the same manner as in Example 1 to obtain the target compound (21% yield).

1H NMR (CDCl3): δ 7.14-6.87 (m, 10H), 5.59-5.55 (m, 2H), 3.46-3.28 (2d, 4H), 2.29-2.23 (d, 12H); MS : 51, 65, 77, 91, 104, 117 (m/z 100 %), 130, 178, 191, 208 (M+) 1 H NMR (CDCl 3 ): δ 7.14-6.87 (m, 10H), 5.59-5.55 (m, 2H), 3.46-3.28 (2d, 4H), 2.29-2.23 (d, 12H); MS: 51, 65, 77, 91, 104, 117 (m / z 100%), 130, 178, 191, 208 (M + )

본 발명은 금속 인듐(Indium) 단독, 인듐과 염기, 인듐과 염기 및 분자체 존재하에 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 알킬화 반응시켜 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법에 관한 것으로, 이는 여러 가지 공업용 화공약품의 중간 매체, 최종 생산물로 사용되고 있으며 고분자 공업, 세척제, 계면 활성제, 윤활유 공업 등에서 유용하게 사용된다.The present invention provides a general formula (Al) by alkylating the allyl halide represented by the general formula (I) and the aromatic compound represented by the general formula (II) in the presence of metal indium alone, indium and base, indium and base, and molecular sieve. The present invention relates to a method for producing an allyl aromatic compound represented by III), which is used as an intermediate medium and a final product of various industrial chemicals, and is usefully used in the polymer industry, the detergent, the surfactant, the lubricant industry, and the like.

Claims (8)

일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물을 용매 존재하에 또는 비존재하에 인듐 단독, 인듐과 염기, 인듐과 염기 및 분자체 중에서 선택되는 촉매를 사용하여 알킬화 반응시키는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.Allyl halides represented by formula (I) and aromatic compounds represented by formula (II) are alkylated with a catalyst selected from indium alone, indium and base, indium and base and molecular sieves in the presence or absence of a solvent The manufacturing method of the allyl aromatic compound represented by general formula (III) characterized by making it react. 일반식(I)에 있어서, R1과 R2는 각각 수소, 메틸, 에틸, 프로필, 부틸 및 펜틸중에서 선택되는 알릴기의 탄소에 치환된 직쇄 또는 측쇄의 C1∼ C5의 탄화수소를 표시하며, X는 염소, 브롬, 요오드, 또는 풀루오르를 표시하며, 일반식(II)에 있어서, R3와 R4는 각각 수소, 메틸, 풀루오르, 히드록시 또는 메톡시를 표시하며, 일반식 (III)에 있어서 R1, R2, R3또는 R4는 상기 일반식 (I)과 일반식 (II)에서의 것과 동일한 것이다.In formula (I), R 1 and R 2 each represent a straight or branched C 1 to C 5 hydrocarbon substituted with carbon of an allyl group selected from hydrogen, methyl, ethyl, propyl, butyl and pentyl, , X represents chlorine, bromine, iodine or pullulor, in formula (II), R 3 and R 4 represent hydrogen, methyl, pullulor, hydroxy or methoxy, respectively, In III), R 1 , R 2 , R 3 or R 4 are the same as those in the general formulas (I) and (II). 제 1 항에 있어서, 일반식(I)로 표시되는 알릴 할라이드와 일반식(II)로 표시되는 방향족 화합물의 몰비가 100 : 1 ∼ 1 : 100인 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.2. The allyl represented by the general formula (III) according to claim 1, wherein the molar ratio of the allyl halide represented by the general formula (I) and the aromatic compound represented by the general formula (II) is 100: 1 to 1: 100. Method for producing an aromatic compound. 제 1 항에 있어서, 용매가 벤젠, 풀루오로벤젠, 톨루엔, 크실렌, 클로로포름, 메틸렌 클로라이드, 사염화탄소, 헥산, 시클로헥산, 니트로메탄, 아세토니트릴, 디옥산 및 테트라히드로퓨란 중에서 한가지 또는 두가지 이상의 혼합물을 사용하는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.The process of claim 1, wherein the solvent comprises one or more mixtures of benzene, pullulobenzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, hexane, cyclohexane, nitromethane, acetonitrile, dioxane and tetrahydrofuran. The manufacturing method of the allyl aromatic compound represented by general formula (III) characterized by using. 제 1 항에 있어서, 염기가 LiOH, NaOH, NaHCO3, Na2CO3, KOH, Mg(OH)2, BaCO3, Ca(OH)2, K2CO3및 CsCO3중에서 한가지 또는 두가지 이상의 혼합물을 사용하는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.The method of claim 1, wherein the base is one or a mixture of two or more of LiOH, NaOH, NaHCO 3 , Na 2 CO 3 , KOH, Mg (OH) 2 , BaCO 3 , Ca (OH) 2 , K 2 CO 3 and CsCO 3 . Method for producing an allyl aromatic compound represented by the general formula (III) characterized in that the use of. 제 1 항에 있어서, 일반식(I)로 표시되는 알릴 할라이드 1 당량에 대해 인듐 0.01 ∼ 2 당량을 사용하는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.A process for producing an allyl aromatic compound represented by the general formula (III) according to claim 1, wherein 0.01 to 2 equivalents of indium are used per 1 equivalent of the allyl halide represented by the general formula (I). 제 1 항에 있어서, 인듐과 염기 또는 인듐과 염기 및 분자체를 사용할 경우, 일반식(I)로 표시되는 알릴 할라이드 1 당량에 대해 염기 0.1 ∼ 2 당량을 사용하는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.A general formula (III) according to claim 1, wherein when indium and a base or indium and a base and a molecular sieve are used, 0.1 to 2 equivalents of base are used per 1 equivalent of allyl halide represented by the general formula (I). Method for producing an allyl aromatic compound represented by. 제 1 항에 있어서, 인듐과 염기 및 분자체를 사용할 경우, 일반식(I)로 표시되는 알릴 할라이드 1 당량에 대해 분자체 1 ∼ 200 질량%를 사용하는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.The method according to claim 1, wherein when indium, a base, and a molecular sieve are used, 1 to 200 mass% of the molecular sieve is used based on 1 equivalent of allyl halide represented by the general formula (I). Method for producing an allyl aromatic compound. 제 1 항에 있어서, 20 ∼ 150℃에서 1 ∼ 48시간 반응시키는 것이 특징인 일반식(III)으로 표시되는 알릴 방향족 화합물의 제조방법.The method for producing an allyl aromatic compound according to claim 1, wherein the reaction is carried out at 20 to 150 ° C. for 1 to 48 hours.
KR1019990011595A 1999-04-02 1999-04-02 Method for the preparation of allylaromatic compounds using indium KR100288503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990011595A KR100288503B1 (en) 1999-04-02 1999-04-02 Method for the preparation of allylaromatic compounds using indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990011595A KR100288503B1 (en) 1999-04-02 1999-04-02 Method for the preparation of allylaromatic compounds using indium

Publications (2)

Publication Number Publication Date
KR20000065376A KR20000065376A (en) 2000-11-15
KR100288503B1 true KR100288503B1 (en) 2001-04-16

Family

ID=19578637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990011595A KR100288503B1 (en) 1999-04-02 1999-04-02 Method for the preparation of allylaromatic compounds using indium

Country Status (1)

Country Link
KR (1) KR100288503B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365293B1 (en) * 2000-04-17 2002-12-18 한국과학기술연구원 A method for preparing allylated aromatic compounds and pyranocoumarins

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE411307T1 (en) 2003-12-05 2008-10-15 Dsm Ip Assets Bv METHOD FOR PRODUCING ALKENYLATED HYDROXYLATED AROMATIC COMPOUNDS, CHROME COMPOUNDS AND THEIR ACYLATED DERIVATIVES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365293B1 (en) * 2000-04-17 2002-12-18 한국과학기술연구원 A method for preparing allylated aromatic compounds and pyranocoumarins

Also Published As

Publication number Publication date
KR20000065376A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
EA021532B1 (en) Process for preparing benzoxaboroles
US5910606A (en) Process for making α,β-unsaturated carboxylic acids
US20060004213A1 (en) 1-Acetoxy-3-(substituted phenyl)propene compounds
KR100288503B1 (en) Method for the preparation of allylaromatic compounds using indium
US4482493A (en) Method for preparing benzoquinones
JP4165858B2 (en) tert-Amyloxyhalogenobenzene compound and method for producing the same, tert-amyloxycyanobiphenyl compound and method for producing the same, and method for producing cyanohydroxybiphenyl compound
KR20000047809A (en) Process for making 2-alkyl-3-hydroxybenzoic acids
DE60018077T2 (en) PERFLUOROSULFONYLMETHIDE COMPOUNDS; THEIR USE IN THE PREPARATION OF C-C BINDINGS
CN101516824A (en) Process for the production of aromatic amines in the presence of a palladium complex comprising a ferrocenyl biphosphine ligand
JP5212177B2 (en) Method for producing γ-ketoacetal compound and pyrrole derivative
EP2215069B1 (en) Process for the preparation of tetranorlabdane derivatives
CN1122327A (en) Process for the manufacture of cycloalkyl and haloalkyl O-aminophenyl ketones
EP0353755A1 (en) Process for the production of veratral and related alkyl-aryl-ethers
KR100305904B1 (en) Synthetic method of benzylated aromatic compounds using indium
US5856553A (en) Carbonic acid 3-methoxycarbonyloxy-2,2,4,4-tetramethyl-cyclobutyl ester methyl ester and method of making therefor
EP0805133B1 (en) Process for cyclopentadiene substitution
JPS6045542A (en) Production of 3-halogeno-4-alkoxyneophyl halide
EP1238962A1 (en) A process for the preparation of michael-adducts
JP4188060B2 (en) Method for producing 1-substituted phenyl-ω-bromoalkane
US6552226B1 (en) Tandem acyl-Claisen rearrangement in the preparation of chiral products
Coe et al. Reactions of tetrafluoroethene oligomers. Part XIII. Reactions of a perfluorinated dihydrofuran; perfluoro-4-ethyl-2, 3, 4, 5-tetramethyl-4, 5-dihydrofuran
JP3184646B2 (en) Recovery method of dibromodifluoromethane
CN116535342A (en) Preparation method of sulfur ylide compound
JPH05320085A (en) P-tertiary butoxyphenyldimethylcarbinol and its production
JP2601544B2 (en) Method for producing difluorohalomethoxyphenyl derivative

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070130

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee