KR100284506B1 - Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method - Google Patents
Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method Download PDFInfo
- Publication number
- KR100284506B1 KR100284506B1 KR1019990013927A KR19990013927A KR100284506B1 KR 100284506 B1 KR100284506 B1 KR 100284506B1 KR 1019990013927 A KR1019990013927 A KR 1019990013927A KR 19990013927 A KR19990013927 A KR 19990013927A KR 100284506 B1 KR100284506 B1 KR 100284506B1
- Authority
- KR
- South Korea
- Prior art keywords
- lif
- disk
- powder
- radiation
- detection device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/167—Measuring radioactive content of objects, e.g. contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/169—Exploration, location of contaminated surface areas
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Luminescent Compositions (AREA)
Abstract
본 발명은 LiF에 Mg, Cu, Na 및 Si가 불순물로 첨가된 LiF:Mg,Cu,Na,Si 열형광체 분말(이하 LiF:Mg,Cu,Na,Si)을 소결(sintering)하여 만든 디스크형 방사선검출소자 에 관한 것이다. 본 발명의 목적은 분말형태의 LiF:Mg,Cu,Na,Si 열형광체가 가지고 있는 방사선에 대한 고유특성을 재현하는 고형화된 소자를 개발하여, 각각의 소자들이 독립된 검출소자의 역할을 하는 디스크형 방사선검출소자 및 그 제조방법을 제공하는데 있다. 이들 검출소자는 분말보다 취급이 용이하고, 방사선 측정에 다양하게 이용될 수 있으며, 특히 개인피폭선량계 뱃지를 구성하는 요소로서 사용된다.The present invention is a disk type made by sintering LiF: Mg, Cu, Na, Si thermophosphor powder (hereinafter, LiF: Mg, Cu, Na, Si) in which Mg, Cu, Na, and Si are added as impurities to LiF. It relates to a radiation detection device. Disclosure of the Invention An object of the present invention is to develop a solidified device that reproduces the inherent characteristics of radiation of a LiF: Mg, Cu, Na, Si thermal phosphor in the form of a powder, so that each device serves as an independent detection device. The present invention provides a radiation detection device and a method of manufacturing the same. These detection elements are easier to handle than powders, and can be used in a variety of ways for measuring radiation, and in particular, they are used as elements constituting an individual exposure dosimeter badge.
본 발명은 LiF:Mg,Cu,Na,Si 분말에 실온에서 프레스로 약 10 ±3 ton의 압력을 가하여 디스크형으로 성형하는 단계와, 가압성형된 디스크형의 소자들을 전기로에 넣고 820 ±10 ℃ 온도에서 약 60 ±30 분간의 열처리하는 단계를 통해, 분말형의 LiF:Mg,Cu,Na,Si 물질이 가지고 있는 방사선에 대한 고유특성이 재현되는 디스크형 방사선검출소자를 제조한 것이다.The present invention is a step of forming a disk by applying a pressure of about 10 ± 3 ton to a LiF: Mg, Cu, Na, Si powder in a press at room temperature, and put the press-formed disk-like element in an electric furnace at 820 ± 10 ℃ Through the heat treatment for about 60 ± 30 minutes at a temperature, a disk-type radiation detection device that reproduces the inherent characteristics of the radiation of the powdered LiF: Mg, Cu, Na, Si material.
Description
본 발명은 LiF에 Mg, Cu, Na 및 Si가 불순물로 첨가된 열형광(TL: thermoluminescent) 물질을 소결한 디스크형 방사선검출소자 및 그 제조방법에 관한 것으로, 특히 분말형태의 LiF:Mg,Cu,Na,Si 물질이 가지고 있는 방사선에 대한 고유특성을 재현하는 고형화된 소자를 개발하여, 각각의 소자들이 독립된 검출소자의 역할을 하는 디스크형 방사선검출소자 및 그 제조방법을 제공하는데 있다. 이들 검출소자는 분말보다 취급이 용이하고, 방사선 측정에 다양하게 이용될 수 있으며, 특히 개인피폭선량계 뱃지를 구성하는 요소로서 사용될 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disk-type radiation detection device obtained by sintering a thermoluminescent (TL) material in which Mg, Cu, Na and Si are added as impurities to LiF, and a method of manufacturing the same. Particularly, a powder form of LiF: Mg, Cu To develop a solidified device that reproduces the intrinsic characteristics of radiation possessed by, Na, Si materials, and to provide a disk-type radiation detection device and a method for manufacturing the same each device acts as an independent detection device. These detection elements are easier to handle than powders, can be used in a variety of radiation measurements, and in particular can be used as elements constituting a personal dose dosimeter badge.
열형광을 이용한 방사선검출소자(TLD: Thermoluminescent detector)는 열형광 물질에 방사선을 쪼인 후 가열할 때 나오는 빛으로 방사선을 검출하는 것으로 사용하는 열형광 물질은 여러 종류가 있고 각각 특성이 다르다.Thermoluminescent detectors (TLDs) use thermal fluorescence to detect radiation with the light emitted from heating when the radiation is applied to the thermal fluorescence material.
현재 미국, 중국, 폴란드, 프랑스 등 몇 개국에서 여러 종류의 열형광 물질을 고형화된 소자로 상용화하여 세계적으로 개인피폭선량 측정, 환경방사선량 측정, 및 환자의 진단과 치료시의 흡수선량 측정 등에 널리 사용하고 있다. 특히 LiF계열 열형광 물질은 유효원자번호(Zeff= 8.14)가 인체조직(Zeff= 7.42)과 비슷하여 광자에 대한 에너지반응값(energy response)이 유사하므로, 인체에 대한 방사선 선량평가시 유리하므로 개인피폭선량이나 의료용으로 많이 사용된다.Currently, several countries, including the United States, China, Poland, and France, have commercialized various types of thermoluminescent materials as solidified devices, and have been widely used in measuring individual exposure doses, environmental radiation doses, and absorbed doses in patient diagnosis and treatment. I use it. In particular, the LiF-based thermofluorescent material has an effective atomic number (Z eff = 8.14) similar to that of human tissue (Z eff = 7.42), so the energy response to photons is similar, which is advantageous when evaluating the radiation dose to the human body. Therefore, it is widely used for individual dose and medical use.
LiF계열 TLD 중에서 가장 먼저 개발된 물질인 LiF:Mg,Ti는 TLD-100으로 상용화되어 낮은 열형광감도에도 불구하고 현재까지 지속적으로 사용되고 있다. 고감도의 열형광 물질일수록 낮은 선량을 정확히 평가하는데 유리하므로 고감도의 신소재 열형광 물질의 개발에 대한 연구가 활발히 진행되고 있다. 새로운 불순물을 첨가하는 방법에 의해 TLD-100보다 열형광감도가 약 20∼30배 뛰어난 LiF:Mg,Cu,P가 개발되어 GR-200(중국) 또는 MCP-N(폴란드) 등의 이름으로 상용화되었는데 분말형태의 물질을 적정한 고형화 조건을 찾아 소자화한 제품들로 현재 가장 많이 사용되고 있다. 국내에서는 LiF:Mg,Cu,P에 비해 감도가 두 배 정도로 우수한 새로운 LiF:Mg,Cu,Na,Si 물질이 분말형태로 개발되었으나(참고문헌 1, 2) 고형화된 소자가 아니므로 사용범위가 제한적이었다.LiF: Mg, Ti, the first material developed among LiF-based TLDs, has been commercialized as TLD-100 and has been used continuously to date despite low thermal fluorescence sensitivity. The more sensitive the thermofluorescent material is, the more advantageous it is to accurately evaluate the low dose. Therefore, the research on the development of the new high-sensitivity thermofluorescent material has been actively conducted. By adding a new impurity, LiF: Mg, Cu, P, which has about 20-30 times better thermal fluorescence sensitivity than TLD-100, was developed and commercialized under the name GR-200 (China) or MCP-N (Poland). It is the most widely used products that have been found to be a device in the form of powder to find the proper solidification conditions. In Korea, new LiF: Mg, Cu, Na, Si materials, which have twice the sensitivity compared to LiF: Mg, Cu, P, have been developed in powder form (Refs. 1 and 2). It was limited.
다양한 사용을 위해서는 고형화된 소자로의 개발이 필요한데, 소자화하는 방법은 크게 나누어 접착제 없이 100% 열형광체 분말로 만드는 방법과 열형광체 분말에 적당한 접착성물질(binder)을 혼합하는 방법이 있다. 전자의 방법으로는 소결(sintering), 압출성형(extrusion), 고온압축(hot pressing), 단결정성장(single crystal growing) 등이 있고, 후자는 Teflon(polytetrafluoroethylene)이나 실리콘 resin 등을 30% ~ 90% 정도 혼합하는 방법 등이 있다. LiF:Mg,Ti 물질은 압출성형 방법(참고문헌 3) 소결방법(참고문헌 4) 그리고 접착물질로 Teflon을 혼합한 방법(참고문헌 5) 등으로 고형화하여 상용화되었다.Development of a solidified device is required for various uses. The method of device formation is largely divided into a 100% thermophosphor powder without an adhesive and a method of mixing a suitable adhesive material with the thermophosphor powder. The former methods include sintering, extrusion, hot pressing, single crystal growth, and the latter 30% to 90% of Teflon (polytetrafluoroethylene) or silicone resin. Or a degree of mixing. LiF: Mg, Ti materials were commercialized by solidification by extrusion molding (Ref. 3), sintering method (Ref. 4), and Teflon mixed with adhesive materials (Ref. 5).
LiF:Mg,Cu,Na,Si 물질의 소자화는 LiF:Mg,Ti 물질의 고형화 방법과 유사한 과정을 통해 성취될 수 있다. 그러나 첨가하는 불순물이 다르면 glow 곡선의 모양, 열형광감도, 주 peak의 온도 및 잠상퇴행(fading) 특성 등이 매우 달라지므로, 분말 물질의 열형광 특성을 유지하는 고형화 조건은 물질 고유의 특성에 따라 판이하다. 따라서 LiF:Mg,Cu,Na,Si 물질에 대한 소자화하기 위해서 적절한 고형화의 최적조건을 찾아야 한다. LiF:Mg,Cu,Na,Si 물질에 Teflon 을 혼합한 소자화하는 기술과 소자들의 특성에 관한 연구가 수행되었지만(참고문헌 6) Teflon을 혼합하면 열형광감도가 저하되고 소자가 열에 약한 단점이 있다.Demagnetization of LiF: Mg, Cu, Na, Si materials can be accomplished through a process similar to the solidification method of LiF: Mg, Ti materials. However, different impurities may vary the shape of the glow curve, the thermal fluorescence sensitivity, the temperature of the main peak, and the fading characteristics. Therefore, the solidification conditions for maintaining the thermal fluorescence characteristics of the powdery materials depend on the characteristics of the materials. Differ Therefore, in order to elementize LiF: Mg, Cu, Na, Si materials, it is necessary to find the optimum conditions for proper solidification. Although the research on the characteristics of devices and the characteristics of devices that incorporate Teflon in LiF: Mg, Cu, Na, Si materials has been conducted (Ref. 6), the mixing of Teflon lowers the thermal fluorescence sensitivity and the device has a weak heat. .
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 분말형태의 LiF:Mg,Cu,Na,Si 물질이 가지고 있는 방사선에 대한 고유특성을 재현하면서도 분말보다 취급이 용이하고, 방사선 측정에 다양하게 이용될 수 있으며, 감도도 향상시키고 열처리에 의한 재사용을 용이하게 하기 위하여 분말에 다른 물질을 혼합하지 않고 분말자체를 고형화한, 특히 개인 피폭선량계 뱃지를 구성하는 요소로서 사용할 수 있는 고형화된 소자로 개발하여, 각각의 소자들이 독립된 검출소자의 역할을 하는 디스크형 방사선검출소자 및 그 제조방법을 제공하는데 있다.An object of the present invention for solving the above problems is to reproduce the intrinsic properties of the radiation of the LiF: Mg, Cu, Na, Si material in the form of powder, while being easier to handle than the powder, various uses for radiation measurement In order to improve the sensitivity and to facilitate reuse by heat treatment, it has been developed as a solidified device that can be used as a component of the individual exposure dosimeter badge, which solidifies the powder itself without mixing other materials in the powder. Another object of the present invention is to provide a disk-type radiation detection device in which each device functions as an independent detection device, and a method of manufacturing the same.
도 1은 본 발명의 디스크형 LiF:Mg,Cu,Na,Si 검출소자의 제조과정,1 is a manufacturing process of a disk-type LiF: Mg, Cu, Na, Si detection device of the present invention,
도 2는 본 발명의 LiF:Mg,Cu,Na,Si 물질과 디스크형 LiF:Mg,Cu,Na,Si 검출소자의 모양,2 is the shape of the LiF: Mg, Cu, Na, Si material and the disk-type LiF: Mg, Cu, Na, Si detection element of the present invention,
도 3은 분말형 LiF:Mg,Cu,Na,Si 물질과 상용화된 TL 물질의 측정 열형광감도 비교도,Figure 3 is a comparison of the measured thermofluorescence sensitivity of the TL material compatible with the powder type LiF: Mg, Cu, Na, Si material,
도 4는 분말형 LiF:Mg,Cu,Na,Si 물질과 디스크형 LiF:Mg,Cu,Na,Si 검출소자의 측정 열형광감도 비교도.4 is a measurement thermal fluorescence sensitivity comparison of a powder type LiF: Mg, Cu, Na, Si material and a disk type LiF: Mg, Cu, Na, Si detection element.
본 발명은 방사선 측정에 사용되는 디스크형 방사선검출소자와 그 제조방법에 관한 것으로, LiF에 Mg, Cu, Na 및 Si가 불순물로 첨가된 열형광 물질인 LiF:Mg,Cu,Na,Si를 디스크형으로 가압성형한 후 열처리를 거쳐 제조되며, 이들은 LiF:Mg,Cu,Na,Si 분말의 방사선에 대한 고유특성을 재현하는 특성을 갖는다.The present invention relates to a disk-type radiation detection device and a method for manufacturing the same, which are used for radiation measurement. After press molding into a mold and heat treatment, they have the characteristic of reproducing the intrinsic properties of the radiation of LiF: Mg, Cu, Na, Si powder.
본 발명 열형광 검출소자는 열형광 물질인 LiF:Mg,Cu,Na,Si(LiF: 74.5 ±15.0 wt%, Mg: 4.4 ±0.9 wt%, Cu: 5.9 ±1.2 wt%, NaSi: 15.2 ±3.0 wt%)로 조성된 분말을 프레스를 사용하여 가압성형하고 열처리를 거쳐 디스크 모양으로 소자화 된 것을 특징으로 한다.The thermofluorescence detection device of the present invention is LiF: Mg, Cu, Na, Si (LiF: 74.5 ± 15.0 wt%, Mg: 4.4 ± 0.9 wt%, Cu: 5.9 ± 1.2 wt%, NaSi: 15.2 ± 3.0) wt%) powder is press-molded using a press and characterized in that the element is formed into a disk shape through a heat treatment.
이와 같이 된 본 발명 열형광 물질의 성형 제조방법은 다음과 같다.Thus, the molding method of the present invention thermofluorescent material is as follows.
LiF에 불순물로 첨가하는 MgSO4·7H2O(0.6 ±0.2 mol%), CuSO4·5H2O(0.8 ±0.2 mol%) 및 Na2SiO3·9H2O(1.8 ±0.4 mol%)를 정량한 후, 이온교환수를 넣어 80 ℃에서 잘 혼합한 후, 혼합한 용액을 건조시켜, 백금도가니에 담아 질소 분위기의 전기로에서 820 ±10 ℃ 온도로 소결시킨 후, 공기 중에서 급냉하고, 단단한 덩어리 형태의 시료를 분쇄하여, 1 N HCl 용액에 씻은 후 건조시켜 결정립(grain) 크기가 80 ㎛ 이하인 LiF:Mg,Cu,Na,Si 열형광체 분말로 제조하는 분말형의 LiF:Mg,Cu,Na,Si 열형광체 제조단계(a)와;MgSO 4 · 7H 2 O (0.6 ± 0.2 mol%), CuSO 4 · 5H 2 O (0.8 ± 0.2 mol%), and Na 2 SiO 3 · 9H 2 O (1.8 ± 0.4 mol%) added as impurities to LiF After quantification, ion-exchanged water was added and mixed well at 80 ° C., and then the mixed solution was dried, placed in a platinum crucible and sintered at a temperature of 820 ± 10 ° C. in an electric furnace in a nitrogen atmosphere, and then quenched in air and a hard mass. The sample was ground, washed with 1N HCl solution and dried to form LiF: Mg, Cu, Na, Si powdered powder of LiF: Mg, Cu, Na having a grain size of 80 μm or less. , Si thermal phosphor manufacturing step (a);
상기 분말형의 LiF:Mg,Cu,Na,Si 물질의 성형을 위해 금형세트(직경 5㎜ 디스크형)를 구성한 후 약 10 ±3 ton의 압력으로 LiF:Mg,Cu,Na,Si 물질을 실온에서 프레스로 압력을 가하여 디스크형(직경 5㎜, 두께 0.8㎜)으로 제조하는 가압성형 단계(b)와;After forming a mold set (5 mm diameter disk type) for molding the powdered LiF: Mg, Cu, Na, Si material, the LiF: Mg, Cu, Na, Si material was cooled to room temperature at a pressure of about 10 ± 3 ton. Press-molding step (b) to produce a disk (diameter 5 mm, thickness 0.8 mm) by applying pressure with a press in the;
상기 가압성형한 디스크형 소자들을 질소분위기의 전기로에서 820 ±10℃ 온도에서 60 ±30분 동안 열처리하여 분말형의 LiF:Mg,Cu,Na,Si 물질이 가지고 있는 열형광선량계로서의 고유특성을 재현하는 열처리 단계(c)를 거쳐 제조되는 것을 특징으로 한다.The press-formed disk-shaped elements were heat-treated in an electric furnace in a nitrogen atmosphere for 60 ± 30 minutes at a temperature of 820 ± 10 ° C to reproduce the inherent characteristics of the thermoluminescent dosimeter of the powdered LiF: Mg, Cu, Na, Si material. It characterized in that it is manufactured through a heat treatment step (c).
이하 본 발명의 바람직한 실시예로서 본 발명은 다음의 실시예에만 국한되지는 않는다.Hereinafter, the present invention as a preferred embodiment of the present invention is not limited to the following examples.
<실시 예 1><Example 1>
도 1은 LiF:Mg,Na,Cu,Si 물질로 조성된 디스크형 방사선검출소자의 제조방법을 도시하고 있는데 그 방법은 다음과 같다.1 shows a method of manufacturing a disk-type radiation detection device composed of LiF: Mg, Na, Cu, Si materials. The method is as follows.
a) 분말형의 LiF:Mg,Cu,Na,Si 열형광체 제조;a) preparation of powdered LiF: Mg, Cu, Na, Si thermophosphor;
LiF에 불순물로 첨가하는 MgSO4·7H2O(0.6mol%), CuSO4·5H2O(0.8mol%) 및 Na2SiO3·9H2O(1.8mol%)를 정량한 후, 이온교환수를 넣어 80 ℃에서 균일하게 혼합하였다. 그런 다음 혼합한 용액을 건조시켜, 백금도가니에 담아 질소 분위기의 전기로에서 820 ±10 ℃ 온도로 소결시킨 후, 공기 중에서 급냉하였다. 단단한 덩어리 형태의 시료를 분쇄하여, 1 N HCl 용액에 씻은 후 건조시켜 결정립(grain) 크기가 80 ㎛ 이하인 LiF:Mg,Cu,Na,Si 열형광체를 제조하였다.MgSO 4 · 7H 2 O (0.6 mol%), CuSO 4 · 5H 2 O (0.8 mol%), and Na 2 SiO 3 · 9H 2 O (1.8 mol%) added as impurities to LiF were ion-exchanged. Water was added and mixed uniformly at 80 ° C. Then, the mixed solution was dried, sintered in a platinum crucible and sintered at a temperature of 820 ± 10 ° C. in an electric furnace in a nitrogen atmosphere, and then quenched in air. The solid lumped sample was ground, washed with 1 N HCl solution and dried to prepare a LiF: Mg, Cu, Na, Si thermophosphor having a grain size of 80 μm or less.
b) 가압성형 단계;b) a press forming step;
분말형의 LiF:Mg,Cu,Na,Si 열형광체를 실온에서 프레스로 압력을 가하여 디스크 형태로 가압성형하는 단계로서 먼저 성형을 위한 금형세트(직경 5㎜ 디스크형)를 구성한다. 그런 다음 약 10 ±3 ton의 압력으로 LiF:Mg,Cu,Na,Si 물질을 실온에서 가압하여 디스크 형태(직경 5㎜, 두께 0.8㎜)로 만든다.Pressing the powder-type LiF: Mg, Cu, Na, Si thermophosphor by pressing at room temperature into a press form to form a mold set (5 mm diameter disk type) for molding. The LiF: Mg, Cu, Na, Si material is then pressed at room temperature to a pressure of about 10 ± 3 ton to form a disk (5 mm in diameter, 0.8 mm in thickness).
c) 열처리 단계;c) a heat treatment step;
가압성형한 디스크형 소자들은 결합력이 약하여 잘 부서지고 결정구조가 변형되어 원래의 열형광 특성을 나타내지 않는다. 이들 디스크형 소자를 고형화시키고 분말상태에서 가지고 있던 열형광 특성을 복원시키기 위하여 열처리를 한다.Pressurized disk-shaped devices have a weak bonding force, so they break well and the crystal structure is deformed so that they do not exhibit the original thermoluminescent properties. In order to solidify these disk-like elements and to restore the thermal fluorescence characteristics which were in the powder state, heat treatment is performed.
가압성형한 디스크형 소자들을 질소분위기의 전기로에서 820 ±10℃ 온도에서 60 ±30분 동안 열처리하면 분말형의 LiF:Mg,Cu,Na,Si 물질이 가지고 있는 열형광선량계로서의 고유특성을 재현하는 디스크형 소자로 제조된다.When the pressurized disk-type elements were heat-treated in an electric furnace in a nitrogen atmosphere for 60 ± 30 minutes at a temperature of 820 ± 10 ° C, the inherent characteristics of the thermoluminescent dosimeter of the powdered LiF: Mg, Cu, Na, Si material were reproduced. It is made of a disk-like element.
<실시 예 2><Example 2>
상기와 같은 방법으로 제조된 본 발명은 분말형 LiF:Mg,Cu,Na,Si 물질을 디스크형의 방사선검출소자로 고형화하는 소결의 적정조건을 찾은 것이므로, 금형틀(다이 세트)의 형태를 바꾸면 디스크형뿐만 아니라 분말 물질의 특성을 그대로 재현할 수 있는 임의의 모양으로도 제작이 가능하다. 따라서 일반적으로 많이 사용되는 로드(rod)형이나 정사각형의 칩(chip)형 등의 용도에 따른 다양한 크기와 형태의 제조가 가능하다.The present invention manufactured by the above method finds the proper condition of sintering to solidify the powder type LiF: Mg, Cu, Na, Si material into the disk type radiation detection element, Not only the disk shape but also any shape that can reproduce the characteristics of the powder material can be produced. Therefore, it is possible to manufacture a variety of sizes and shapes according to the use of a rod type or a square chip type commonly used.
의료적으로 방사선 진단이나 치료과정에서 활용할 수 있는 예는 다음과 같다. 모의피폭체(팬텀)의 내부나 겉면에 검출소자를 부착시켜서 방사선을 조사한 후 이들 소자의 TL 감도를 측정하면 소자가 부착된 지점에서 인체가 받는 흡수선량을 바로 평가할 수 있다. TLD 소자의 크기가 작을수록 국소적인 조사지점의 선량을 평가할 수 있고, 소자 여러 개를 한 평면에 배치하면 평면에 대한 선량분포도 볼 수 있다. 이 때 TLD 소자의 형태는 사용용도에 따라 다양하게 선택한다.Examples of medically applicable methods for radiological diagnosis or treatment include: By attaching detection elements to the inside or outside of the phantom (phantom) and irradiating them with radiation, measuring the TL sensitivity of these elements can directly assess the absorbed dose received by the human body at the point of attachment. As the size of the TLD device is smaller, the dose at the local irradiation site can be assessed, and if several devices are placed in one plane, the dose distribution of the plane can be seen. At this time, the shape of the TLD device is variously selected depending on the intended use.
또한 이들 검출소자들은 원전 주변이나 방사선 구역 등의 장소에 배치하여 주기적으로 열형광강도를 측정하면 환경방사선량을 평가하는 환경 모니터링에도 사용될 수 있다.In addition, these detection elements can be used in environmental monitoring to evaluate environmental radiation doses by periodically measuring thermal fluorescence intensity by placing them near a nuclear power plant or a radiation zone.
<실시 예 3>Example 3
디스크형 LiF:Mg,Cu,Na,Si 검출소자를 기본 요소(element)로하여 여러 개를 조합하면 개인의 방사선피폭선량을 모니터링하는 개인피폭선량계 뱃지를 제작할 수 있다.Using a combination of disk-type LiF: Mg, Cu, Na, Si detection elements as a basic element, a combination of several can be used to produce a personal exposure dose meter badge that monitors an individual's radiation dose.
도 2에서 a)의 하늘색의 분말은 LiF:Mg,Cu,Na,Si 물질이고, b)는 이 물질이 디스크형 방사선검출소자로 제조된 모습이다. 그리고 도 2의 c)는 임의의 상용화된 개인피폭선량계 뱃지와 케이스를 나타낸다. 본 발명에서 개발된 b)의 소자를 기본요소로 c)의 개인피폭선량계 뱃지 모양과 유사한 형태로 구성하여 선량평가 알고리즘을 만들면 개인의 피폭선량평가를 위한 새로운 개인피폭선량계 뱃지의 개발이 가능하다.In FIG. 2, the light blue powder of a) is a LiF: Mg, Cu, Na, Si material, and b) is a material made of a disk type radiation detection device. And c) of FIG. 2 shows any commercially available personal dose dosimeter badges and cases. If the device of b) developed in the present invention is composed as a basic element similar to the shape of the individual dose dosimetry badge of c), and a dose evaluation algorithm is made, it is possible to develop a new personal exposure dosimeter badge for the evaluation of the exposure of the individual.
상기와 같은 본 발명은 아래의 표 1에 도시된 바와 같이 본 발명에 사용되는 LiF:Mg,Cu,Na,Si 물질의 열형광감도는 상용화된 TLD 분말의 약 2배 정도로 우수하며(도 3 참조), 이 물질을 디스크형 소자로 제조하였을 때 열형광감도가 도 4와 같이 재현되므로 외국의 상용화된 제품보다 우수하게 방사선을 측정하는 검출소자로 이용이 가능하다는 장점이 있다.The present invention as described above is excellent in the thermal fluorescence sensitivity of LiF: Mg, Cu, Na, Si material used in the present invention as shown in Table 1 below about 2 times the commercialized TLD powder (see Fig. 3) ), When the material is manufactured as a disk-like device, the thermal fluorescence sensitivity is reproduced as shown in FIG. 4, and thus, it can be used as a detection device for measuring radiation better than commercially available products in other countries.
이와 같은 본 발명의 검출소자로 국산화된 개인피폭선량계 뱃지를 제작하여 국내의 약 30,000여명의 방사선 종사자가 2개씩 사용할 경우, 외국의 개당 약 30불하는 개인피폭선량계 뱃지를 대체한다면 기대되는 외화절감 효과는 연간 약 20억원에 달한다.If a domestic individual dose dosimeter badge manufactured by the detection device of the present invention is used by about 30,000 radiation workers in Korea, the foreign exposure reduction effect expected by replacing the individual exposure dose badge of about 30 dollars per foreign country Is about 2 billion won a year.
표1. 10mg당 여러 열형광체 분말의 상대적 열형광감도137Cs 0.1mGy 조사하여 가열률 5 ℃/sec로 측정한 Glow 곡선Table 1. Glow curve measured at a heating rate of 5 ° C / sec by irradiation of 137 Cs 0.1mGy of the relative thermal fluorescence of several thermophosphor powders per 10 mg
<참고문헌><Reference>
(1) S. H. Doh, M. C. Chu, W. H. Chung, H. J. Kim, D. S. Kim and Y. H. Kang, Preparation of LiF(Mg,Cu,Na,Si) Phosphor and Its Thermoluminescent Characteristics, Korean Appl. Phys. 2 425-431 (1989)(1) S. H. Doh, M. C. Chu, W. H. Chung, H. J. Kim, D. S. Kim and Y. H. Kang, Preparation of LiF (Mg, Cu, Na, Si) Phosphor and Its Thermoluminescent Characteristics, Korean Appl. Phys. 2 425-431 (1989)
(2) Y. M. Nam, J. L. Kim, S. Y. Chang and G. D. Kim, The Study of Glow Curves for LiF:Mg,Cu,Na,Si Phosphor with Different Dopant Concentrations, Korean Appl. Phys. 11 578-583 (1998)(2) Y. M. Nam, J. L. Kim, S. Y. Chang and G. D. Kim, The Study of Glow Curves for LiF: Mg, Cu, Na, Si Phosphor with Different Dopant Concentrations, Korean Appl. Phys. 11 578-583 (1998)
(3) US patent 1,186,899 (1970)(3) US patent 1,186,899 (1970)
(4) T. Niewiadomski, Pressure Deformation and Recovery of Thermolumine scence in Lithium Fluoride, Health Physics, Vol. 31 pp. 373-376 (1976)(4) T. Niewiadomski, Pressure Deformation and Recovery of Thermolumine scence in Lithium Fluoride, Health Physics, Vol. 31 pp. 373-376 (1976)
(5) US patent 1,140,028 (1969)(5) US patent 1,140,028 (1969)
(6) 남영미, 박사학위논문, LiF:Mg,Cu,Na,Si Teflon TLD의 특성 및 응용에 관한 연구, 부산대학교 (1997)(6) Nam Young-mi, Ph.D. Thesis, A Study on the Characteristics and Applications of LiF: Mg, Cu, Na, Si Teflon TLD, Pusan National University (1997)
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990013927A KR100284506B1 (en) | 1999-04-20 | 1999-04-20 | Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990013927A KR100284506B1 (en) | 1999-04-20 | 1999-04-20 | Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000066664A KR20000066664A (en) | 2000-11-15 |
KR100284506B1 true KR100284506B1 (en) | 2001-03-15 |
Family
ID=19580965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990013927A KR100284506B1 (en) | 1999-04-20 | 1999-04-20 | Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100284506B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100436218B1 (en) * | 2001-12-24 | 2004-06-16 | 한국원자력연구소 | THERMOLUMINASCENT DETECTOR OF LIF CONTAINING Mg,Cu,Na, AND Si AS DOPANTS AND METHOD FOR PREPARING THEREOF |
KR100793026B1 (en) | 2006-08-10 | 2008-01-08 | 한국원자력연구원 | Thermoluminescent detector of lif containing mg, cu, and si as dopants and method thereof |
-
1999
- 1999-04-20 KR KR1019990013927A patent/KR100284506B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100436218B1 (en) * | 2001-12-24 | 2004-06-16 | 한국원자력연구소 | THERMOLUMINASCENT DETECTOR OF LIF CONTAINING Mg,Cu,Na, AND Si AS DOPANTS AND METHOD FOR PREPARING THEREOF |
KR100793026B1 (en) | 2006-08-10 | 2008-01-08 | 한국원자력연구원 | Thermoluminescent detector of lif containing mg, cu, and si as dopants and method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20000066664A (en) | 2000-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Driscoll et al. | Annealing procedures for commonly used radiothermoluminescent materials | |
Altunal et al. | Effect of sintering temperature on dosimetric properties of BeO ceramic pellets synthesized using precipitation method | |
Seth et al. | Investigations of thermoluminescence properties of multicrystalline LiF: Mg, Cu, Si phosphor prepared by edge defined film fed growth technique | |
JP3853614B2 (en) | Manufacturing method of CaSO4 series TL device mixed with phosphorus compound | |
KR100284506B1 (en) | Disk type thermoluminescent detectors by sintering LiF phosphor activated with Mg, Cu, Na and Si and its manufacturing method | |
Nam et al. | Dependence of glow curve structure on the concentration of dopants in LiF: Mg, Cu, Na, Si phosphor | |
US5622659A (en) | Method of preparing doped lithium fluoride thermoluminescent radiation detector | |
KR100436218B1 (en) | THERMOLUMINASCENT DETECTOR OF LIF CONTAINING Mg,Cu,Na, AND Si AS DOPANTS AND METHOD FOR PREPARING THEREOF | |
Harris et al. | A comparison of the effectiveness of thermoluminescent crystals LiF: Mg, Ti, and LiF: Mg, Cu, P for clinical dosimetry | |
KR100793026B1 (en) | Thermoluminescent detector of lif containing mg, cu, and si as dopants and method thereof | |
Tang et al. | A new high sensitivity thermoluminescent phosphor with low residual signal and good stability to heat treatment: LiF: Mg, Cu, Na, Si | |
Tang et al. | An improved LiF: Mg, Cu, P chip with a low residual signal | |
Marczewska et al. | Synthetic diamonds as active detectors of ionising radiation | |
Abdelhalim et al. | The physical properties of phosphate calcium glass doped with titanium oxide nanoparticles | |
K. Bakshi et al. | New parameters of annealing and re-use of TLDs based on CaSO4: Dy phosphor | |
JPH01139687A (en) | Thermal luminescence material and method for detecting and measuring nuclear radiation | |
KR100426337B1 (en) | METHOD FOR FABRICATING CaSO4 THERMOLUMINESCENT DETECTORS FOR ELAPSED TIME OF ACCIDENT | |
Hong et al. | Study of heating rate effect on thermoluminescence glow curves of LiF: Mg, Cu, P | |
Kamal et al. | Thermoluminescence properties of home-made CaSO 4: Dy For Dosimetry Purposes | |
K. Bakshi et al. | Batch-to-batch variation in the TL glow peaks and sensitivity in the production of CaSO4: Dy TLD phosphor | |
Mohammed et al. | Effect of Gamma Rays on Zn/Cu Doped Strontium Borate Glass System for Dosimetric Applications | |
Hosseini-Pooya et al. | Effect of reader and oven annealing on the glow curve structure and fading of a LiF: Mg, Cu, P TL dosimeter | |
Campos et al. | LiF (Mg, Ti) thermoluminescent pellets | |
Kitis et al. | The influence of irradiation temperature on the TL response of LiF: Mg, Cu, P | |
Cai | The influence of the grain size of LiF: Mg, Cu, P thermoluminescent material on photon energy response and dose response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20061201 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |