KR100279498B1 - Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system - Google Patents

Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system Download PDF

Info

Publication number
KR100279498B1
KR100279498B1 KR1019980036933A KR19980036933A KR100279498B1 KR 100279498 B1 KR100279498 B1 KR 100279498B1 KR 1019980036933 A KR1019980036933 A KR 1019980036933A KR 19980036933 A KR19980036933 A KR 19980036933A KR 100279498 B1 KR100279498 B1 KR 100279498B1
Authority
KR
South Korea
Prior art keywords
transition metal
polyisobutene
polymerization
metal compound
catalyst system
Prior art date
Application number
KR1019980036933A
Other languages
Korean (ko)
Other versions
KR20000019027A (en
Inventor
김종목
김필성
맹일상
Original Assignee
박찬구
금호석유화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박찬구, 금호석유화학주식회사 filed Critical 박찬구
Priority to KR1019980036933A priority Critical patent/KR100279498B1/en
Publication of KR20000019027A publication Critical patent/KR20000019027A/en
Application granted granted Critical
Publication of KR100279498B1 publication Critical patent/KR100279498B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 전이금속 화합물 또는 3급 할로겐 원자를 함유한 유기 화합물을 주촉매로 하고, 메틸알루미녹산을 조촉매로 이용하여 높은 분자량을 갖는 폴리이소부텐을 종래에 비하여 높은 반응온도에서 염화메틸과 같은 극성용매를 사용하지 않고 톨루엔과 같은 일반 유기용매를 중합용매로 사용하여 제조하는 방법에 관한 것으로, 구체적으로는 톨루엔 등 중합 용매에 이소부텐을 녹인 후 여기에 티타늄 등의 전이금속 화합물 또는 3급 할로겐 원자를 갖는 유기 화합물을 메틸알루미녹산으로 활성화시킨 것을 가하여 -50∼-10℃에서 30∼360분 동안 반응시키는 공정; 메탄올 용액을 상기 반응 용액에 적하하여 반응을 종결하는 공정; 상기 침전된 중합체를 메탄올로 수회 세척한 다음 여과 건조하여 최종 중합체를 얻는 공정으로 이루어지며, 이와같은 공정을 통해서 얻어진 폴리이소부텐은 300,000∼1,000,000 정도의 중량 평균분자량을 갖는다.The present invention utilizes a transition metal compound or an organic compound containing a tertiary halogen atom as a main catalyst, and methylisoluminene as a cocatalyst to use polyisobutene having a high molecular weight such as methyl chloride at a higher reaction temperature. The present invention relates to a method for preparing a non-polar solvent using a general organic solvent such as toluene as a polymerization solvent, and specifically, isobutene is dissolved in a polymerization solvent such as toluene, followed by transition metal compounds such as titanium or tertiary halogen. Adding an organic compound having atoms activated with methylaluminoxane to react at -50 to -10 캜 for 30 to 360 minutes; Adding a methanol solution to the reaction solution to terminate the reaction; The precipitated polymer is washed several times with methanol and then filtered and dried to obtain a final polymer. The polyisobutene obtained through such a process has a weight average molecular weight of about 300,000 to 1,000,000.

Description

전이금속 화합물-메틸알루미녹산 촉매계를 이용한 폴리이소부텐의 제조방법Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system

본 발명은 전이금속 화합물-메틸알루미녹산 촉매계를 이용한 폴리이소부텐의 제조방법에 관한 것으로서, 더욱 상세하게는 티타늄, 바나듐, 주석 등의 전이금속에 염소 원자나 알콕시기가 치환된 전이금속 화합물을 주촉매로 사용하고, 알킬 알루미늄과 소량의 물로 제조된 메틸알루미녹산을 조촉매로 사용하여 종래에 비하여 고온인 반응온도에서 고수율로 폴리이소부텐을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing polyisobutene using a transition metal compound-methylaluminoxane catalyst system. More specifically, the main catalyst is a transition metal compound in which a chlorine atom or an alkoxy group is substituted for a transition metal such as titanium, vanadium, or tin. The present invention relates to a method for producing polyisobutene in high yield at a reaction temperature that is higher than that of the prior art by using methylaluminoxane prepared as alkyl aluminum and a small amount of water as a promoter.

양이온 중합법을 통한 폴리이소부텐의 중합은 중합 활성종인 탄소 양이온이 상당히 불안정하여 -80℃ 이하의 매우 낮은 온도에서 고분자량의 중합물이 형성되는 것으로 알려져 있으며, 촉매로는 주로 AlCl3, BCl3등 강한 루이스산을 사용하고, 중합용매로는 극성 용매인 메틸클로라이드를 단독으로 사용하거나, 또는 디클로로메탄과 혼합하여 사용하였다.Polymerization of the polyisobutene by cationic polymerization method is known to be a polymer of a high molecular weight at a very low temperature below -80 ℃ by the polymerization activity species of carbocations quite unstable form, as catalyst, mainly AlCl 3, BCl 3, etc. Strong Lewis acid was used, and methyl chloride as a polar solvent was used alone or mixed with dichloromethane as a polymerization solvent.

그러나, 이같은 중합방법은 극저온에서 중합이 이루어지기 때문에 중합공정에 과다한 비용이 들고, 촉매를 과량으로 사용하기 때문에 촉매 제거에 따른 어려움이 수반되며, 중합용매도 환경에 유해한 염소를 함유한 용매를 사용하는 문제점이 있었다.However, this polymerization method is excessively expensive in the polymerization process because the polymerization is carried out at cryogenic temperatures, and the excessive use of the catalyst is accompanied by difficulty in removing the catalyst, and the polymerization solvent also uses a solvent containing chlorine which is harmful to the environment. There was a problem.

한편, 알킬알루미늄 또는 할로겐화 알루미늄에 전이금속 화합물을 혼합한 촉매로 이소부텐을 중합한 예는 이전부터 시도되어 왔었다.On the other hand, an example of polymerizing isobutene with a catalyst in which a transition metal compound is mixed with alkylaluminum or aluminum halide has been tried before.

구체적인 예로는, 미국 특허 제4,107,417호에는 4족 전이금속 화합물과 알킬알루미늄을 촉매로 사용하고 -40℃에서 약 20만 정도의 중량 평균분자량을 가진 폴리이소부텐을 제조하였는 바, 수율이 35∼55%정도였으며 용매로는 염소계 용매인 모노클로로메탄 및 디클로로메탄을 사용하였다.As a specific example, US Pat. No. 4,107,417 has prepared a polyisobutene having a weight average molecular weight of about 200,000 at -40 ° C using a Group 4 transition metal compound and an alkylaluminum as a catalyst. As the solvent, chlorinated solvents such as monochloromethane and dichloromethane were used.

최근 알킬알루미늄 및 염화메틸을 사용하지 않은 중합방법도 개시되었는 바, 구체적으로는 트리스펜타플루오로보론이라는 비배위음이온을 조촉매로 사용하고, 톨루엔을 중합용매로 사용하여 중량평균분자량이 수만 정도인 폴리이소부텐을 제조하는 방법이 기재되어 있다(참조; 미국 특허 제5,448,001호). Timothy 등에 의해 발표된 문헌("Journal of Polymer Science: Part A:Polymer Chemistry", 35, 329-344 (1997))에 의하면, 이 조촉매를 이용한 이소부텐 중합에 대한 다양한 실험결과, -20℃의 중합온도에서 60%의 중합수율로 수평균 분자량 140,000 정도의 중합체가 얻어지는 것으로 나타났다.Recently, a polymerization method without using alkylaluminum and methyl chloride has also been disclosed. Specifically, trispentafluoroboron is used as a cocatalyst, and toluene is used as a polymerization solvent. A method for preparing polyisobutene is described (see US Pat. No. 5,448,001). According to the publication published by Timothy et al. ("Journal of Polymer Science: Part A: Polymer Chemistry", 35, 329-344 (1997)), various experiments on isobutene polymerization using this promoter were carried out at -20 ° C. A polymer having a number average molecular weight of about 140,000 was obtained with a polymerization yield of 60% at the polymerization temperature.

또한, 여러 가지 티타늄 화합물의 양이온 중합 특성에 대한 연구결과가 많이 보고되어 있는데, Toshiyuki 등에 의해 발표된 문헌("Macromolecules", 29, 6100-6103 (1996))에는 스티렌을 양이온 중합하는 데 있어서 티타늄트라이클로로이소프로폭사이드(TiCl3(OiPr))가 조촉매 없이 단독으로 루이스산 촉매로 작용한다는 결과가 발표되었다. 하지만, 이 티타늄 촉매는 스티렌의 중합에서는 단독으로 중합촉매로 작용하나, 이소부텐 중합의 경우에는 조촉매의 도움 없이는 중합촉매로 작용하지 못하였다.In addition, many studies on the cationic polymerization characteristics of various titanium compounds have been reported. Tomacyuki et al. ("Macromolecules", 29, 6100-6103 (1996)) disclose that titanium triions may be used for cationic polymerization of styrene. It has been reported that chloroisopropoxide (TiCl 3 (OiPr)) acts alone as a Lewis acid catalyst without a promoter. However, this titanium catalyst acted as a polymerization catalyst alone in the polymerization of styrene, but in the case of isobutene polymerization, it did not function as a polymerization catalyst without the aid of a cocatalyst.

한편, 최근들어 전이금속 화합물 촉매를 활성화시키는 비배위음이온으로는 상기의 알킬 알루미늄, 트리스펜타플루오로보론 외에도 메틸알루미녹산에 대한 연구가 관심이 되고 있다.On the other hand, as a non-coordinating anion for activating the transition metal compound catalyst, research on methylaluminoxane in addition to the alkyl aluminum and trispentafluoroboron has recently been of interest.

메틸알루미녹산은 알킬알루미늄을 소량의 물과 반응시켜 생성되는 화합물로서 지금까지는 메탈로센 촉매의 조촉매로 사용되어 중합 활성도 면에서 탁월한 기능을 하는 것으로 알려져 있다.Methylaluminoxane is a compound produced by reacting alkylaluminum with a small amount of water. It is known that methylaluminoxane has an excellent function in terms of polymerization activity until now as a cocatalyst of metallocene catalyst.

본 발명은 여러 전이금속 화합물 및 3급 할로겐 원자를 함유하는 유기화합물을 주촉매로 하고, 분자량이 큰 메틸알루미녹산을 조촉매로 하여 주촉매의 활성부위를 체적이 큰 조촉매가 감싸는 형태로 촉매계를 설계함으로써 보다 안정한 양이온 활성종이 생성되도록 한 폴리이소부텐의 제조방법을 제공하는 데 그 목적이 있다.The present invention is a catalyst system in which a catalyst having a large volume encapsulates an active site of a main catalyst by using a transition metal compound and an organic compound containing a tertiary halogen atom as a main catalyst and a methylaluminoxane having a high molecular weight as a promoter. It is an object of the present invention to provide a method for preparing polyisobutene, which allows more stable cationic active species to be produced.

또한, 본 발명은 종래의 중합 공정조건에 비하여 30∼50℃ 정도 높은 중합온도에서 극성 용매인 디클로로메탄 대신에 톨루엔과 같은 일반 유기용매를 사용하여 공정비용을 절감하고 유해성이 감소된 폴리이소부텐을 제조하는 방법을 제공하는 데도 그 목적이 있다.In addition, the present invention uses a general organic solvent such as toluene instead of dichloromethane, which is a polar solvent, at a polymerization temperature of about 30 to 50 ° C. higher than that of the conventional polymerization process, thereby reducing process cost and reducing polyisobutene. It is also an object to provide a method of manufacturing.

이와같은 목적을 달성하기 위한 본 발명의 폴리이소부텐의 제조방법은 할로겐 원자를 함유하지 않는 중합용매에 이소부텐을 녹이는 단계; 이와는 별도로 다음 화학식 1로 표시되는 전이금속 화합물 또는 다음 화학식 2로 표시되는 유기 화합물을 다음 화학식 3으로 표시되는 메틸알루미녹산으로 일정 시간 활성화시켜 촉매계를 제조하는 단계; 상기 이소부텐 용액에 활성화시킨 촉매계를 투입하여 -50∼-10℃에서 30∼360분 동안 반응시키는 중합공정; 상기 반응용액에 메탄올을 적하하여 반응을 종결하는 공정; 및 침전된 중합체를 메탄올로 수회 세척한 다음 여과 건조하여 최종 중합체를 얻는 공정으로 이루어진다.Method for producing a polyisobutene of the present invention for achieving the above object comprises the steps of dissolving isobutene in a polymerization solvent containing no halogen atoms; Apart from this, a catalyst system is prepared by activating a transition metal compound represented by Chemical Formula 1 or an organic compound represented by Chemical Formula 2 with methylaluminoxane represented by Chemical Formula 3 for a predetermined time; A polymerization step of reacting the activated catalyst system with the isobutene solution for 30 to 360 minutes at -50 to -10 ° C; Methanol is added to the reaction solution to terminate the reaction; And washing the precipitated polymer several times with methanol, followed by filtration and drying to obtain the final polymer.

상기 식에서, M는 티타늄, 바나듐 또는 주석이고,Wherein M is titanium, vanadium or tin,

X는 염소 원자 또는 브롬 원자이며,X is a chlorine atom or bromine atom,

n은 1∼4의 정수이고,n is an integer of 1 to 4,

R은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 옥틸, 펜틸 및 퍼플루오로페닐기 중에서 선택된 것이다.R is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, octyl, pentyl and perfluorophenyl groups.

R1, R2및 R3는 서로 같거나 다른 것으로서, 탄소원자수 1∼10의 알킬기 또는 페닐기이고,R 1 , R 2 and R 3 are the same as or different from each other, an alkyl group having 1 to 10 carbon atoms or a phenyl group,

X는 상기와 같다.X is as above.

상기 식에서, m은 3∼40의 정수이다.Wherein m is an integer of 3 to 40.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 전이금속 화합물 주촉매와 메틸알루미녹산 조촉매를 이용하여 종래의 공업적 생산공정에서보다 고온에서 고분자량의 폴리이소부텐을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a high molecular weight polyisobutene at a higher temperature than in a conventional industrial production process using a transition metal compound main catalyst and a methylaluminoxane cocatalyst.

본 발명의 폴리이소부텐을 제조하는 방법을 구체적으로 살펴보면, 먼저 중합용매에 이소부텐을 주입한다.Looking specifically at the method for producing a polyisobutene of the present invention, isobutene is first injected into the polymerization solvent.

본 발명에서는 중합용매로 종래와 같은 할로겐 원자를 함유하는 용매를 사용하지 않는 바, 본 발명에서 사용할 수 있는 중합용매로는 톨루엔, 시클로헥산 및 헥산 중에서 선택된 단독 또는 혼합용액이다.In the present invention, as the polymerization solvent does not use a solvent containing a halogen atom as in the prior art, the polymerization solvent that can be used in the present invention is a single or mixed solution selected from toluene, cyclohexane and hexane.

이소부텐 용액이 존재하는 반응기에 촉매계를 첨가하는 바, 본 발명의 촉매계는 중합촉매인 상기 화학식 1로 표시되는 전이금속 화합물이나 상기 화학식 2로 표시되는 유기 화합물과, 조촉매인 상기 화학식 3으로 표시되는 메틸알루미녹산을 소량의 중합용매에 녹여 일정시간 숙성시켜 얻어진다.When the catalyst system is added to the reactor in which the isobutene solution is present, the catalyst system of the present invention is represented by the transition metal compound represented by the formula (1) or the organic compound represented by the formula (2) and the cocatalyst (3) It is obtained by dissolving the methylaluminoxane to be dissolved in a small amount of a polymerization solvent and aging for a certain time.

이같은 촉매계를 반응기에 첨가하고 중합온도 -50∼-10℃에서 30∼360분 동안 반응시켜 폴리이소부텐을 제조한다.Such a catalyst system is added to the reactor and reacted for 30 to 360 minutes at the polymerization temperature of -50 to -10 ° C to prepare polyisobutene.

만일, 중합온도가 상기 범위보다 높을 경우에는 중합수율 및 중합생성물의 분자량이 감소하는 문제가 있고, 중합시간이 상기 범위를 벗어나면 저분자량의 중합물이 생성되면서 중합생성물의 분자량 분포값이 증가한다.If the polymerization temperature is higher than the above range, there is a problem that the polymerization yield and the molecular weight of the polymerization product is reduced, and if the polymerization time is out of the above range, a low molecular weight polymer is produced and the molecular weight distribution value of the polymerization product is increased.

이때, 중합촉매의 농도는 이소부텐 단량체 중량에 대해 1/500∼1/1000이고, 조촉매의 농도는 1/100∼1/250인 것이 바람직하다. 만일, 중합촉매의 농도 및 조촉매의 농도가 상기 범위를 벗어나면 중합수율이 떨어지는 문제가 발생된다.At this time, the concentration of the polymerization catalyst is preferably 1/500 to 1/1000 based on the weight of the isobutene monomer, and the concentration of the cocatalyst is preferably 1/100 to 1/250. If the concentration of the polymerization catalyst and the concentration of the cocatalyst are out of the above range, there is a problem that the polymerization yield falls.

바람직한 조촉매 농도는 주촉매에 대해 1∼10배 농도인 것이다.Preferred promoter concentrations are those that are 1-10 times the concentration of the main catalyst.

중합반응의 종결은 차가운 메탄올 용액을 상기 반응용액에 적하하여 잔존 촉매를 제거하는 과정을 통해 이루어진다. 메탄올 용액을 반응용액에 적하하여 중합체를 침전시키고, 침전된 중합체를 메탄올로 세척한 다음 여과 건조하여 최종 중합체를 얻는다.Termination of the polymerization reaction is carried out by dropping a cold methanol solution into the reaction solution to remove the remaining catalyst. A methanol solution is added dropwise to the reaction solution to precipitate the polymer. The precipitated polymer is washed with methanol and then filtered and dried to obtain the final polymer.

이와같이 전이금속 촉매와 메틸알루미녹산 조촉매를 이용하여 폴리이소부텐을 중합할 경우 그 수율은 40∼100%로서 고수율로 폴리이소부텐을 중합할 수 있다.As described above, when the polyisobutene is polymerized using the transition metal catalyst and the methylaluminoxane cocatalyst, the yield is 40 to 100% and the polyisobutene can be polymerized in a high yield.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1Example 1

실험에 사용되는 모든 시약들은 정제 후 질소 분위기 하에서 보관하였다. 반응은 시간에 따라 3회에 걸쳐 실험하였다. 100㎖의 반응기 내부를 2시간 감압처리한 후 아르곤 가스로 충분히 치환시켰다.All reagents used in the experiments were stored under nitrogen atmosphere after purification. The reaction was tested three times over time. The inside of the reactor of 100 ml was depressurized for 2 hours and then sufficiently substituted with argon gas.

반응기에 정제된 톨루엔 20㎖와 알루미나 컬럼을 통과한 이소부텐 5.64g(100mmol)을 주입한 후, 온도를 -20℃로 낮추었다.After injecting 20 mL of purified toluene and 5.64 g (100 mmol) of isobutene through the alumina column, the temperature was lowered to -20 ° C.

이와는 별도로 티타늄(IV) 클로라이드 0.10㎖(0.9mmol)와 티타늄(IV) 이소프로폭사이드 0.08㎖(0.3mmol)을 디클로로메탄에서 2시간 동안 반응시킨 후, 여기에 조촉매로 메틸알루미녹산 1.84㎖(0.48mmol)를 혼합하였다. 이것을 -20℃로 냉각시켰다.Separately, 0.10 mL (0.9 mmol) of titanium (IV) chloride and 0.08 mL (0.3 mmol) of titanium (IV) isopropoxide were reacted in dichloromethane for 2 hours, and then 1.84 mL of methylaluminoxane was used as a promoter. 0.48 mmol) was mixed. It was cooled to -20 ° C.

그리고, 상기 촉매를 반응기에 투입하고 -20℃에서 120분 반응시켰다.The catalyst was added to a reactor and reacted at -20 ° C for 120 minutes.

반응 종결은 메탄올 용액 1㎖를 반응용액에 적하하여 수행하였고, 이때 미반응물은 반응용액을 대기 하에서 교반시켜 제거하였다. 침전된 중합체를 메탄올로 수회 세척한 다음 여과하여 건조하였다.The reaction was terminated by dropwise adding 1 ml of methanol solution to the reaction solution, wherein unreacted material was removed by stirring the reaction solution under air. The precipitated polymer was washed several times with methanol and then filtered and dried.

실시예 2∼3Examples 2 to 3

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 메틸알루미녹산을 각각 0.46㎖(0.12mmol), 0.92㎖(0.24mmol) 사용하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1 except that 0.46 mL (0.12 mmol) and 0.92 mL (0.24 mmol) of methylaluminoxane were used.

실시예 4∼6Examples 4-6

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 중합반응 온도를 각각 -30℃, -40℃, -50℃로 하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1 except that the polymerization temperature was -30 ° C, -40 ° C, and -50 ° C, respectively.

실시예 7Example 7

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 촉매로서 티타늄(IV)클로라이드 0.013㎖(0.12mmol)를 사용하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1, except that 0.013 ml (0.12 mmol) of titanium (IV) chloride was used as a catalyst.

실시예 8Example 8

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 촉매로서 염화주석 0.033㎖(0.12mmol)를 사용하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1, except that 0.033 ml (0.12 mmol) of tin chloride was used as a catalyst.

실시예 9Example 9

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 촉매로서 큐밀클로라이드 0.020㎖(0.12mmol)를 사용하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1, except that 0.020 mL (0.12 mmol) of cumyl chloride was used as a catalyst.

실시예 10Example 10

상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 촉매로서 t-부틸클로라이드 0.013㎖(0.12mmol)를 사용하였다.Polyisobutene polymerization was carried out in the same manner as in Example 1, except that 0.013 ml (0.12 mmol) of t-butyl chloride was used as a catalyst.

비교예 1∼3Comparative Examples 1 to 3

비교예는 상기 실시예 1과 동일한 방법으로 폴리이소부텐 중합을 실시하되, 다만 조촉매로서 에틸알루미늄디클로라이드 0.054㎖(0.48mmol)를 사용하였다. 한편, 각각 -20, -50, -80℃에서 중합한 것이다.In Comparative Example, polyisobutene polymerization was carried out in the same manner as in Example 1, except that 0.054 ml (0.48 mmol) of ethyl aluminum dichloride was used as a promoter. In addition, it superposed | polymerized at -20, -50, -80 degreeC, respectively.

상기 실시예 및 비교예에 따라 폴리이소부텐을 중합한 결과는 다음 표 1에 나타낸 바와 같다.The result of polymerizing polyisobutene according to the above Examples and Comparative Examples is as shown in Table 1 below.

수 율(%)Yield (%) 수평균분자량(Mn)Number average molecular weight (Mn) 중량평균분자량(Mw)Weight average molecular weight (Mw) 분자량분포(Mw/Mn)Molecular Weight Distribution (Mw / Mn) 실시예Example 1One 67.567.5 157,000157,000 325,000325,000 2.082.08 22 32.532.5 125,000125,000 318,000318,000 2.542.54 33 10.810.8 103,000103,000 242,000242,000 2.352.35 44 72.072.0 237,000237,000 494,000494,000 2.092.09 55 85.285.2 296,000296,000 637,000637,000 2.152.15 66 89.589.5 379,000379,000 960,000960,000 2.532.53 77 94.594.5 71,00071,000 156,000156,000 2.202.20 88 100.0100.0 17,00017,000 96,00096,000 5.655.65 99 32.032.0 74,00074,000 145,000145,000 1.961.96 1010 46.046.0 91,00091,000 178,000178,000 1.951.95 비교예Comparative example 1One 45.545.5 24,00024,000 82,00082,000 3.443.44 22 64.364.3 63,00063,000 304,000304,000 4.824.82 33 86.686.6 108,000108,000 576,000576,000 5.335.33

상기 표의 결과로부터 본 발명에 따른 티타늄트라이클로로이소프로폭사이드-메틸알루미녹산 촉매계에서 메틸알루미녹산의 양은 주촉매인 전이금속 화합물의 1∼4배인 경우가 가장 효과적이었으며, 중합온도가 내려감에 따라 분자량이 더 큰 중합물이 생성됨을 알 수 있다. 한편, 주촉매로서 3급 할로겐 원자가 존재하는 유기화합물을 사용한 경우(실시예 9,10) 고분자량의 폴리이소부텐이 형성되지만, 전이금속 화합물이 주촉매로 사용된 실시예 7, 8에서 전환율이 100%에 가까운 효과를 나타내었다. 예를 들어, 에틸알루미늄디클로라이드를 조촉매로 사용한 경우(비교예1, 2, 3), 20만 정도의 분자량을 얻기 위해서는 반응온도가 -80℃까지 저온일 필요가 있다. 결과적으로, 본 발명에서와 같이 전이금속 화합물 촉매와 체적이 큰 메틸알루미녹산 조촉매를 촉매계로 사용한 경우, 기존에 사용되어 온 저분자인 알킬알루미늄클로라이드를 조촉매로 하였을 때(비교예 1∼3)보다 중합 온도를 약 30∼50℃ 정도 상승시키는 효과를 가져왔을 뿐 아니라, 분자량 분포가 좁은 것으로 볼 때 분자량이 비교적 일정한 폴리이소부텐이 얻어짐을 알 수 있다.From the results of the above table, the amount of methylaluminoxane in the titanium trichloroisopropoxide-methylaluminoxane catalyst system according to the present invention was most effective when it was 1 to 4 times of the transition metal compound as the main catalyst, and the molecular weight was lowered as the polymerization temperature was lowered. It can be seen that this larger polymer is produced. On the other hand, when an organic compound having a tertiary halogen atom is used as the main catalyst (Examples 9 and 10), a high molecular weight polyisobutene is formed, but the conversion rate in Examples 7 and 8 in which the transition metal compound is used as the main catalyst is The effect was close to 100%. For example, when ethyl aluminum dichloride is used as a promoter (Comparative Examples 1, 2, 3), in order to obtain a molecular weight of about 200,000, the reaction temperature needs to be low to -80 ° C. As a result, when the transition metal compound catalyst and the large-volume methylaluminoxane cocatalyst were used as the catalyst system as in the present invention, when a low-molecular alkylaluminum chloride used as a cocatalyst was used (Comparative Examples 1 to 3). In addition to the effect of raising the polymerization temperature by about 30 to 50 ° C., it can be seen that polyisobutene having a relatively constant molecular weight is obtained in view of the narrow molecular weight distribution.

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 전이금속 화합물이나 3급 할로겐 원자를 함유한 유기 화합물을 주촉매로 하고, 메틸알루미녹산을 조촉매로 이용하여 폴리이소부텐을 제조하는 경우 종래와 동일 또는 유사한 물성을 갖는 폴리이소부텐을 얻을 수 있으면서도 종래에 비하여 높은 반응온도에서 중합을 수행할 수 있으므로 극저온을 유지하기 위한 과다한 공정 비용이 절감되며, 염화메틸과 같은 극성용매를 사용하지 않고 톨루엔과 같은 일반 유기용매를 중합용매로 사용하므로 유해성을 줄일 수 있는 효과 등이 있다.As described in detail above, when the polyisobutene is prepared using a transition metal compound or an organic compound containing a tertiary halogen atom as a main catalyst and methylaluminoxane as a promoter according to the present invention, or While polyisobutene having similar physical properties can be obtained, the polymerization can be performed at a higher reaction temperature than in the prior art, thereby reducing the excessive process cost for maintaining cryogenic temperature, and without using a polar solvent such as methyl chloride, and general toluene. Since the organic solvent is used as the polymerization solvent, there is an effect to reduce the harmfulness.

Claims (3)

할로겐 원자를 함유하지 않는 중합용매에 이소부텐을 녹이는 단계;Dissolving isobutene in a polymerization solvent containing no halogen atoms; 이와는 별도로 다음 화학식 1로 표시되는 전이금속 화합물 또는 다음 화학식 2로 표시되는 유기 화합물을 다음 화학식 3으로 표시되는 메틸알루미녹산으로 일정 시간 활성화시켜 촉매계를 제조하는 단계;Apart from this, a catalyst system is prepared by activating a transition metal compound represented by Chemical Formula 1 or an organic compound represented by Chemical Formula 2 with methylaluminoxane represented by Chemical Formula 3 for a predetermined time; 상기 이소부텐 용액에 활성화시킨 촉매계를 투입하여 -50∼-10℃에서 30∼360분 동안 반응시키는 중합공정;A polymerization process of adding the activated catalyst system to the isobutene solution and reacting at -50 to -10 ° C for 30 to 360 minutes; 상기 반응용액에 메탄올을 적하하여 반응을 종결하는 공정; 및 침전된 중합체를 메탄올로 수회 세척한 다음 여과 건조하여 최종 중합체를 얻는 공정으로 이루어진 전이금속 화합물-메틸알루미녹산 촉매계를 이용한 폴리이소부텐의 제조방법.Methanol is added to the reaction solution to terminate the reaction; And a method of preparing polyisobutene using a transition metal compound-methylaluminoxane catalyst system, wherein the precipitated polymer is washed several times with methanol and then filtered and dried to obtain a final polymer. 화학식 1Formula 1 상기 식에서, M는 티타늄, 바나듐 또는 주석이고,Wherein M is titanium, vanadium or tin, X는 염소 원자 또는 브롬 원자이며,X is a chlorine atom or bromine atom, n은 1∼4의 정수이고,n is an integer of 1 to 4, R은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 옥틸, 펜틸 및 퍼플루오로페닐기 중에서 선택된 것이다.R is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, octyl, pentyl and perfluorophenyl groups. 화학식 2Formula 2 R1, R2및 R3는 서로 같거나 다른 것으로서, 탄소원자수 1∼10의 알킬기 또는 페닐기이고,R 1 , R 2 and R 3 are the same as or different from each other, an alkyl group having 1 to 10 carbon atoms or a phenyl group, X는 상기와 같다.X is as above. 화학식 3Formula 3 상기 식에서, m은 3∼40의 정수이다.Wherein m is an integer of 3 to 40. 제 1 항에 있어서, 화학식 1로 표시되는 주촉매는 이소부텐 단량체에 대해 1/500∼1/2,000 농도가 되도록 하고, 화학식 2로 표시되는 조촉매는 주촉매에 대해서 1∼10배 농도로 첨가하는 것을 특징으로 하는 전이금속 화합물-메틸알루미녹산 촉매계를 이용한 폴리이소부텐의 제조방법.The method of claim 1, wherein the main catalyst represented by the formula (1) is 1/500 to 1 / 2,000 concentration with respect to the isobutene monomer, and the cocatalyst represented by the formula (2) is added at a concentration of 1 to 10 times the main catalyst Method for producing a polyisobutene using a transition metal compound-methyl aluminoxane catalyst system, characterized in that. 제 1 항에 있어서, 할로겐 원자를 함유하지 않는 중합용매로는 톨루엔, 시클로헥산 및 헥산 중에서 선택하여 단독 또는 혼합 사용하는 것을 특징으로 하는 전이금속 화합물-메틸알루미녹산 촉매계를 이용한 폴리이소부텐의 제조방법.The method for producing polyisobutene using a transition metal compound-methylaluminoxane catalyst system according to claim 1, wherein the polymerization solvent containing no halogen atoms is selected from toluene, cyclohexane and hexane and used alone or in combination. .
KR1019980036933A 1998-09-08 1998-09-08 Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system KR100279498B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980036933A KR100279498B1 (en) 1998-09-08 1998-09-08 Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980036933A KR100279498B1 (en) 1998-09-08 1998-09-08 Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system

Publications (2)

Publication Number Publication Date
KR20000019027A KR20000019027A (en) 2000-04-06
KR100279498B1 true KR100279498B1 (en) 2001-02-01

Family

ID=19549897

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980036933A KR100279498B1 (en) 1998-09-08 1998-09-08 Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system

Country Status (1)

Country Link
KR (1) KR100279498B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384811B1 (en) * 2000-07-13 2003-05-22 금호석유화학 주식회사 Preparation of polyisobutene by phosphinimide group 4 metallocene compound
US11370855B2 (en) 2018-07-27 2022-06-28 Lg Chem, Ltd. Method for preparing butene oligomer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306113A (en) * 1993-04-21 1994-11-01 Asahi Chem Ind Co Ltd Method for polymerization of conjugated diene
JPH0748408A (en) * 1993-08-03 1995-02-21 Mitsui Toatsu Chem Inc Polymerization of olefin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306113A (en) * 1993-04-21 1994-11-01 Asahi Chem Ind Co Ltd Method for polymerization of conjugated diene
JPH0748408A (en) * 1993-08-03 1995-02-21 Mitsui Toatsu Chem Inc Polymerization of olefin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384811B1 (en) * 2000-07-13 2003-05-22 금호석유화학 주식회사 Preparation of polyisobutene by phosphinimide group 4 metallocene compound
US11370855B2 (en) 2018-07-27 2022-06-28 Lg Chem, Ltd. Method for preparing butene oligomer

Also Published As

Publication number Publication date
KR20000019027A (en) 2000-04-06

Similar Documents

Publication Publication Date Title
EP0636151B1 (en) Tris(pentafluorophenyl)borane complexes and catalysts derived therefrom
KR100197327B1 (en) Syndiotactic polypropylene
US4728706A (en) Titanium, zirconium- and hafnium containing initiators in the polymerization of acrylic monomers to "living" polymers
EA021590B1 (en) Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins
US11732069B2 (en) Polypropylene and method for preparing the same
AU773920B2 (en) Method for polymerising olefins
JP2001270909A (en) Ziegler-natta catalyst for polymerizing olefine
EP4201970A1 (en) Catalyst containing hybrid transition metal compound, olefin-based polymer produced by using same, and methods for producing catalyst and polymer
SU1614750A3 (en) Method of producing solid catalytic component and catalyst for polimerization of propylene
CN114761448B (en) Process for producing hybrid catalyst for polymerizing olefin, and olefin polymer
KR100279498B1 (en) Method for preparing polyisobutene using transition metal compound-methylaluminoxane catalyst system
CZ281394B6 (en) Polymerization process of alpha olefins
Parada et al. Study of the MgCl2 recrystallization conditions on Ziegler-Natta catalyst properties
EP4050013A1 (en) Ligand compound, transition metal compound, and catalyst composition comprising same
EP3892624A1 (en) Ligand compound, transition metal compound, and catalyst composition comprising same
KR100287962B1 (en) Method for producing polyisobutene using transition metal-phenolic compound-methylaluminoxane catalyst system
EP4112650A1 (en) Mixed catalyst composition, catalyst comprising same, and methods for preparing same
CN113164932A (en) Process for preparing cocatalyst compounds using anhydrous hydrocarbon solvents
US6252021B1 (en) Process for producing polyisobutene using a catalytic system comprising transition metal-benzene derivative compound-methylaluminoxane
Hagihara et al. Stereospecificity of propene polymerization with achiral titanocene‐based catalysts
KR100302824B1 (en) Polymerization method of olefin
EP0325174B1 (en) Process for controlling the molecular weight of poly(trialkylsilylpropyne) polymers
KR100384811B1 (en) Preparation of polyisobutene by phosphinimide group 4 metallocene compound
RU2234517C1 (en) Method for ethylene polymerization
WO2002016373A1 (en) Late transition metal complexes, their use as catalysts and polymers therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee