KR100275654B1 - 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템 - Google Patents

경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템 Download PDF

Info

Publication number
KR100275654B1
KR100275654B1 KR1019980016159A KR19980016159A KR100275654B1 KR 100275654 B1 KR100275654 B1 KR 100275654B1 KR 1019980016159 A KR1019980016159 A KR 1019980016159A KR 19980016159 A KR19980016159 A KR 19980016159A KR 100275654 B1 KR100275654 B1 KR 100275654B1
Authority
KR
South Korea
Prior art keywords
optical fiber
fiber grating
demodulator
fbg
light
Prior art date
Application number
KR1019980016159A
Other languages
English (en)
Other versions
KR19990084424A (ko
Inventor
강성철
김세윤
이상배
최상삼
이병호
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019980016159A priority Critical patent/KR100275654B1/ko
Publication of KR19990084424A publication Critical patent/KR19990084424A/ko
Application granted granted Critical
Publication of KR100275654B1 publication Critical patent/KR100275654B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

본 발명은 고정밀도의 측정이 가능한 광섬유 격자 센서 시스템을 개시되어 있다. 본 발명의 시스템은, 광대역의 광을 출사하기 위한 광대역원, 광대역원의 광을 집광시키기 위한 광결합기, 광결합기로부터의 광이 입사되어 소정 파장의 협대역 광만을 반사시키는 광섬유 격자 센서, 경사진 광섬유 격자를 가지고 있으며 광섬유 격자 센서로부터 반사된 반사광을 PZT 구동 전압에 의해 복조하는 광섬유 격자 복조기, 및 광섬유 복조기로부터 복조된 신호를 검출하기 위한 광검출기를 포함한다.

Description

경사진 광섬유 격자 복조기를 이용한 격자 스트레인 센서 시스템
본 발명은 광섬유 격자 스트레인 센서 시스템에 관한 것으로, 특히 경사진 광섬유 격자를 이용하여 정밀도를 개선한 광섬유 격자 스트레인 센서 시스템에 관한 것이다.
광섬유 격자 (Fiber Bragg Grating; FBG) 센서는 스트레인 또는 온도 등의 측정된 물리량을 파장으로 인코딩하므로써 파장 다중 분할 방식의 측정이 가능하기 때문에, 광섬유 센서 분야에 널리 사용되어 왔다. 이에 따라 최근에는 광섬유 격자 센서 시스템의 성능을 향상시키기 위해서 고해상도 및 고속화가 가능한 파장 변이 측정법을 널리 연구하고 있는 추세이다.
이러한 종래의 파장 변이 측정 시스템중 하나를 도 1에서 도시하고 있는데, 그 원리와 구조가 간단하여 신호 처리에 유용하게 사용되고 있다. 도 1을 참조하여 종래의 파장 변이 측정을 위한 구성 및 동작을 간단히 설명한다.
도 1에서, 참조 부호 5는 광대역원(BBS)을, 4는 광대역원(5)으로부터의 광대역의 광을 집광하는 광결합기를, 2는 광결합기(4)로부터의 광이 입사되는 광섬유 격자 센서를, 6은 광섬유 격자 센서(2)로부터 반사된 광을 복조하는 복조기를 나타낸다. 도 1에서 도시한 바와 같이 상기 소자들은 광섬유(1)에 의해 접속되어 있다.
이러한 구성의 동작을 설명한다.
광대역원(BBS; 5)으로부터 출사된 광대역의 광은 광 결합기(4)에 의해 집광되어, 광섬유 격자 센서(2)에 입사된다. 이 광대역의 입사광은 광 섬유 격자 센서(2)의 파장에 해당하는 협대역 반사광만이 반사되어 광결합기(4) 쪽으로 되돌아가게 된다. 이 반사광은 50:50 광 결합기(4)에 의하여 노치형의 협대역 투과 스펙트럼을 가지는 광섬유 격자 복조기(6)로 향하게 되고, 이곳에서 복조된다. 이 복조된 신호는 광검출기(8)에 의해 측정된 후, 오실로스코프(9)를 통해 검출되게 된다.
이와 같이 오실로스코프를 통한 파장 변이의 검출로 스트레인이나 온도 등의 물리량을 측정할 수 있게 된다. 이러한 측정시, 정밀도를 높이기 위해서는, 복조기 광섬유 격자의 PZT 구동 전압에 따른 파장 변화를 정밀하게 모니터링하는 것이 필수적이다. 그러나, PZT 구동 전압의 히스테리시스, 광섬유 격자의 인장에 필요한 스트레처의 피로도, 및 광섬유 격자의 고정단의 미끄러짐 등으로 인하여 PZT 구동 전압에 따른 파장 변화를 정밀하게 모니터링하기가 용이하지 않다.
더욱이, 복조기 광섬유 격자의 온도 변화에 따라 광섬유 격자의 중심 파장이 변하게 되므로, 파장 변이 측정에 오차가 생기게 된다. 이를 방지하기 위해서는 광섬유 격자 복조기의 온도를 안정화하기 위한 안정화 장치가 필요하게 되어, 구성상 복잡하며 비용이 상승하게 된다는 문제점이 있다.
본 발명의 목적은 상술한 바와 같은 문제를 해결하기 위한 것으로, 광섬유 격자 복조기의 광섬유 격자를 경사지게 하여 PZT 구동 전압의 특성에 따른 파장 변화를 용이하게 검출함으로써, 고정밀도의 측정이 가능한 광섬유 격자 스트레인 센서 시스템을 제공하는 데에 있다.
본 발명의 다른 목적은 광섬유 격자 복조기의 광섬유 격자를 경사지게 하고 두 개의 광섬유 격자로 구성된 이중 헤드 센서를 사용함으로써, 광섬유 격자 센서와 광섬유 격자 복조기의 온도 변화에 상관 없이 스트레인을 정밀도 높게 측정할 수 있는 광섬유 격자 스트레인 센서 시스템을 제공하는 것이다.
이를 위한 본 발명의 광섬유 격자 스트레인 센서 시스템은 광대역의 광을 출사하기 위한 광대역원, 광대역원의 광을 집광시키기 위한 광결합기, 광결합기로부터의 광이 입사되어 소정 파장의 협대역 광만을 반사시키는 광섬유 격자 센서, 경사진 광섬유 격자를 가지고 있으며 광섬유 격자 센서로부터 반사된 반사광을 PZT 구동 전압에 의해 복조하는 광섬유 격자 복조기, 및 광섬유 복조기로부터 복조된 신호를 검출하기 위한 광검출기를 포함하고 있다.
바람직하게는, 광섬유 격자 복조기는 두 개 이상의 격자를 사용함으로써, 격자 사이의 중심 파장의 변화량으로 파장 변이를 측정한다.
또한 바람직하게는, 광섬유 격자 센서는 두 개의 광섬유 격자로 구성된 이중 헤드로 구성되어 있다.
도 1은 광섬유 격자 복조기를 이용한 종래 기술의 시스템 구성도.
도 2는 본 발명의 제1 실시예에 따라 경사진 광섬유 격자 복조기를 이용한 광섬유 격자 스트레인 센서의 시스템 구성도.
도 3은 도 2에 나타낸 시스템의 파형도로서, (a)는 광검출기의 출력 신호의 파형도; (b)는 PZT 구동 전압 신호를 나타내는 파형도.
도 4는 본 발명의 제2 실시예에 따라 이중 헤드 센서와 경사진 광섬유 격자 복조기를 이용한 광섬유 격자 스트레인 센서의 시스템 구성도.
도 5는 도 4에 나타낸 시스템에서의 광검출기의 출력 신호를 나타내는 파형도로서: (a)는 광섬유 격자 센서에 스트레인이 인가되지 않은 경우의 광검출기의 출력 신호를 나타내는 파형도; (b)는 경사진 광섬유 격자 복조기의 PZT 구동 전압 신호를 나타내는 파형도; (c)는 실온 상태에서 광섬유 격자 센서에 1000 μ스트레인이 인가될 때의 광 검출기의 출력 신호를 나타내는 파형도; (d)는 복조기의 온도가 70℃인 상태에서 광섬유 격자 센서에 1000 μ스트레인이 인가될 때의 광 검출기의 출력 신호를 나타내는 파형도.
<도면의 주요 부분에 대한 부호의 설명>
1 : 광섬유
2 : 광섬유 격자 헤드
4 : 광 결합기
6 : 복조기
8 : 광검출기
9 : 오실로스코프
12 : 광섬유 격자 이중 헤드
16 : 광섬유 격자 복조기
본 발명의 실시 형태를 도면을 참조하여 이하 설명한다.
〈실시예 1〉
도 2는 본 발명의 제1 실시예에 따른 경사진 광섬유 격자 복조기를 이용한 광섬유 격자 스트레인 센서 시스템의 구성도를 나타낸다. 도 2에서 나타낸 광섬유 격자 스트레인 센서 시스템은, 광섬유 격자 복조기(16)의 광섬유 격자를 경사지게 하여 사용하고 있다는 것을 제외하고는, 도 1에서 나타낸 종래의 광섬유 격자 센서 시스템의 구조와 유사하다.
따라서, 본 발명의 제1 실시예에 따른 광섬유 격자 스트레인 센서 시스템은 종래 시스템과 동일하게 동작하게 된다. 즉, 광대역원(BBS; 5)으로부터 출사된 광대역의 광은 광섬유(1)를 통해 광 결합기(4)에 의해 집광된다. 이 집광된 광대역의 광은 광섬유(1)를 통해 광섬유 격자 센서(2)에 입사되어, 광 섬유 격자 센서(2)의 파장에 해당하는 협대역 반사광만이 반사되어 광결합기(4) 쪽으로 되돌아가게 된다. 이 반사광은 50:50 광 결합기(4)에 의하여 광섬유(1)를 통해 노치형의 협대역 투과 스펙트럼을 가지는 광섬유 격자 복조기(16)에 입력되게 된다. 이로써 반사광은 광섬유 격자 복조기(16)를 통해 복조되고, 이 복조된 신호는 광검출기(8)에 의해 측정된 후, 오실로스코프(9)를 통해 검출되게 된다.
도 3은 도 2에 나타낸 광섬유 격자 스트레인 센서 시스템의 파형도로서, (a)는 오실로스코프(9)를 통해 검출된 출력 신호 파형도이고, (b)는 복조기(16)의 PZT 구동 전압 신호를 나타내는 파형도이다.
본 실시예에 따른 광섬유 격자 복조기(16)의 광섬유 격자는 입사파가 코어 내에서 반사하는 주 모드와 클래딩으로 손실되게 반사하는 사이드(ghost) 모드의 두 모드를 갖고 있다. 이 두 모드 사이의 간격은 광섬유 격자 복조기(16)를 통과한 투과 스펙트럼을 통해 관찰하여 보면, 2.15㎚의 값을 갖는다. 이 값은 격자에 가해지는 온도와 스트레인에 상관 없이 일정하게 나타난다.
이와 같이 간격이 일정한 복조기 격자의 두 모드의 파장은 도 3의 (b)에서 도시한 램프 신호에 의해 구동되는 PZT 구동 전압 신호에 의해 선형적으로 변화된다. 이로써, 도 3의 (a)에서 나타낸 바와 같이, 격자 센서로부터의 반사광의 파장은 램프 신호의 한 주기 내에서 복조기의 경사진 광섬유 격자의 두 모드의 파장과 각각 일치하게 된다. 즉, 격자 센서로부터의 반사광은 광검출기에 도달하기 전에 반사되므로 오실로스코프 상에는 두 개의 피크가 나타나게 되는데, 두 피크 사이의 간격의 값은 바로 상술한 격자 복조기의 두 모드 사이의 간격인 2.15㎚의 절대값과 동일하게 나타난다.
따라서, 본 실시예의 시스템에 의하면, 시스템 사용중에 두 피크의 간격인 2.15㎚ 값에 상대적인 PZT 구동 전압의 차이를 검출함으로써, PZT 구동 전압에 대해 매우 민감한 PZT 구동 전압-파장 특성의 변화를 검출할 수 있다. 이에 의하면, PZT 구동 전압에 따른 파장 변화의 정밀한 모니터링이 가능하게 되고, 이러한 정밀한 파장 변이의 검출에 의하여 스트레인이나 온도 등의 물리량을 고정밀도로 측정할 수 있다.
〈실시예 2〉
도 4는 본 발명의 제2 실시예에 따라 이중 헤드 광섬유 격자 센서와 경사진 광섬유 격자 복조기를 이용한 광섬유 격자 스트레인 센서 시스템의 구성도를 나타낸다.
도 4에서 나타낸 본 발명의 제2 실시예에 따른 광섬유 격자 스트레인 센서 시스템에서는, 광섬유 격자 복조기(16)의 광섬유 복조기를 제1 실시예와 마찬가지로 경사지게 하고, 센서는 이중 헤드를 구비하도록 하여 구성한다.
본 발명의 제2 실시예에 따른 동작은, 광대역원(5)으로부터 출사된 광대역의 광은 광섬유(1)를 통해 광결합기(4)에 의해 집광되고 또한 광섬유(1)를 통해 이중 헤드 센서(12)에 입사된다. 입사된 광은 이중 헤드 센서(12)에 의해 감지되는 스트레인에 따라 하나 또는 두 개의 협대역 광으로 인코딩되어 광결합기(4)를 향해 반사된다. 이 협대역의 반사광은 광결합기(4)에 의해 경사진 광섬유 격자 복조기(16)에 입력되어 복조되게 된다.
본 실시예에 따른 이중 헤드 센서(12)는 스트레인이 가해지지 않을 때 동일한 중심 파장을 갖는 두 개의 광섬유 격자로 구성되어 있다. 두 광섬유 격자 중 하나의 격자는 유리관에 고정되어 있어서 온도에 의해서만 중심 파장이 변하게 된다. 반면에 또 다른 하나의 격자는 온도와 스트레인에 따라 중심 파장이 변한다. 따라서, 두 격자의 중심 파장의 변화량은 온도에 따라서는 동일하고, 스트레인 인가 여부에 따라서 변하게 된다.
이하에서는, 본 실시예의 센서 시스템의 작용에 대해서 스트레인이 인가되는 경우와 인가되지 않는 경우로 구별하여 상세히 설명한다.
도 5는 도 4에서 나타낸 광섬유 격자 스트레인 센서 시스템에서의 광검출기(8)의 출력 신호를 나타내고 있다.
먼저, 도 5의 (a)는 스트레인이 가해지지 않은 경우 광검출기에서 출력되는 출력 신호를 나타내고 있다. 이 경우, 광 섬유 격자 이중 헤드 센서에 있어서는 두 격자의 중심 파장이 일치하게 되어 센서로부터의 반사광은 한 개의 협대역 신호가 되고, 이 신호가 복조기 및 광검출기를 통과하여 오실로스코프(9)에서 측정되면, 간격 △T0를 가지는 두 개의 노치가 나타남을 알 수 있다. 이 노치간의 간격은 2.15㎚를 나타낸다. 이 2.15㎚ 값은 이중 헤드 센서의 두 격자가 동일한 중심 파장을 갖고 있으므로, 항상 일정하게 유지된다.
다음에, 도 5의 (c)는 스트레인이 가해진 경우로서, 실온 상태에서 광섬유 격자 센서에 1000 μ스트레인이 인가될 때의 광 검출기의 출력 신호를 나타내는 파형도를 나타내고 있다.
이중 헤드 센서(12)의 두 격자 중 하나의 격자는 상술한 바와 같이 그 중심 파장이 스트레인에 따라 변하도록 구성되어 있으므로, 스트레인 인가시에는 두 격자의 중심 파장이 일치하지 않게 된다. 이러한 두 격자의 중심 파장이 불일치함에 따라, 도 5의 (c)에서 나타낸 바와 같이, △T의 간격이 생기게 되고, 결과적으로 PZT 구동 램프 신호의 한 주기 내에는 네 개의 노치가 나타나게 된다.
이 때, △T는 스트레인에 따른 두 격자의 중심 파장의 차이에 비례하여 변하게 된다. 따라서, 역으로 중심 파장 간의 차이는, △T0에 대한 △T에 비례하여 변하게 된다. 따라서, 두 격자의 중심 파장의 차이는 다음의 수학식 1로 나타낼 수가 있다.
두 격자 간의 중심 파장의 차이 = 2.15△T/△T0(㎚)
스트레인이 가해지지 않을 때를 수학식 1과 관련하여 고려하게 되면, 두 노치간의 간격 △T0은 2.15 (㎚)이므로, 이를 수학식 1에 대입하면, 중심 파장의 차이는 △T (㎚)가 된다. 여기서 △T는 스트레인이 가해지지 않을 때에는 제로이므로, 중심 파장의 차이도 제로가 됨을 알 수 있다.
도 5의 (d)는 복조기에 70℃의 열이 가해진 상태에서 광섬유 격자 센서에 1000 μ스트레인이 인가될 때의 광 검출기의 출력 신호를 나타내는 파형도를 나타내고 있다.
이 도면을 통해 알 수 있는 바와 같이, 동일한 스트레인이 인가되는 경우에는 복조기의 온도가 상승되는 경우에도, 두 격자의 중심 파장의 차이는 △T로 동일하게 유지됨을 알 수 있을 것이다. 마찬가지로, 센서에 어떤 열이 가해지더라고 △T는 역시 동일하게 유지된다.
이와 같이, 이중 헤드 센서의 두 격자는 서로 온도에 따른 중심 파장의 변화량이 동일하기 때문에, 두 격자의 중심 파장은 온도에 상관없이 일정한 값이 된다. 복조기의 격자도 또한 실시예 1에서 설명한 바와 같이 온도 변화에 따라 변하지 않기 때문에, 센서부와 복조부 양 쪽의 온도 변화에 무관한 스트레인 측정 시스템을 제공할 수 있다. 따라서, 두 격자 간의 중심 파장의 차이값을 구함으로써 온도 변화에 상관 없이 어떤 스트레인이 가해졌는지를 측정할 수가 있다.
본 발명에 따른 광섬유 격자 스트레인 센서 시스템에서는, 복조기의 광섬유 격자를 경사지게 구성함으로써, PZT 구동 램프 신호에 대한 출력 신호의 파장 변이를 정밀하게 검출할 수 있으므로, PZT 구동 전압-파장 특성에 의한 오류를 쉽게 검출하여, 출력 신호를 정밀도 높게 측정할 수가 있다.
또한, 본 발명에 따른 광섬유 격자 스트레인 센서 시스템에 의하면, 복조기의 광섬유 격자를 경사지게 구성하고 센서 헤드를 이중 헤드로 구성함으로써, 광섬유 격자 이중 센서와 광섬유 격자 복조기 양쪽의 온도 변화에 상관 없이, 이중 센서의 두 격자 간의 중심 파장의 차이값을 구함으로서 어떤 스트레인이 가해졌는지를 정밀도 높게 측정할 수 있다.

Claims (3)

  1. 광섬유 격자 스트레인 센서 시스템에 있어서,
    광대역의 광을 출사하기 위한 광대역원;
    상기 광대역원의 광을 집광시키기 위한 광결합기;
    상기 광결합기로부터의 광이 입사되어 소정 파장의 협대역 광만을 반사시키는 광섬유 격자 센서;
    경사진 광섬유 격자를 가지고 있으며 상기 광섬유 격자 센서로부터 반사된 반사광을 PZT 구동 전압에 의해 복조하는 광섬유 격자 복조기; 및
    상기 광섬유 복조기로부터 복조된 신호를 검출하기 위한 광검출기
    를 포함하는 광섬유 격자 스트레인 센서 시스템.
  2. 제1항에 있어서, 상기 광섬유 격자 복조기는 두 개 이상의 격자를 사용함으로써, 상기 격자들 사이의 중심 파장의 변화량으로 파장 변이를 측정하는 광섬유 격자 스트레인 센서 시스템.
  3. 제1항에 있어서, 상기 광섬유 격자 센서는 두 개의 광섬유 격자로 구성된 이중 헤드로 구성되어 있는 광섬유 격자 스트레인 센서 시스템.
KR1019980016159A 1998-05-06 1998-05-06 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템 KR100275654B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980016159A KR100275654B1 (ko) 1998-05-06 1998-05-06 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980016159A KR100275654B1 (ko) 1998-05-06 1998-05-06 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템

Publications (2)

Publication Number Publication Date
KR19990084424A KR19990084424A (ko) 1999-12-06
KR100275654B1 true KR100275654B1 (ko) 2001-01-15

Family

ID=40749637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980016159A KR100275654B1 (ko) 1998-05-06 1998-05-06 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템

Country Status (1)

Country Link
KR (1) KR100275654B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954368A (zh) * 2014-05-21 2014-07-30 北京遥测技术研究所 一种基于光电探测阵列的窄带光解调系统及其解调方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332833B1 (ko) * 1999-04-23 2002-04-17 윤덕용 투과형 외인성 패브리-페롯 광섬유 센서와, 이를 이용한 변형률 및 온도 측정방법
CN113670372B (zh) * 2021-07-21 2023-07-25 武汉理工大学 一种大容量光栅阵列的双参量准分布式传感方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954368A (zh) * 2014-05-21 2014-07-30 北京遥测技术研究所 一种基于光电探测阵列的窄带光解调系统及其解调方法

Also Published As

Publication number Publication date
KR19990084424A (ko) 1999-12-06

Similar Documents

Publication Publication Date Title
US5760391A (en) Passive optical wavelength analyzer with a passive nonuniform optical grating
US6674928B2 (en) Optical sensing device containing fiber Bragg gratings
US6335524B1 (en) High speed demodulation systems for fiber optic grating sensors
KR100329042B1 (ko) 광섬유 구조물 변형 감지시스템
CA2490041C (en) Wavelength reference system for optical measurements
CA2509187C (en) Optical wavelength determination using multiple measurable features
US7282698B2 (en) System and method for monitoring a well
US7005630B2 (en) Energy-modulating fiber grating sensor
US7302123B2 (en) Dynamic optical waveguide sensor
US20080106745A1 (en) Method and apparatus for high frequency optical sensor interrogation
US6829397B2 (en) Dual fiber bragg grating strain sensor system
US6788418B1 (en) Method and apparatus for interrogation of birefringent FBG sensors
US6822218B2 (en) Method of and apparatus for wavelength detection
US6573489B1 (en) Passive, temperature compensated techniques for tunable filter calibration in bragg-grating interrogation systems
CN114111909A (zh) 一种基于衍射光栅的光纤布拉格光栅温度、应力双参数一体式传感及解调系统
Rajan et al. All-fibre temperature sensor based on macro-bend singlemode fibre loop
KR100275654B1 (ko) 경사진 광섬유 격자 복조기를 이용한격자 스트레인 센서 시스템
CN101526376A (zh) 偏振光纤传感器
Dakin et al. New multiplexing scheme for monitoring fiber optic Bragg grating sensors in the coherence domain
Shlyagin et al. Twin grating-based interferometric fiber sensor
Xie et al. Temperature-compensating multiple fiber Bragg grating strain sensors with a metrological grating
JP3663966B2 (ja) 波長計測装置
CN2611935Y (zh) 温度调谐光纤光栅传感解调器
Protopopov et al. Temperature sensor based on fiber Bragg grating
Kim et al. Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric optical fiber sensors

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060831

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee