KR100272631B1 - Safety operation control apparatus of vehicle - Google Patents

Safety operation control apparatus of vehicle Download PDF

Info

Publication number
KR100272631B1
KR100272631B1 KR1019970061815A KR19970061815A KR100272631B1 KR 100272631 B1 KR100272631 B1 KR 100272631B1 KR 1019970061815 A KR1019970061815 A KR 1019970061815A KR 19970061815 A KR19970061815 A KR 19970061815A KR 100272631 B1 KR100272631 B1 KR 100272631B1
Authority
KR
South Korea
Prior art keywords
vehicle
equation
target
slip angle
wheel
Prior art date
Application number
KR1019970061815A
Other languages
Korean (ko)
Other versions
KR19990041251A (en
Inventor
김건
Original Assignee
밍 루
주식회사만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 밍 루, 주식회사만도 filed Critical 밍 루
Priority to KR1019970061815A priority Critical patent/KR100272631B1/en
Publication of KR19990041251A publication Critical patent/KR19990041251A/en
Application granted granted Critical
Publication of KR100272631B1 publication Critical patent/KR100272631B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/13Failsafe arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE: A safety traveling control device for a vehicle is provided to control brake torque by accurately calculating a target wheel slip rate based on a vehicle dynamics. CONSTITUTION: A controller for a safety traveling consists of an ECU(electronic control unit)(40) and a hydraulic modulator(6) in a vehicle(60). The ECU comprises a road frictional coefficient outputting unit(42); a tire frictional force calculating unit(44) calculating vertical and horizontal frictional force using a road frictional coefficient; a vehicle dynamics observing unit(46) estimating a tire slip angle and a vehicle side slip angle; a target yield rate calculating unit(48); a target vehicle side slip angle calculating unit(50); a target wheel slip calculating unit(52) comparing a vehicle yield rate with a target yield rate and comparing a vehicle side slip angle with a target vehicle side slip angle for indicating brake torque as target wheel slip rates; and a wheel slip controller(54) obtaining a control signal for the hydraulic modulator to estimate the target wheel slip rates with wheel slip rates.

Description

차량의 안전운행 제어 장치Vehicle safety control device

본 발명은 차량의 브레이크 제어에 관한 것으로, 특히 차량동력학에 기초하여 차량측방 슬립각도와 4차륜의 목표 차륜슬립률을 정확하게 계산할 수 있도록 한 차량의 안전운행 제어장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to brake control of a vehicle, and more particularly, to a safe driving control apparatus for a vehicle capable of accurately calculating a vehicle side slip angle and a target wheel slip ratio of four wheels based on vehicle dynamics.

통상, 차량의 제동 및 구동에 관련된 안전운행 제어장치는 차륜잠김 방지장치와 구동력 제어장치가 더욱 발전하여 이루어진 기술이다.In general, a safe driving control device related to braking and driving of a vehicle is a technology in which the wheel locking prevention device and the driving force control device are further developed.

차량에 탑재된 전자제어기는 차량이 안전하게 운행되는지 여부를 판단하여 차량이 주행경로에서 이탈하는 경향을 보일 때, 운전자가 브레이크 페달을 밟지 않더라도 필요에 따라 4 차륜의 브레이크를 독립적으로 구동하여 차량이 운행 경로를 따라 안전하게 주행할 수 있도록 한다.The electronic controller mounted on the vehicle determines whether the vehicle is running safely, and when the vehicle tends to deviate from the driving path, even if the driver does not press the brake pedal, the vehicle independently operates by driving the brakes of the four wheels as needed. Make sure you can drive safely along the route.

도 1은 종래 안전운행 제어장치의 전체적 구성도를 나타낸 것으로, 1-4는 전후좌우의 4차륜, 11-14는 각각의 차륜속도 센서, 21-24는 각 차륜의 드럼 혹은 원판 브레이크이다.1 is a view showing the overall configuration of a conventional safe driving control device, 1-4 is the front and rear left and right four wheels, 11-14 are each wheel speed sensor, 21-24 is a drum or disc brake of each wheel.

6은 브레이크 마스터실린더에 연결된 유압 모듈레이터로, 유압관로 (31-34)를 통하여 드럼 브레이크의 휠실린더 혹은 원판 브레이크의 캘리퍼 내의 유압을 조절함으로써 차륜(1-4)에 미치는 브레이크 토오크를 변화시킨다.6 is a hydraulic modulator connected to the brake master cylinder, which changes the brake torque applied to the wheels 1-4 by adjusting the hydraulic pressure in the wheel cylinder of the drum brake or the caliper of the disc brake via the hydraulic conduit 31-34.

후륜 브레이크(23)(24)는 압력비례밸브 (25)(26)을 경유하여 유압 모듈레이터(6)에 연결된다.The rear wheel brakes 23 and 24 are connected to the hydraulic modulator 6 via pressure proportional valves 25 and 26.

조향핸들 각도센서(8)는 조향핸들(7)의 회전각도를 측정한다. 차량의 무게중심에 설치된 요율센서(9)와 횡가속도센서(10)는 각각 운행중인 차체의 요율(yaw rate)과 횡가속도를 측정한다.The steering wheel angle sensor 8 measures the rotation angle of the steering wheel 7. The yaw rate sensor 9 and the lateral acceleration sensor 10 installed at the center of gravity of the vehicle measure yaw rate and lateral acceleration of the vehicle body in operation, respectively.

5는 브레이크 압력센서로서 마스터 실린더의 유압을 측정한다. 전자제어기(40)는 차륜속도 센서(11-14)와 조향핸들 각도센서(8), 요율센서(9), 횡가속도센서(10), 브레이크 압력센서(5)의 전압신호를 입력으로 받아 차량의 동력학에 관련된 계산을 수행하여 제어신호선(16)을 통하여 유압 모듈레이터(6)를 구동한다.5 is a brake pressure sensor to measure the hydraulic pressure of the master cylinder. The electronic controller 40 receives the voltage signals of the wheel speed sensor 11-14, the steering wheel angle sensor 8, the yaw rate sensor 9, the lateral acceleration sensor 10, and the brake pressure sensor 5 as inputs. The hydraulic modulator 6 is driven through the control signal line 16 by performing calculations relating to the dynamics of the controller.

상기 유압 모듈레이터(6)내에는 다수의 솔레노이드 밸브가 내장되어 휠실린더 혹은 캘리퍼의 유압을 조절하므로, 차량의 운행안전도를 향상시키기 위한 제어신호선(16)은 다수의 전선으로 이루어진다.Since a plurality of solenoid valves are built in the hydraulic modulator 6 to adjust the hydraulic pressure of the wheel cylinder or the caliper, the control signal line 16 for improving the driving safety of the vehicle is composed of a plurality of wires.

차량이 운행시에 운전자가 조향핸들(7)을 회전할 때, 전자제어기(40)는 조향핸들 각도센서(8)입력신호로부터 운전자가 지향한 운행 경로를 계산하며 상기와 같은 여러 센서신호로부터 차량의 실제 운행경로를 계산하여, 운전자 지향 운행경로와 실제 운행경로를 비교하여 그 차이가 적어지도록 4 차륜의 브레이크 토오크를 제어한다.When the driver rotates the steering wheel 7 while the vehicle is running, the electronic controller 40 calculates the driving path directed by the driver from the steering wheel angle sensor 8 input signal and the vehicle from the various sensor signals as described above. By calculating the actual driving route of the driver, the four-wheel brake torque is controlled to compare the driver-oriented driving route with the actual driving route so that the difference becomes smaller.

좀더 상세히 설명하면, 전자제어기(40)는 상기 여러 센서신호로부터 운전자가 지향한 차체의 요율과 측방슬립각도를 계산하며, 이것을 참고하여 목표요율과 목표 측방슬립각도로 취하고, 차량의 과대조향(oversteer) 혹은 과소조향(understeer)이 계산될 시에 캘리퍼의 유압을 조절함으로써 차체의 실제 요율과 측방슬립각도를 제어한다.In more detail, the electronic controller 40 calculates the yaw rate and side slip angle of the vehicle body directed by the driver from the various sensor signals, and takes the target rate and the target side slip angle with reference to this, and oversteer the vehicle. By controlling the caliper's hydraulic pressure when the understeer is calculated, the actual yaw rate and side slip angle of the car body are controlled.

이때, 요율은 요율센서(9) 입력신호로부터 측정될 수 있지만, 차체의 측방슬립각도는 간단하게 측정될 수 없으며 브레이크 토오크 제어에 기준이 되는 목표 차륜슬립을 구하기 위해서는 차량 동력학에 기초한 일련의 복잡한 계산이 필요하다.At this time, the rate can be measured from the input signal of the rate sensor 9, but the side slip angle of the vehicle body cannot be simply measured, and a series of complex calculations based on the vehicle dynamics can be used to obtain a target wheel slip which is a reference for brake torque control. This is necessary.

본 발명은 이와같은 종래의 문제점을 해결하기 위하여 안출한 것으로, 차량동력학에 기초하여 목표차륜슬립률을 정확하게 계산하며 브레이크 토오크를 제어할 수 있는 차량의 안전운행 제어장치를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and an object thereof is to provide a safe driving control apparatus for a vehicle capable of accurately calculating a target wheel slip ratio and controlling brake torque based on vehicle dynamics.

도 1은 종래 차량의 안전운행 제어장치의 전체적인 구성을 나타낸 블록도1 is a block diagram showing the overall configuration of a safe driving control apparatus of a conventional vehicle

도 2는 본 발명에 따른 전자제어기의 블록도2 is a block diagram of an electronic controller according to the present invention.

도 3은 본 발명을 설명하기 위한 차량의 평면도3 is a plan view of a vehicle for explaining the present invention;

도 4는 본 발명의 조향각도와 타이어 슬립각도를 나타낸 도면4 is a view showing a steering angle and the tire slip angle of the present invention

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

6:유압 모듈레이터 40:전자제어기6: hydraulic modulator 40: electronic controller

42:노면 마찰 계수 산출부 44:타이어 마칠력 계산부42: road friction coefficient calculation unit 44: tire friction force calculation unit

46:차량 동력학 관측부 50:목표차량 측방 슬립 각도 계산부46: vehicle dynamics observation unit 50: target vehicle side slip angle calculation unit

52:목표 차륜슬립 계산부 54:차륜 슬립 계산부52: target wheel slip calculation unit 54: wheel slip calculation unit

이하, 본 발명의 실시예를 첨부된 도면을 참고로 하여 상세히 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 전자제어기의 블록도로, 크게 차량(60)과 전자제어기(40) 및 유압 모듈레이터(6)로 구성된다.2 is a block diagram of an electronic controller according to the present invention, and is largely comprised of a vehicle 60, an electronic controller 40, and a hydraulic modulator 6.

상기 차량(60)에 설치된 각종 센서에 의해 차륜속도 VW1, VW2, VW3,요율 b.phiv; , 횡가속도 Vy, 브레이크 압력 p가 측정되며, 조향각도 δ w가 구해진다. 또한, 상기 전자제어기(40)는, 측정된 신호로부터 운행중인 노면이 타이어에 미치는 마찰계수를 산출하는 노면 마찰계수 산출부(42), 산출된 노면 마찰계수를 이용하여 횡방향 타이머 마찰력 FS 와 종방향 타이어 마찰력 FB 를 계산하는 타이머 마찰력 계산부(44),센서신호로부터 타이어 슬립각도α와 차량측방 슬립각도β를 추정하는 차량동력학 관측부(46), 운전자가 지향한 차체의 요율을 참고하여 목표요율 Ψm를 구하는 목표요율 계산부(48), 목표로 하는 차량의 측방 슬립각도 β m 를 계산하는 목표차량측방 슬립각도 계산부(50), 차체 요율 Ψ 와 목표요율 Ψm 를 비교하고, 계산된 차량측방 슬립각도β와 목표 차량측방 슬립각도 β m를 비교하여, 차체 요율 Ψ이 목표요율 Ψm를 추종하고, 차량측방 슬립각도β가 목표 차량측방 슬립각도 를 Ψm를 추종하는데 요구되는 4 차륜의 브레이크 토오크를 목표 차륜슬립률 λ 1m, λ 2m, λ 3m, λ 4m으로 표시하는 목표 차륜슬립(52), 차륜슬립률 λ 1, λ 2, λ 3, λ 4가 목표 차륜슬립률 λ 1m, λ 2m, λ 3m, λ 4m를 추종하도록 유압 모듈레이터(6)에서 필요로 하는 제어신호를 구하는 차륜슬립 제어부(54)러 구성되어 전자제어기(40)에서 매 계산시간마다 상기의 계산을 반복하여 수행하도록 구성된다.Wheel speeds V W1 , V W2 , V W3, and yaw rate by various sensors installed in the vehicle 60 b.phiv; , Lateral acceleration V y , brake pressure p are measured, steering angle δ w is obtained. In addition, the electronic controller 40, the road surface friction coefficient calculation unit 42 for calculating the friction coefficient of the road surface running on the tire from the measured signal, the lateral timer friction force by using the calculated road surface friction coefficient F S And longitudinal tire friction F B Timer friction force calculation unit 44 for calculating the reference value, vehicle dynamics observation unit 46 for estimating the tire slip angle α and the vehicle side slip angle β from the sensor signal, and calculates the target rate Ψ m by referring to the rate of the vehicle body directed by the driver. Target rate calculation part 48, the side slip angle of the target vehicle β The target vehicle side slip angle calculation unit 50, which calculates m, compares the vehicle body rate Ψ and the target rate Ψm, and calculates the vehicle side slip angle β and the target vehicle side slip angle. β Comparing m, the body wheel rate Ψ follows the target rate Ψm, and the vehicle wheel slip angle β is the target wheel slip rate for the four-wheel brake torque required to follow the target vehicle side slip angle Ψm. λ 1m , λ 2m , λ 3m , λ Target wheel slip (52), wheel slip ratio in 4m λ One, λ 2, λ 3, λ 4th Target Wheel Slip Rate λ 1m , λ 2m , λ 3m , λ The wheel slip control unit 54 is configured to obtain a control signal required by the hydraulic modulator 6 to follow 4m . The electronic controller 40 is configured to repeat the above calculation at every calculation time.

이와같이 구성된 본 발명은 먼저,도 3은 서스펜션의 영향을 무시한 차량의 평면모델을 나타낸 것으로, δ w 는, 전륜조향 차량의 조향각도, FB1 FS1 는, 각각 노면이 전방좌측 차륜(1)에 미치는 종방향 타이머 마찰력 혹은 제동력(braking force)과 횡방향 타이어 마찰력 혹은 선회력(cornering force)이다.The present invention configured as described above, first, Figure 3 shows a planar model of the vehicle ignoring the influence of the suspension, δ w is the steering angle of the front wheel steering vehicle, F B1 and F S1 Are the longitudinal timer frictional force or the braking force and the lateral tire frictional force or the turning force that the road surface exerts on the front left wheel 1, respectively.

제동력은 타이어 평면에 평행하게 작용하며, 선회력은 타이어 평면에 수직으로 작용한다. FB2 FS 2 는 각각 노면이 전방우측 차륜(2)에 미치는 제동력과 선회력이다.The braking force acts parallel to the tire plane and the turning force acts perpendicular to the tire plane. F B2 Wow F S 2 Are respectively the braking force and the turning force on the road front wheel (2).

FB3 FS3 는 차량이 선회중에 노면이 후방좌측 차륜(3)에 미치는 제동력과 횡방향력이며, FB4 FS4 는 각각 노면이 후방우측 차륜(4)에 미치는 제동력과 횡방향력이다. F B3 Wow F S3 Is the braking force and lateral force that the road surface exerts on the rear left wheel (3) while the vehicle is turning, F B4 Wow F S4 Are the braking force and the transverse force which the road surface exerts on the rear right wheel 4, respectively.

a와 b는 각각 차량의 무게중심으로부터 전륜차축 및 후륜차축까지의 거리이며, c는 차량의 무게중심으로부터 좌측 혹은 우측 차륜까지의 거리이다. xy축은 차량의 무게중심을 원점으로 하는 차체고정 좌표계를 나타내며, Ψ는 xy평면에 있어서 차체의 회전각도를 나타낸다.a and b are the distances from the center of gravity of the vehicle to the front and rear axles, respectively, and c is the distance from the center of gravity of the vehicle to the left or right wheels. The xy axis represents the vehicle body fixed coordinate system whose origin is the center of gravity of the vehicle, and Ψ represents the rotation angle of the vehicle body in the xy plane.

곡선 주행로에서 운전자는 차량을 선회하기 위하여 조향핸들을 회전시킨다. 이때 타이어와 노면의 접촉변에서 차량의 선회력을 발생하기 위하여 일반적으로 차체의 방향, 타이어 방향 및 차량의 진행속도 방향은 일치하지 않는다.On a curved road, the driver turns the steering wheel to turn the vehicle. In this case, in order to generate a turning force of the vehicle at the contact side of the tire and the road surface, the direction of the vehicle body, the tire direction, and the direction of the traveling speed of the vehicle do not coincide.

도 4는 타이어와 노면의 상호작용에 있어서 조향각도 δW , 타이어 슬립각도 α 및 차륜에서의 차량측방 슬립각도 βW 를 정의한다. 조향각도 βW 는 차체방향 즉 제3도의 x 축과 타이어 평면간의 각도이며, 타이어 슬립각도 α는 타이어 평면과 차륜 진행속도방향간의 각도이고, 차륜에서의 차량측방 슬립각도 βW 는 차체방향과 차륜 진행속도방향간의 각도이다. 따라서 다음의 수학식(1)이 성립된다.4 is a steering angle in the interaction between the tire and the road surface δ W , Tire slip angle α and vehicle side slip angle at the wheel β W Define. Steering Angle β W Is the angle between the x-axis and the tire plane of the vehicle body direction, that is, the tire slip angle α is the angle between the tire plane and the wheel running speed direction, and the vehicle-side slip angle at the wheel β W Is the angle between the vehicle body direction and the wheel travel speed direction. Therefore, the following equation (1) is established.

βW=α+δW β W = α + δ W

타이어 마찰력 계산부(44)에서 수행하는 계산은 다음과 같다. 한 타이어의 종 및 횡방향의 타이어 마찰력 FB FS 는 다음 수학식2,3,4와 같이 주어진다.The calculation performed by the tire friction force calculation unit 44 is as follows. Longitudinal and transverse tire friction of one tire F B Wow F S Is given by Equations 2, 3, and 4 below.

Figure 1019970061815_B1_M0001
Figure 1019970061815_B1_M0001

Figure 1019970061815_B1_M0002
Figure 1019970061815_B1_M0002

Figure 1019970061815_B1_M0003
Figure 1019970061815_B1_M0003

여기서, Cλ 는 종방향 타이어 강성계수, Cα 는 횡방향 타이어 강성계수, μ는 노면 마찰계수 산출부(42)에서 추정된 노면의 마찰계수, FN 은 타이어에 미치는 수직하중이다. 타이어 슬립률 λ는 다음 수학식5와 같이 정의된다.here, C λ Is the longitudinal tire stiffness coefficient, C α Is the lateral tire stiffness coefficient, μ is the friction coefficient of the road surface estimated by the road surface friction coefficient calculating unit 42, F N Is the vertical load on the tire. The tire slip ratio λ is defined as in Equation 5 below.

Figure 1019970061815_B1_M0004
Figure 1019970061815_B1_M0004

여기서, VW 는 브레이크 토오크 작용시 차륜속도이며, VWN 는 브레이크가 미작동하는 경우에 자유로이 회전하는 차륜속이다. 상기의 수학식2,3으로부터 다음 수학식 6이 성립된다.here, V W Is the wheel speed when the brake torque is applied, V WN Is the wheel speed that rotates freely when the brake is inactive. The following equation (6) is established from the above equations (2) and (3).

Figure 1019970061815_B1_M0005
Figure 1019970061815_B1_M0005

타이어 슬립각도 α가 미세하다고 가정하면 수학식6은 수학식1로부터 다음수학식7과 같이 된다.Assuming that the tire slip angle α is fine, Equation 6 is represented by Equation 1 to Equation 7 below.

Figure 1019970061815_B1_M0006
Figure 1019970061815_B1_M0006

차량동력학 관측부(46)에서 수행하는 계산은 다음과 같다. 제3도에서 y방향에 대한 차량의 운동방정식은 수학식8로 주어지며, 수직 아래로 향하는 z방향에 대한 모멘트 운동방정정식은 수학식9로 주어진다.The calculation performed by the vehicle dynamics observer 46 is as follows. In FIG. 3, the equation of motion of the vehicle in the y direction is given by Equation 8, and the moment equation of motion in the vertical z direction is given by Equation 9.

Figure 1019970061815_B1_M0007
Figure 1019970061815_B1_M0007

(aFS1+aFS2-cFB1+cFB2)cosδw+(cFS2-cFS1-aFB1-aFB2)sinδw (aF S1 + a F S2 -cF B1 + cF B2 ) cosδ w + (cF S2 -cF S1 -aF B1-a F B2) sinδ w

Figure 1019970061815_B1_M0014
Figure 1019970061815_B1_M0014

여기서, m은 차량의 질량, VX VY 는 x방향과 y방향의 차량속도, IZ 는 차량의 z-방향 관성모멘트이다. 수학식7을 수학식8에 대입하면 수학식10이 성립하고, 수학식7을 수학식9에 대입하면 수학식11이 성립된다.Where m is the mass of the vehicle, V X Wow V Y Is the vehicle speed in the x and y directions, I Z Is the z-direction moment of inertia of the vehicle. Substituting Equation 7 into Equation 8 establishes Equation 10, and substituting Equation 7 into Equation 9 establishes Equation 11.

Figure 1019970061815_B1_M0008
Figure 1019970061815_B1_M0008

f=r+ef = r + e

여기서, βF, βR은 각각 전방차축과 후방차축에서의 차량측방 슬립각도로서, 다음 수학식12,13과 같이 무게중심에서의 차량측방 슬립각도 β의 함수로 주어진다.Here, β F and β R are vehicle side slip angles at the front and rear axles, respectively, and are given as a function of the vehicle side slip angle β at the center of gravity as shown in Equations 12 and 13 below.

Figure 1019970061815_B1_M0009
Figure 1019970061815_B1_M0009

Figure 1019970061815_B1_M0010
Figure 1019970061815_B1_M0010

상기 수학식12,13을 수학식10,11에 대입하면 다음수학식14,15가 성립한다.Substituting Equations 12 and 13 into Equations 10 and 11 establishes Equations 14 and 15 below.

β=f1(λ,β,ψ)β+g1(λ,β,ψ)ψ+h1(λ,β,ψ)β = f 1 (λ, β, ψ) β + g 1 (λ, β, ψ) ψ + h 1 (λ, β, ψ)

ψ=f2(λ,β,ψ)β+g2(λ,β,ψ)+h2(λ,β,ψ)ψ = f 2 (λ, β, ψ) β + g 2 (λ, β, ψ) + h 2 (λ, β, ψ)

여기서, f1(λ,β,ψ)=f11,λ2,λ3,λ4,β,ψ) here, f 1 (λ, β, ψ) = f 11, λ 2, λ 3, λ 4 , β, ψ)

g1(λ,β,ψ)=g11,λ2,λ3,λ4 ,β,ψ)g 1 (λ, β, ψ) = g 11, λ 2, λ 3, λ 4, β, ψ)

h1(λβψ)=h11,λ2,λ3,λ4 ,β,ψ)h 1 (λβψ) = h 11, λ 2, λ 3, λ 4, β, ψ)

f2(λ,β,ψ)=f21,λ2,λ3,λ4 ,β,ψ)f 2 (λ, β, ψ) = f 21, λ 2, λ 3, λ 4, β, ψ)

한편, 수학식12,13을 수학식10에 대입하면 차량측방 슬립각도 β는 다음과 수학식 17과 같이 표시된다.Meanwhile, if Equations 12 and 13 are substituted into Equation 10, the vehicle side slip angle β is expressed as Equation 17 below.

β=β(Vw1,Vw2,Vw3,Vw4,δw,ψ,Vy)β = β (V w1, V w2, V w3, V w4, δ w, ψ, V y )

차륜속도 VW1 , VW2 , VW3 , VW4 는 차륜속도 센서(11-14)로 측정되며, 조항각도 δw는 조향핸들 각도센서(8)로부터 구해지며, 차체 요율ψ는 요율센서(9)로 측정되고,횡가속도 V 는 횡가속도 센서(10)로 측정되므로 차량측방 슬립각도 β 는 수학식17을 이용하여 정확하게 계산된다.Wheel speed V W1 , V W2 , V W3 , V W4 Is measured by the wheel speed sensor 11-14, the provision angle δw is obtained from the steering wheel angle sensor 8, the body yaw rate ψ is measured by the yaw rate sensor 9, and the lateral acceleration V Since the vehicle is measured by the lateral acceleration sensor 10, the slip angle of the vehicle side β Is accurately calculated using equation (17).

마찬가지로,목표요율 계산부(48)에서 목표요율 ψm 가 구해지면,목표 차량 측방 슬립각도 계산부(50)에서 목표 차량 측방 슬립각도 βm 는 다음 수학식18과 같이 구해진다.Similarly, the target rate in the target rate calculation unit 48 ψ m Is obtained, the target vehicle side slip angle is calculated by the target vehicle side slip angle calculation unit 50. β m Is obtained as shown in Equation 18 below.

βmm(Vw1,Vw2,Vw3,Vw4,δwm,Vy)β m = β m (V w1, V w2, V w3, V w4, δ w , ψ m, V y )

목표 차륜슬립계산부(52)에서 수행하는 계산은 다음과 같다.수학식14,15는 비선형 방정식이므로 선형화를 위하여 차륜슬립률 λ , 차량 측방 슬립각도 β ,차체요율 Ψ는 각각 아래와 같이 기준 차륜슬립률 λo, 기준 차량측방 슬립각도βo, 기준 차체요율ψ0와 미세 차륜슬립률λp, 미세 차량측방 슬립각도βp, 미세 차체요율ψ의 합으로 표시된다.The calculation performed by the target wheel slip calculation unit 52 is as follows. Equations 14 and 15 are nonlinear equations, and thus the wheel slip ratio for linearization is calculated. λ Vehicle side slip angle β The vehicle body ratio Ψ is the sum of the reference wheel slip ratio λ o , the reference vehicle side slip angle β o , the reference body body ratio ψ 0 , the fine wheel slip ratio λ p , the fine vehicle side slip angle β p , and the fine vehicle body ratio ψ as shown below. Is displayed.

λ=λ0p λ = λ 0 + λ p

β=β0p β = β 0 + β p

ψ=ψ0p ψ = ψ 0 + ψ p

수학식19a,19b,19c를 수학식14,15에 대입하면 다음과 같이 선형화된 방정식이 성립한다.Substituting Equations 19a, 19b, and 19c into Equations 14 and 15 establishes a linearized equation as follows.

βp(t)=a11(t)βp(t)+a12(t)ψp(t)+b11(t)λ1p(t)+b12(t)λ2p(t)+b13(t)λ3p(t)+b14(t)λ4p(t)β p (t) = a 11 (t) β p (t) + a 12 (t) ψ p (t) + b 11 (t) λ 1p (t) + b 12 (t) λ 2p (t) + b 13 (t) λ 3p (t) + b 14 (t) λ 4p (t)

ψp(t)=a21(t)βp(t)+a22(t)ψp(t)+b21(t)λ1p(t)+b22(t)λ2p(t)+b23(t)λ3p(t)+b24(t)λ4p(t)ψ p (t) = a 21 (t) β p (t) + a 22 (t) ψ p (t) + b 21 (t) λ 1p (t) + b 22 (t) λ 2p (t) + b 23 (t) λ 3p (t) + b 24 (t) λ 4p (t)

여기서,here,

Figure kpo00000
Figure kpo00000

수학식20,21은 다음과 같이 상태공간형의 수학식24로 표시될수 있다.Equations 20 and 21 may be represented by Equation 24 of the state space type as follows.

Figure 1019970061815_B1_M0011
Figure 1019970061815_B1_M0011

여기서 a11-a22는 상태 행렬의 요소이고, b11-b24는 입력 행렬의 요소이다. 시변 선형 미분방정식으로 주어지는 행렬방정식24에 최적제어 문제법을 적용하여 대수학적 리카티 방정식을 풀면, 최적 상태에 해당되는 미세 차륜슬립률 λ1p, λ2p, λ3p, λ4p는 다음과 같이 미세 차량측방 슬립각도 βp와 미세 차체요율ψp의 함수로 구해진다.Where a 11 -a 22 are elements of the state matrix and b 11 -b 24 are elements of the input matrix. Solving the algebraic Ricaty equation by applying the optimal control problem method to the matrix equation 24 given by the time-varying linear differential equation, the fine wheel slip ratios λ 1p , λ 2p , λ 3p , and λ 4p corresponding to the optimal state are as follows. It is obtained as a function of the vehicle side slip angle beta p and the fine vehicle body rate ψ p .

Figure 1019970061815_B1_M0012
Figure 1019970061815_B1_M0012

여기서 최적이득 행렬요소 g11-g42는 수학식24의 행렬요소 a11-a22와 b11-b24의 함수로 주어진다. 행령요소 a11-a22, b11-b24는 차륜속도 센서(11),(12),(13),(14) 조향핸들 각도센서(8), 차체요율센서(9), 횡가속도센서(10)로 측정된 측정값과 수학식17로 계산되는 차량측방 슬립각도 β를 이용하여 직접 계산 가능하므로, 최적이득 행렬요소 g11-g42는 매 계산시간 마다 직접 계산이 가능하다.The optimal gain matrix elements g 11 -g 42 are given as functions of matrix elements a 11 -a 22 and b 11 -b 24 of Equation 24. The command elements a 11 -a 22 and b 11 -b 24 are wheel speed sensors 11, 12, 13 and 14, steering wheel angle sensor 8, body rate sensor 9, lateral acceleration sensor. Since the measured value measured by (10) and the vehicle side slip angle β calculated by Equation 17 can be directly calculated, the optimal gain matrix elements g11-g42 can be directly calculated at every calculation time.

기준 차량측방 슬립각도 β0로 목표 차량측방 슬립각도 βm를 취하고, 기준 차체요율ψ0로 목표요율ψm를 취하면 수학식25로부터 목표 차륜슬립률 λ1m, λ2m3m, λ4m은 다음과 같이 구해진다.Taking the target vehicle side slip angle β m at the reference vehicle side slip angle β 0 , and taking the target rate ψ m at the reference vehicle body ratio ψ 0 , the target wheel slip ratios λ 1m , λ 2m , λ 3m , and λ 4m Is obtained as follows.

Figure 1019970061815_B1_M0013
Figure 1019970061815_B1_M0013

여기서 λ1, λ2, λ3, λ4는 현재 계산시간에서의 차륜슬립률, β는 현재 계산시간에서의 차량측방 슬립각도, ψ는 현재 계산시간에서의 차체요율이다.Where λ1, λ2, λ3, and λ4 are the wheel slip rates at the current calculation time, β is the vehicle side slip angle at the current calculation time, and ψ is the vehicle body rate at the current calculation time.

이상에서 설명한 바와같은 본 발명은 센서로 측정된 4 차륜속도, 조향각도, 차체의 요율, 횡가속도를 이용하여 차량동력학에 기초한 식으로부터 차량측방 슬립각도와 목표 차량측방 슬립각도가 정확하게 계산된다. 또한 목표 차륜슬립률도 차량동력학에 기초하여 정확하게 계산되므로 4차륜의 브레이크 토오크를 독립적으로 제어하여 안전운행을 도모할 수 있는 효과가 있다.In the present invention as described above, the vehicle side slip angle and the target vehicle side slip angle are accurately calculated from the equation based on the vehicle dynamics using the four-wheel speed, the steering angle, the body's yaw rate, and the lateral acceleration measured by the sensor. In addition, since the target wheel slip ratio is accurately calculated based on the vehicle dynamics, the brake torque of the four wheels can be independently controlled to achieve safe driving.

Claims (5)

차량의 주행상태를 검출하는 복수의 센서들의 신호에 따라 전자 제어기가 유압 모듈레이터를 제어하여 4개의 차륜의 브레이크를 독립적으로 제어 및 차량이 안전운행을 하게 제어하는 차량의 안전운행 제어장치에 있어서,In a safety driving control apparatus for a vehicle in which the electronic controller controls the hydraulic modulator according to the signals of the plurality of sensors for detecting the driving state of the vehicle to independently control the brakes of the four wheels and control the vehicle to drive safely. 상기 전자 제어기는;The electronic controller; 상기 복수의 센서들의 검출 신호로 노면이 타이어에 미치는 마찰계수를 산출하는 노면 마찰계수 산출부;A road surface friction coefficient calculator for calculating a road surface friction coefficient to the tire based on detection signals of the plurality of sensors; 상기 노면 마찰계수 산출부가 산출한 노면 마찰계수로 횡방향 타이어 마찰력 FS 및 종방향 타이어 마찰력 FB 를 계산하는 타이어 마찰력 계산부;Lateral tire friction force by the road surface friction coefficient calculated by the road surface friction coefficient calculating unit F S And longitudinal tire friction F B Tire friction force calculation unit for calculating; 상기 복수의 센서들의 검출신호와 상기 타이머 마찰력 계산부가 계산한 횡방향 타이어 마찰력 FS 및 종방향 타이어 마찰력 FB 로 타이어 슬립각도 α 및 차량측방 슬립각도 β를 추정하는 차량동력학 관측부;Lateral tire friction force calculated by the detection signals of the plurality of sensors and the timer friction force calculator F S And longitudinal tire friction F B A vehicle dynamics observation unit for estimating a low tire slip angle α and a vehicle side slip angle β; 운전자가 지향하는 차체 요율 Ψ을 참고하여 목표효율 Ψm을 구하는 목표효율 계산부;A target efficiency calculator for obtaining a target efficiency Ψm by referring to the body rate Ψ to which the driver is directed; 목표로 하는 차량의 측방 슬림각도 βm를 계산하는 목표 차량측방 슬립각도 계산부;A target vehicle side slip angle calculator configured to calculate a lateral slim angle βm of the target vehicle; 차체 요율 Ψ 및 목표요율 Ψm과 계산된 차량측방 슬립각도 β 및 목표 차량측방 슬립각도 βm을 각각 비교하여 차체 요율 Ψ이 목표요율 Ψm을 추종하고 슬립각도 β가 목표 차량측방 슬립각도 βm을 추종하는데 요구되는 4개의 차륜의 브레이크 토크를 목표 차륜 슬립률 λ 1m, λ 2m, λ 3m λ 4m으로 출력하는 목표 차륜슬립 계산부; 및The body rate Ψ is required to follow the target rate Ψm and the slip angle β is required to follow the target vehicle side slip angle βm by comparing the body rate Ψ and target rate Ψm with the calculated vehicle side slip angle β and target vehicle side slip angle βm respectively. Wheel slip ratio aimed at brake torque of four wheels becoming λ 1m , λ 2m , λ 3m and λ A target wheel slip calculation unit outputting 4 m ; And 상기 차륜 슬립률 λ 1, λ 2, λ 3 λ 4가 각기 목표 차륜 슬립률 λ 1m, λ 2m, λ 3m λ 4m을 추종하도록 유압 모듈레이터에서 필요로 하는 제어신호를 출력하는 차륜슬립 제업구로 구성됨을 특징으로 하는 차량의 안전운행 제어 장치.The wheel slip ratio λ 1 , λ 2 , λ 3 and λ 4 is the target wheel slip ratio λ 1m , λ 2m , λ 3m and λ A device for safe driving control of a vehicle, characterized by comprising a wheel slip manufacturing zone for outputting a control signal required by a hydraulic modulator to follow 4 m . 제 1 항에 있어서, 상기 차량에 설치된 복수의 센서는;According to claim 1, A plurality of sensors installed in the vehicle; 차륜속도 VW1 , VW2 , VW3 VW4 를 검출하는 차륜속도 센서;Wheel speed V W1 , V W2 , V W3 And V W4 A wheel speed sensor for detecting a; 조향속도 δ w를 검출하는 조향핸들 각도센서;Steering Speed δ a steering wheel angle sensor for detecting w ; 요율 Ψ을 검출하는 요율 센서;A rate sensor for detecting a rate Ψ; 횡 가속도 VY 를 검출하는 횡 가속도 센서; 및Lateral acceleration V Y Transverse acceleration sensor for detecting; And 브레이크 압력 P를 검출하는 브레이크 압력센서인 것을 특징으로 하는 차량의 안전운행 제어장치.A safety driving control device for a vehicle, characterized in that the brake pressure sensor for detecting the brake pressure P. 제 1 항에 있어서, 상기 목표 차륜슬립 계산부는;The method of claim 1, wherein the target wheel slip calculation unit; 다음의 수학식 26으로 목표 차륜 슬립률을 계산하는 것을 특징으로 하는 차량의 안전운행 제어장치.Safe driving control apparatus for a vehicle, characterized in that for calculating the target wheel slip ratio by the following equation (26). 수학식 26Equation 26
Figure pct001
Figure pct001
제 3 항에 있어서, 최적 이득행렬이 다음의 수학식 24와 같은 차량운동의 선형 미분방정식에 대한 최적제어 문제법의 대수학적 리카티 방정식의 해로 구해지는 것을 특징으로 하는 차량의 안전운행 제어장치.4. The safe driving control apparatus for a vehicle according to claim 3, wherein the optimum gain matrix is obtained by solving the algebraic Ricati equation of the optimal control problem method for the linear differential equation of the vehicle motion as shown in Equation (24).
Figure pct002
Figure pct002
제 4 항에 있어서, 상태 행렬요소 a11~a22및 입력 행렬요소 b11~b24는;The method according to claim 4, wherein the state matrix elements a 11 to a 22 and the input matrix elements b 11 to b 24 are each; 다음의 수학식 22a 내지 수학식 221과 수학식 23a 내지 수학식 23f와 같이 주어지는 것을 특징으로 하는 차량의 안전운행 제어장치.Safety driving control apparatus for a vehicle, characterized in that given by the following equations (22a) to (221) and (23a to 23f). 수학식 22aEquation 22a
Figure pct003
Figure pct003
수학식 22bEquation 22b
Figure pct004
Figure pct004
수학식 22cEquation 22c
Figure pct005
Figure pct005
수학식 22dEquation 22d
Figure pct006
Figure pct006
수학식 22eEquation 22e
Figure pct007
Figure pct007
수학식 22fEquation 22f
Figure pct008
Figure pct008
수학식 22gEquation 22g
Figure pct009
Figure pct009
수학식 22hEquation 22h
Figure pct010
Figure pct010
수학식 22iEquation 22i
Figure pct011
Figure pct011
수학식 22jEquation 22j
Figure pct012
Figure pct012
수학식 22kEquation 22k
Figure pct013
Figure pct013
수학식 22lEquation 22l
Figure pct014
Figure pct014
수학식 23aEquation 23a
Figure pct015
Figure pct015
수학식 23bEquation 23b
Figure pct016
Figure pct016
수학식 23cEquation 23c
Figure pct017
Figure pct017
수학식 23dEquation 23d
Figure pct018
Figure pct018
수학식 23eEquation 23e
Figure pct019
Figure pct019
수학식 23fEquation 23f
Figure pct020
Figure pct020
KR1019970061815A 1997-11-21 1997-11-21 Safety operation control apparatus of vehicle KR100272631B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970061815A KR100272631B1 (en) 1997-11-21 1997-11-21 Safety operation control apparatus of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970061815A KR100272631B1 (en) 1997-11-21 1997-11-21 Safety operation control apparatus of vehicle

Publications (2)

Publication Number Publication Date
KR19990041251A KR19990041251A (en) 1999-06-15
KR100272631B1 true KR100272631B1 (en) 2000-12-01

Family

ID=19525266

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970061815A KR100272631B1 (en) 1997-11-21 1997-11-21 Safety operation control apparatus of vehicle

Country Status (1)

Country Link
KR (1) KR100272631B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721376B1 (en) 2003-02-17 2007-05-23 주식회사 만도 Anti-lock brake system for vehicle
KR102280297B1 (en) * 2020-02-25 2021-07-22 중앙대학교 산학협력단 Method for generating desired slip based on road condition detection for anti-lock braking systems of electric vehicles, recording medium and device for performing the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030017826A (en) * 2001-08-23 2003-03-04 현대자동차주식회사 System For Dynamic Controlling Of Vehicle And Method Thereof
CN114007911A (en) * 2019-06-14 2022-02-01 沃尔沃卡车集团 Method for validating a model associated with vehicle dynamics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721376B1 (en) 2003-02-17 2007-05-23 주식회사 만도 Anti-lock brake system for vehicle
KR102280297B1 (en) * 2020-02-25 2021-07-22 중앙대학교 산학협력단 Method for generating desired slip based on road condition detection for anti-lock braking systems of electric vehicles, recording medium and device for performing the method

Also Published As

Publication number Publication date
KR19990041251A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3377999B2 (en) How to increase vehicle controllability
US7331642B2 (en) Method for applying torque overlay during split-mu braking conditions
US8886410B2 (en) Methods of controlling four-wheel steered vehicles
US9020699B2 (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
EP0958978B1 (en) Vehicle yaw control method
KR970706153A (en) DIRECTIONAL STABILITY CONTROL SYSTEM
US6862512B2 (en) Method and system for controlling the performance of a motor vehicle
US6223116B1 (en) Wheel slip angle detecting system for vehicle
JP4930007B2 (en) Steering angle control device for vehicle
JPH0321564A (en) Steering regulating device having steering front axle and steering rear axle
CN102107660A (en) Motion control unit for vehicle based on jerk information
JP2000513295A (en) Method for controlling running state of vehicle using tire sensor
JP2005181067A (en) Three-dimensional road surface running environment model, and evaluation equipment of vehicle-behavior-control system provided with the same
JP2007530341A (en) Determination method of tire lateral force in electric steering system
US20150314759A1 (en) Vehicle movement dynamics control method
EP0982206B1 (en) Method of estimating vehicle yaw rate
KR100272631B1 (en) Safety operation control apparatus of vehicle
JP2569591B2 (en) Vehicle driving assist device
CN108025709A (en) Motor vehicle traction control method
KR20140063168A (en) Electronic stability control apparatus for vehicle and control method therfor
JP4850435B2 (en) Vehicle steering control device
JP3039071B2 (en) Vehicle turning limit judgment device
JP3562501B2 (en) Vehicle motion control device
JP3527748B2 (en) Vehicle motion control device
JP2766588B2 (en) Vehicle yaw angular velocity detection method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee