KR100270927B1 - An antiviral protein cap30 isolated from the chenopodium album var. - Google Patents

An antiviral protein cap30 isolated from the chenopodium album var. Download PDF

Info

Publication number
KR100270927B1
KR100270927B1 KR1019980013096A KR19980013096A KR100270927B1 KR 100270927 B1 KR100270927 B1 KR 100270927B1 KR 1019980013096 A KR1019980013096 A KR 1019980013096A KR 19980013096 A KR19980013096 A KR 19980013096A KR 100270927 B1 KR100270927 B1 KR 100270927B1
Authority
KR
South Korea
Prior art keywords
cap30
protein
antiviral
isolated
chenopodium album
Prior art date
Application number
KR1019980013096A
Other languages
Korean (ko)
Other versions
KR19990080096A (en
Inventor
조강진
박종석
이시명
김영태
황영수
Original Assignee
김강권
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김강권, 대한민국 filed Critical 김강권
Priority to KR1019980013096A priority Critical patent/KR100270927B1/en
Publication of KR19990080096A publication Critical patent/KR19990080096A/en
Application granted granted Critical
Publication of KR100270927B1 publication Critical patent/KR100270927B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: An antiviral protein CAP30 separated from Chenopodium album var. is provided, which can be used as antiviral bioagricultural drugs or human antiviral medicines. CONSTITUTION: The antiviral protein CAP30 having 30,000 dalton of molecular weight is isolated by the steps of: grinding the leaves of Chenopodium album var. and extracting it with a buffer solution A containing 50 mM of sodium chloride, 0.2 mM of PMSF, 20 mM of Tris-HCl, 1mM of EDTA, and 10 mM of beta-mercaptoethanol; filtering and centrifuging the extract and collecting the supernatant; adding 30 to 80% of ammonium sulfate and dialyzing it with the buffer solution A; passing the concentrate through the DE-52 cellulose column and subjecting it to linear gradient of buffer solution A to separate the active fragments; and purifying the active fragments by subjecting it to chromatography. The gene encoding the antiviral protein CAP30 is sequenced and its nucleotide sequence is represented by sequence ID No. 1.

Description

흰명아주로부터 분리한 항바이러스성 단백질 CAP30Antiviral Protein CAP30 Isolated from White Mage

본 발명은 국내에서 자생하는 흰명아주(Chenopodium album var.)의 잎으로부터 분리한 항바이러스성 단백질인 CAP30에 관한 것이다.The present invention relates to CAP30, which is an antiviral protein isolated from the leaves of the Korean native Magnolia (Chenopodium album var.).

국내외에서 재배하고 있는 작물들은 식물 바이러스로 인하여 광범위하게 피해를 받아서 심각한 농산물 생산량의 감소와 품질의 저하를 초래하고 있지만, 바이러스병은 농약을 이용한 방제가 불가능하기 때문에 저항성 작물을 개발하여야만 그 피해를 줄일 수 있다.Crops cultivated at home and abroad are widely damaged by plant viruses, resulting in severe agricultural product yield and quality deterioration.However, since viral diseases cannot be controlled using pesticides, resistant crops must be developed to reduce the damage. Can be.

특히, 최근에는 분자생물학이 발달하면서 식물 바이러스와 그들의 복제기작에 관한 이해가 크게 진전되었고, 외래 유전자를 생물체내에 도입하여 그 발현을 조절하는 것에 의해 바이러스 저항성 작물을 개발하는 연구가 활발히 진행되고 있는 실정이다.In particular, recent advances in molecular biology have led to significant advances in understanding plant viruses and their replication mechanisms, and studies on the development of virus-resistant crops by introducing foreign genes into living organisms and regulating their expression. to be.

이러한 바이러스 저항성 작물의 개발을 위하여 사용할 수 있는 유전자는 바이러스 외피 단백질(viral coat proteins)를 비롯해서 레플리카아제(replicase), 세터라이트 RNA(satellite RNA), 운동단백질(movement protein), 안티센스(antisense), 라이보좀 불활성화 단백질(ribosome inactivating protein)등이 있다.Genes that can be used for the development of such viral resistant crops include viral coat proteins, replicas, satellite RNA, movement proteins, antisense and lysine. Ribosomal inactivating protein.

이중, 라이보좀 불활성화 단백질들(RIPs)은 식물계에 널리 분포하는 식물 단백질로서, 잎, 뿌리, 종자 등 여러 기관들에서 유래되고 그 농도도 식물의 종류에 따라서 조직 100g당 수㎍에서 수백mg까지 다양하게 존재하며, 30,000달톤 정도의 단일쇄로 이루어진 타입 1과 라이보좀 불활성화 활력을 갖는 A-사슬 및 갈락토스-결합 렉틴(galactose-binding lectin)인 B-사슬로 이루어진 타입 2의 두종류로 분류된다.Ribosome Inactivation Proteins (RIPs) are plant proteins widely distributed in the plant kingdom and are derived from various organs such as leaves, roots, and seeds, and their concentrations range from several μg to several hundred mg per 100 g of tissue depending on the type of plant. It is classified into two types, type 1 consisting of a single chain of about 30,000 Daltons and type 2 consisting of an A-chain and a galactose-binding lectin B-chain having ribosome inactivation activity. do.

이들, RIPs는 병원 감염으로부터 식물체를 보호할 수 있으며, 또한 어떤 RIPs의 경우는 식물 바이러스의 감염을 억제시킬 수도 있다.These, RIPs can protect plants from hospital infections, and some RIPs may also inhibit plant virus infection.

RIPs의 라이보좀 불활성화는 박테리아로부터 포유동물에 이르기까지 라이보좀에 존재하는 23S/25S/28S rRNAs의 3'-말단으로부터 250-400 염기에 위치하는 보존 된 서열(conserved sequence)인 5'-AGUACGA*GAGGA-3'(A*는 target adenin 잔기)의 리보오스(ribose)와 특정 아데닌(adenine)잔기 사이의 N-글리코시드 결합(glycosidic bond)의 절단을 통하여 이루어진다. 이와같이 절단된 라이보좀은 EF-2/GTP 복합체에 부착될 수 없게 되고, 따라서 단백질 합성이 번역단계에서 차단되어 세포가 죽게되어 결국 감염된 바이러스의 세포 대 세포(cell to-cell)이동이 차단되어 식물체가 저항성을 나타내게 되는 것이다.Ribosome inactivation of RIPs is 5'-AGUACGA, a conserved sequence located 250-400 bases from the 3'-terminus of 23S / 25S / 28S rRNAs present in ribosomes from bacteria to mammals. * GAGGA-3 '(A * is a target adenin residues) through the cleavage of the N-glycosidic bond (ribose) between the ribose (ribose) and the specific adenine residues. The cleaved ribosomes cannot be attached to the EF-2 / GTP complex, so that protein synthesis is blocked at the translation stage, resulting in cell death, which eventually blocks cell-to-cell migration of the infected virus. Will become resistant.

이러한, 라이보좀 불활성화 단백질로는 미국자리공잎(Phytolacca americana L.)으로부터 분리한 PAP(Phytolacca Anti-viral Protein) 등 여러 단백질이 공지되어 있다.As such a ribosome inactivating protein, various proteins such as PAP (Phytolacca Anti-viral Protein) isolated from Phytolacca americana L. are known.

그러나, 본 발명자들은 바이러스 저항성 작물을 개발하고자 상기 라이보좀 불활성화 단백질 이외에 항바이러스 활력이 우수한 다른 라이보좀 불활성화 단백질(ribosome inactivating protein)을 찾고자 검색한 결과, 국내 자생하는 흰명아주의 잎으로부터 분리된 단백질이 라이보좀을 불활성화시킬 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.However, the present inventors searched for another ribosome inactivating protein having excellent antiviral activity in addition to the ribosome inactivating protein to develop a virus resistant crop, and isolated from the leaves of domestic wild white tusks. The discovery that proteins can inactivate ribosomes has led to the completion of the present invention.

즉, 본 발명의 목적은 흰명아주(Chenopodium album var.)의 잎으로부터 유래된 항바이러스성 단백질인 CAP30을 제공하는 것이다.That is, it is an object of the present invention to provide CAP30, an antiviral protein derived from the leaves of Chenopodium album var.

도 1은 한국 자생 흰명아주의 잎으로부터 분리한 단백질 CAP30의 전기영동 사진이다.1 is a photoelectrophoresis of the protein CAP30 isolated from the leaves of Korean native white Myeongju.

도 2는 본 발명의 CAP30과 공지의 라이보좀 불활성화 단백질들간의 활성부위의 아미노산 서열 상동성을 비교한 결과이다.Figure 2 is a result of comparing the amino acid sequence homology of the active site between the CAP30 of the present invention and known ribosomal inactivation proteins.

<도면기호의 설명><Explanation of drawing symbols>

cPAP : 미국자리공(Phytolacca americana)으로부터 불리한 불활성화 단백질cPAP: disadvantageous inactivating protein from Phytolacca americana

MAP : 분꽃(Miravilis jalapa)으로부터 불리한 불활성화 단백질MAP: Disabling Inactivating Proteins from Miravilis jalapa

Abrin A: 홍두(Abrus precatorius)로부터 불리한 불활성화 단백질Abrin A: Disabling Inactivating Protein from Red Beans (Abrus precatorius)

Ricin A: 피마자(Ricinus communis)로부터 불리한 불활성화 단백질Ricin A: Disabling Inactivating Protein from Castin (Ricinus communis)

Luffin-a : 수세미 오이(Luffa cylindrica)로부터 불리한 불활성화 단백질Luffin-a: disadvantageous inactivating protein from Luffa cylindrica

Saporin 6:거품장구채(Saponaria officinalis)로부터 불리한 불활성화 단백질Saporin 6: Disabling Inactivating Protein from Saponaria officinalis

도 3은 본 발명에 따른 단백질인 CAP30을 처리한 식물의 라이보좀 불활성화 능력을 검정한 결과를 나타내는 사진이다.Figure 3 is a photograph showing the results of assaying the ribosome inactivation capacity of plants treated with the protein CAP30 according to the present invention.

<도면기호의 설명><Explanation of drawing symbols>

가) 담배, 나) 토마토, 다) 흰 명아주A) tobacco, b) tomato, c) white oyster

도 4는 흰명아주 잎에 오이모자이크 바이러스 접종시 항바이러스성 단백질들의 바이러스 감염저해효과를 나타내는 사진이다.Figure 4 is a photograph showing the virus inhibitory effect of the antiviral proteins when inoculated cucumber cucumber virus on the leaves of the white Myeongju.

도 5는 항바이러스성 단백질들의 농도별 기내 단백질 합성 저해력을 나타내는 그래프이다.Figure 5 is a graph showing the inhibitory ability of in-flight protein synthesis by concentration of antiviral proteins.

상기한 목적을 이루기 위해서, 본 발명의 항바이러스성 단백질 CAP30은 분자량이 30,000 달톤이고, 그의 cDNA 유전자 염기서열은 서열 1로 표시된다.In order to achieve the above object, the antiviral protein CAP30 of the present invention has a molecular weight of 30,000 Daltons, and its cDNA gene sequence is represented by SEQ ID NO: 1.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 항바이러스성 단백질은 흰명아주 잎을 건조 및 파쇄한 후 침출하여 얻은 조단백질액을 황산암모니움으로 침전한 후, S-세파로스 칼럼(S-Sepharose colume), 블루-세파로스 칼럼, FPLC Mono-S 칼럼 및 스프로즈(Suprose) 12 HR 10/30 칼럼으로 정제하므로써 순수하게 분리할 수 있다. 이렇게 분리, 정제된 단백질의 분자량은 30,000 달톤이고, 항바이러스 활력을 띈다.The antiviral protein according to the present invention, after drying and crushing the leaves of white mite, precipitated crude protein solution by leaching with ammonium sulfate, S-Sepharose colume, Blue-Sepharose column, Pure separation can be achieved by purification with FPLC Mono-S column and Sprose 12 HR 10/30 column. The molecular weight of this isolated and purified protein is 30,000 Daltons and is antiviral vitality.

따라서, 본 발명의 CAP30은 바이러스 방제용 생물농약으로 사용될 수 있으며, CAP30 cDNA 라이브러리로부터 분리된 유전자는 식물체 내에서 외래유전자의 발현을 가능하게 하는 백터에 삽입하여 항바이러스성 단백질 유전자 발현벡터를 제조하고, 이 벡터를 고추, 담배, 토마토, 백합, 카네이션, 마늘 등의 식물세포에 형질전환시키고 배양함으로써, 항바이러스성 단백질을 생성하는 식물체를 제조하는데 이용될 수 있다. 또한, 항바이러스성 단백질을 생성하고 발현되는 형질전환식물체를 제조함으로써, 여러종류의 바이러스에 내성이 강한 식물체를 개발할 수 있다.Therefore, the CAP30 of the present invention can be used as a biopesticide for virus control, and genes isolated from the CAP30 cDNA library are inserted into a vector allowing expression of a foreign gene in a plant to prepare an antiviral protein gene expression vector. By transforming and culturing the vector into plant cells, such as pepper, tobacco, tomato, lily, carnation, garlic, and the like, the vector can be used to produce plants that produce antiviral proteins. In addition, by producing a transgenic plant that produces and expresses an antiviral protein, plants resistant to various types of viruses can be developed.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

실시예 1: 항바이러스성 단백질의 분리Example 1 Isolation of Antiviral Proteins

(1) 단백질의 추출 및 정제방법(1) Extraction and Purification of Proteins

경기도 화성군에서 채취한 흰 명아주(Chenopodium album var.)를 야생채집하고, 그 잎을 분리하여 -80℃ 냉동고에 보관하였다. 흰명아주 잎 1㎏을 액체질소에 얼린 후 분쇄한 다음, 워링블렌더(waring blender)에 갈아서 50mM의 염화나트륨과 0.2mM의 PMSF를 첨가한 완충용액 A(20mM Tris-HCl, 1mM EDTA, 10mM β-mercaptoethanol, pH 7.5)로 추출하였다. 이후 전 실험과정은 4℃ 저온실내에서 실시하였다. 추출액을 미라클로쓰(miracloth)로 1차 여과하고 15,000×g에서 30분동안 원심분리하여 얻은 상등액을 단백질 조추출액으로 하였다. 조추출액을 다시 황산 암모니움 30∼80%로 침전시킨 후 완충용액 A에 투석하였다. 이 농축액을 완충액 A로 미리 평형화시킨 S-세파로스 칼럼(S-Sepharose colume, 5×20㎝)과 연속적으로 연결된 DE-52 셀룰로오즈 칼럼(5×20㎝)에 주입한 후, 완충액 A로 용출시킨 다음, 흡착된 단백질을 0∼0.5M 농도의 염화나트륨이 함유된 완충액 A로 직선 농도구배로 용출시켰다. 이때, 용출액의 단백질의 농도를 계속 모니터링하면서, 하기 실시예 4에 기재된 기내 단백질 합성저해율 측정 방법으로 기내 단백질 합성 저해력을 측정하여 기내단백질 합성 저해력이 가장 높은 단백질이 용출된 활성분획을 선정하고, 활성분획에 황산 암모니움 80%로 단백질을 침전시킨 후 완충액 A에서 투석처리된 농축액을 블루-세파로스 칼럼(2×25㎝)에 흡착시킨 후, 0.1M 염화나트륨을 함유한 20mM Tris-HCl 완충액(pH 8.6)으로 용출하여 활성분획을 농축한 다음, FPLC 시스템(Pharmecia)에서 Mono-S 칼럼(1㎖)에서 0∼0.5M 농도의 염화나트륨이 함유된 완충액 A로 직선 농도구배로 용출시켜 활성분획을 농축한 다음 스프로즈(Suprose) 12 HR 10/30 칼럼(25㎖)으로 최종 분리하였다. 분리된 단백질을 "CAP30"으로 명명하였다.White Mengju (Chenopodium album var.) From Hwaseong-gun, Gyeonggi-do was collected wildly, and the leaves were separated and stored in a freezer at -80 ° C. 1 kg of white amber leaf was frozen in liquid nitrogen and pulverized, and then ground in a waring blender. Buffer A (20 mM Tris-HCl, 1 mM EDTA, 10 mM β-mercaptoethanol) with 50 mM sodium chloride and 0.2 mM PMSF was added. , pH 7.5). Since the entire experimental process was carried out in a low temperature room 4 ℃. The extract was first filtered with miracloth and centrifuged at 15,000 × g for 30 minutes to obtain a crude protein extract. The crude extract was again precipitated with 30-80% ammonium sulfate and dialyzed in Buffer A. The concentrate was injected into a DE-52 cellulose column (5 × 20 cm) continuously connected to an S-Sepharose colume (5 × 20 cm) previously equilibrated with Buffer A, and then eluted with Buffer A. The adsorbed protein was then eluted with a linear gradient with buffer A containing 0-0.5 M sodium chloride. At this time, while continuously monitoring the concentration of the protein in the eluate, in-flight protein synthesis inhibition rate measured by the in-flight protein synthesis inhibition rate measurement method described in Example 4 to select the active fraction eluted protein with the highest in-flight protein synthesis inhibition Precipitate the protein with 80% Ammonium sulfate in the active fraction, and then concentrate the dialysis solution in Buffer A on a Blue Sepharose column (2 × 25 cm), and then 20 mM Tris-HCl buffer containing 0.1 M sodium chloride. The active fraction was eluted with (pH 8.6), and then the active fraction was eluted with a linear gradient in FPLC system (Pharmecia) with buffer A containing 0-0.5 M sodium chloride in a Mono-S column (1 ml). The reaction mixture was concentrated and finally separated by a Sprose 12 HR 10/30 column (25 mL). The isolated protein was named "CAP30".

(2) 분리된 단백질의 순수도 확인(2) Confirmation of purity of separated protein

단백질의 순수분리 정도는 통상 폴리아크릴아미드 겔을 이용한 SDS 전기영동으로 확인하며, 또한 분리된 단백질을 단백질 아미노산 서열분석기로 분석하면 복합단백질인지, 순수한 단백질인지 알 수 있다.The degree of pure separation of the protein is usually confirmed by SDS electrophoresis using polyacrylamide gel. Also, if the separated protein is analyzed by protein amino acid sequencing, it can be determined whether it is a complex protein or a pure protein.

a) SDS 전기영동a) SDS electrophoresis

상기 실시예 1에서 분리된 단백질인 CAP30을 12.5% SDS-폴리아크릴아마이드 겔에서 전기영동을 실시한 결과, 도 1과 같은 결과를 나타내었다. 한편, 표준 단백질을 같이 전기영동하면 분자량 크기에 따른 이동거리 비율을 비교하여 분자량을 측정할 수 있는데, 분자량 측정에 사용된 표준단백질은 소혈청알부민 66,200달톤, 난알부민 45,000달톤, 탄산탈수소효소(carbonic anhydrase) 31,000달톤, 트립신 억제인자 21,500달톤, 리소짐(lysozyme) 14,400달톤이다. 도 1로부터, 흰명아주의 잎에서 분리된 CAP30은 30,000 달톤의 분자량을 갖는 순수한 단백질임을 알 수 있다.CAP30, the protein isolated in Example 1, was subjected to electrophoresis on 12.5% SDS-polyacrylamide gel, and the results as shown in FIG. On the other hand, electrophoresis of the standard protein together to compare the moving distance ratio according to the molecular weight size can be measured molecular weight, the standard protein used in the molecular weight measurement bovine serum albumin 66,200 daltons, egg albumin 45,000 daltons, carbonic anhydrous dehydrogenase (carbonic anhydrase) 31,000 daltons, trypsin inhibitor 21,500 daltons, lysozyme 14,400 daltons. From Figure 1, it can be seen that the CAP30 isolated from the leaves of white tuna is a pure protein having a molecular weight of 30,000 Daltons.

b) 단백질의 N-말단 아미노산 서열분석b) N-terminal amino acid sequencing of the protein

정제된 단백질 CAP30 4㎍을 SDS-PAGE에서 전기이동시킨 후, PVDF 막에 상온, 50V, 170mA 상태에서 30분간 전기블롯팅(electroblotting)시켰다. 블롯팅 완충액으로는 10% 메탄올에 10mM의 3-사이클로헥실아미노-1-프로판술포닉산(3-cyclohexylamino-1-propanesulfonic acid)를 용해시킨 것을 사용하였다. 블롯팅한 밴드는 코마시에 블루(coomassie blue)염색으로 확인한 후, 이를 절단하였다. N-말단 아미노산 서열의 결정은 페닐티오히단토인(phenylthiohydantoin) 유도체에 대하여 단백질 서열 분석기 476A(applied Biosystems)로 액체상 조건으로 분석하였다. 분석된 N-말단 아미노산 서열은 표 1과 같다.4 μg of purified protein CAP30 was electrophoresed on SDS-PAGE, followed by electroblotting on PVDF membranes at room temperature, 50 V, and 170 mA for 30 minutes. As the blotting buffer, 10 mM 3-cyclohexylamino-1-propanesulfonic acid dissolved in 10% methanol was used. Blotted bands were identified by Coomassie blue staining and then cut. Determination of the N-terminal amino acid sequence was analyzed in liquid phase conditions with a protein sequence analyzer 476A (applied Biosystems) against phenylthiohydantoin derivatives. The analyzed N-terminal amino acid sequence is shown in Table 1.

잔기번호Residue number 아미노산amino acid 잔기번호Residue number 아미노산amino acid 1One AlaAla 1515 ThrThr 22 AspAsp 1616 TyrTyr 33 IleIle 1717 AsnAsn 44 ThrThr 1818 ThrThr 55 PhePhe 1919 PhePhe 66 LysLys 2020 MetMet 77 LeuLeu 2121 GlnGln 88 GluGlu 2222 ValVal 99 ProPro 2323 IleIle 1010 LysLys 2424 ArgArg 1111 ProPro 2525 AsnAsn 1212 ThrThr 2626 GlnGln 1313 GlnGln 2727 AlaAla 1414 AsnAsn

실시예 2. CAP30의 유전자의 분리Example 2. Isolation of the Gene of CAP30

CAP30의 유전자 단편을 분리하기 위하여, CAP30 단백질의 N-말단 아미노산 서열을 이용하여 유전자 선발용 변성 프로브(degenerated probe)를 제작하였는데, 두 종류의 프라이머, 즉 Che-1(5'-AAAGCTTGCTGATATCACTTTTAAGCTTGAGCCAAAGCCAACTCA GAACACTTACAACACTGCAGG-3')와 Che-2(5'-TTTCGAACGACTATAGTGAAAATTCGAACTCGGTTTCGGT TGAGTCTTGTGAATGTTGTGACGTCC-3')를 합성한후, 어닐링(anealing), 클레노우(klenow) 처리 후 pCRTM2.1 클로닝 벡터(Invitrogen)에 삽입하고, 대장균 TG1(ATCC 13329)에 형질전환하였으며 염기서열 분석을 통하여 정확한 삽입을 확인하였다.In order to isolate the gene fragment of CAP30, a degenerated probe for gene selection was constructed using the N-terminal amino acid sequence of the CAP30 protein. ') And Che-2 (5'-TTTCGAACGACTATAGTGAAAATTCGAACTCGGTTTCGGT TGAGTCTTGTGAATGTTGTGACGTCC-3') were synthesized, and then subjected to annealing and klennow treatment and inserted into pCR TM 2.1 cloning vector (Invitrogen), and E. coli TG1 (ATCC 13329). ) And the correct insertion was confirmed by sequencing.

제작된 운반체를 증폭시킨 후, Hind Ⅲ와 PstⅠ으로 절단, 단편만 분리하고, Random primed DNA 라벨링 킷트(BM 1004760)을 이용하여32P-dATP 동위원소로 표지한 후, CAP30 유전자 선발용 프로브로 사용하였다.After amplifying the prepared carriers, cleavage was carried out with Hind III and PstI, and only fragments were separated, labeled with 32 P-dATP isotopes using a random primed DNA labeling kit (BM 1004760), and used as a CAP30 gene selection probe. It was.

cDNA 라이브러리를 제작하기 위하여, 단백질 분리에 사용되었던 동일한 흰명아주의 잎 8g으로부터 약 2㎎의 전체 RNA를 분리한 후, 퀵프레프 mRNA 정제 킷트(QuickPrep mRNA purification Kit; Pharmacia)를 이용하여 mRNA를 분리하였다. cDNA 라이브러리는 ZAP-cDNA Gigapack Ⅱ Gold Cloning Kit( Stratagene 200402)를 이용하여 제작하였으며 효율은 1.5×107pfu/㎕로서 매우 양호하였다. 상기에서 제작한 CAP30 유전자 선발용 프로브를 이용하여 약 500,000개의 파아지를 스크링한 결과 7개의 포지티브 파아지를 선발할 수 있었다. 선발한 포지티브 파아지 단편들은 pBluscript Ⅱ SK+(Stratagene)에 재삽입한 후, 서열화 킷트(Sequencing Kit Version 2.0: 미국 바이오케미컬사)를 이용하여 반응을 시킨 후, FB-SEQ 3545(Fisher Scientific) DNA Sequencing system에서 염기서열을 결정하였다. CAP30 cDNA 단편의 염기서열을 분석한 결과, 서열 1에서 알 수 있는 바와 같이, 총 1,137bp 이었으며, 840bp의 헥산서열(279개의 아미노산)을 인식하는 오픈 리딩 프레임(opening reading frame; ORF)이 존재하였는데, 프로브로 사용된 N-말단 부위의 26개 아미노산 서열이 동일하게 존재하므로 CAP30 단백질 유전자를 선발하였음을 확인할 수 있었다. 또한, N-말단에 시그널 펩티드(signal peptides; 서열 1에서 밑줄친 부분)가 있었으며, 도 2에서 알 수 있는 바와 같이, 공지의 라이보좀 불활성화 단백질들(RIPs)의 전체 염기서열간의 상동성은 낮았으나, RIPs의 활성부위로서 그 상동성이 매우 높은 부위인 AIQMVAEAARFKYI(서열 1에서 역상부분)의 아미노산 서열을 보유하고 있어, 본 발명의 CAP30은 라이보좀을 불활성화시키는 능력을 가진 것으로 추정할 수 있다.To prepare the cDNA library, approximately 2 mg of total RNA was isolated from 8 g of the leaves of the same white tusk, which was used for protein isolation, and then mRNA was isolated using the QuickPrep mRNA purification Kit (Pharmacia). It was. The cDNA library was prepared using a ZAP-cDNA Gigapack II Gold Cloning Kit (Stratagene 200402) and the efficiency was very good as 1.5 × 10 7 pfu / μl. Seven positive phages were selected by screening about 500,000 phages using the CAP30 gene selection probe prepared above. Selected positive phage fragments were reinserted into pBluscript II SK + (Stratagene), and then reacted using a sequencing kit (Sequencing Kit Version 2.0: Biochemical, USA), followed by FB-SEQ 3545 (Fisher Scientific) DNA Sequencing system. The base sequence was determined in. As a result of analyzing the nucleotide sequence of the CAP30 cDNA fragment, as shown in SEQ ID NO: 1, the total was 1,137 bp, and there was an opening reading frame (ORF) that recognized the 840 hexane sequence (279 amino acids). Since the 26 amino acid sequences of the N-terminal region used as the probe exist identically, it was confirmed that the CAP30 protein gene was selected. In addition, there were signal peptides (underlined in SEQ ID NO: 1) at the N-terminus, and as shown in FIG. 2, homology between the entire nucleotide sequences of known ribosomal inactivating proteins (RIPs) was low. However, since the amino acid sequence of AIQMVAEAARFKYI (the reverse phase in SEQ ID NO: 1), which is a site of very high homology, is an active site of RIPs, it can be assumed that CAP30 of the present invention has an ability to inactivate ribosomes.

실시예 3 : CAP30을 처리한 식물 라이보좀의 불활성화 능력 검정Example 3 Inactivation Capacity Assay of Plant Ribosomes Treated with CAP30

담배, 흰명아주 및 토마토에서의 CAP30의 라이보좀 불활성화 능력을 검정하기 위하여 담배, 흰명아주 및 토마토 잎의 라이보좀 RNA가 절단(depurination)되는 효율을 조사하였다. 즉, 담배, 흰명아주 및 토마토 잎의 라이보좀을 분리한 후, CAP30을 처리하고, 절단된 단편이 형성되는지의 여부를 관찰하였다.In order to assay the ribosomal inactivation ability of CAP30 in tobacco, white tuna and tomato, the efficiency of depurination of ribosomal RNA of tobacco, white tuna and tomato leaf was investigated. That is, after separating the ribosome of tobacco, white tuna and tomato leaves, and treated with CAP30, it was observed whether the cleaved fragment is formed.

담배, 흰명아주 및 토마토 잎의 라이보좀을 분리한 후, 각 라이보좀(15㎍)마다 CAP30(1㎍)을 처리한 후, RAM 용액(25mM HEPES-KOH, 2mM MgOAC, 2mM ATP-KOH, 0.1㎎/㎖ tRNA)과 함께 30℃에서 30분 동안 반응시켰다. 그런다음, 라이보좀 RNA를 분리하고, 어닐린 처리를 하여 얼음에서 30분 동안 반응시킨 후, 포름아마이드 겔에서 전기영동하고, 프로브로 노턴 블럿(northern blot)을 실시하여 절단을 확인하였다. 그 결과는 도 3에 나타냈었다.After separating the ribosomes of tobacco, white malt, and tomato leaves, each of the ribosomes (15 μg) was treated with CAP30 (1 μg), followed by RAM solution (25 mM HEPES-KOH, 2 mM MgOAC, 2 mM ATP-KOH, 0.1). Mg / ml tRNA) at 30 ° C. for 30 minutes. Then, the ribosomal RNA was isolated, annealed and reacted on ice for 30 minutes, followed by electrophoresis on formamide gels, and Northern blot with a probe to confirm cleavage. The result was shown in FIG.

일반적으로 라이보좀 rRNA의 염기서열은 식물체 간에 상당히 상동성이 높은 것으로 알려져 있으므로, CAP30 처리 유무에 따른 라이보좀 불활성화 유무를 조사하기 위하여 불활성화시 어닐린처리에 의하여 떨어져 나오는 단편을 인식하도록 토마토 25S 라이보좀 리보 헥산 유전자(ribisomal RNA gene; EMBL# LE25SSRIB)의 C-말단에 대하여 프라이머를 제작하였다. 제작된 프라이머의 염기서열은 각각 P-1(5'-TGACGAGAGGAACCGTTG-3')과 P-2(5'-ATCTCAGTGGATCGTGGC-3')이며, 토마토의 제놈 DNA를 주형하여 PCR합성을 한 결과 335bp (3356-3021)의 PCR 산물을 얻을 수 있었는데 이를 상기한 실험의 프로브로서 사용하였다.In general, since the nucleotide sequence of the ribosome rRNA is known to be highly homologous between plants, tomato 25S to recognize fragments separated by annealing treatment upon inactivation in order to examine the presence or absence of ribosome inactivation with or without CAP30 treatment. Primers were prepared for the C-terminus of the ribosomal ribohexane RNA gene (EMBL # LE25SSRIB). The base sequences of the prepared primers were P-1 (5'-TGACGAGAGGAACCGTTG-3 ') and P-2 (5'-ATCTCAGTGGATCGTGGC-3'), respectively, and 335bp (3356) was obtained by PCR synthesis of the genome DNA of tomato. PCR product of -3021) was obtained and used as a probe of the above experiment.

도 3으로부터, 담배와 토마토 라이보좀의 경우 CAP30을 처리한 경우에만 어닐린에 의하여 라이보좀 RNA가 절단되었으나, 무처리시에는 절단되지 않아 CAP30의 라이보좀 불활성화 능력이 확인되었다. 그러나, 흰명아주 잎의 라이보좀의 경우 CAP30을 처리한 경우 뿐만 아니라 무처리시에도 절단 단편이 형성되었는데 이는 라이보좀 분리시 명아주 자체 CAP30의 영향을 받았기 때문이다. 따라서, 상기한 실험을 토대로 CAP30이 강한 라이보좀 불활성화 능력을 가진 단백질임을 알 수 있다.3, in the case of tobacco and tomato ribosomes, ribosome RNA was cleaved by anneal only when CAP30 was treated, but when not treated, the ribosome inactivation ability of CAP30 was confirmed. However, in the case of the ribosome of the white gingival leaves, the cleavage fragments were formed not only in the CAP30 treatment but also in the non-treatment, because it was affected by the CAP30 itself. Therefore, it can be seen that CAP30 is a protein having a strong ribosomal inactivation ability based on the above experiment.

실시예 4 : 식물 바이러스에 대한 항바이러스 활력Example 4 Antiviral Vitality Against Plant Viruses

항바이러스 활성은 바이러스를 직접 식물체에 접종하여 검정하는 생물검정과 항바이러스성 단백질의 생화학적인 특성을 이용하여 실험실에서 검정하는 2가지 방법을 사용하였다.For the antiviral activity, two methods were used: a bioassay in which the virus was directly inoculated into the plant and assayed in the laboratory using the biochemical properties of the antiviral protein.

a) 오이모자이크 바이러스에 대한 활성 검정a) activity assay against cucumber mosaic virus

흰명아주잎에서 분리한 항바이러스성 단백질(CAP30)을 하기 표 2에 기재된 농도로 만들어서 오이모자이크 바이러스(CMV)가 이병된 담배잎을 1g/5㎖ 완충용액 비율로 추출한 추출액의 일정량과 같은 비율로 혼합하여 담배(Nicotiana tabacum cv. Samsun) 엽면에 도말처리하였다. 기존에 알려진 항바이러스성 단백질과 활성을 비교하기 위하여 미국 Souyhwest Texas State University의 Irvin 교수로부터 분양받은 미국자리공 항바이러스성 단백질(pokeweed antiviral protein ; PAP)도 하기 표 2에 기재된 농도로 처리하였다. 대조구로는 CMV만을 처리한 것과 무접종 처리구(100mM Tris-HCl, pH 7.5)를 사용하였다. 접종 후 8일, 11일, 15일에 각각 바이러스 병징을 조사하였다. 그 결과는 표 2와 같다.The antiviral protein (CAP30) isolated from the white M. oleander leaves was made to the concentration shown in Table 2 below, and the tobacco leaves infected with cucumber mosaic virus (CMV) were extracted at a ratio equal to a predetermined amount of the extract extracted at the ratio of 1 g / 5 ml buffer solution. The mixture was smeared on the leaf surface of tobacco (Nicotiana tabacum cv. Samsun). In order to compare the activity with known antiviral proteins, pokeweed antiviral protein (PAP), which was distributed by Professor Irvin of Souyhwest Texas State University, USA, was also treated at the concentrations shown in Table 2 below. The control group was treated with only CMV and non-inoculated treatment (100 mM Tris-HCl, pH 7.5). Viral symptoms were examined at 8, 11 and 15 days after inoculation, respectively. The results are shown in Table 2.

단백질 농도(ng/㎖)Protein concentration (ng / ml) 병징Sickness 접종 8일 후8 days after inoculation 접종 11일 후11 days after inoculation 접종 15일 후15 days after inoculation PAP 1,000PAP 1,000 -- -- -- PAP 500PAP 500 -- ++++ ++++++ PAP 250PAP 250 ++++ ++++++ ++++++ CAP 250CAP 250 -- -- -- CAP 100CAP 100 -- -- -- CAP 50CAP 50 -- -- ++++ CAP 25CAP 25 -- ++ ++++++ CAP 12.5CAP 12.5 ++ ++++ ++++++ CMVCMV ++++++ ++++++ ++++++ 완충액 처리Buffer Treatment -- -- --

상기 표 2에서 알 수 있는 바와 같이, CAP30은 100ng/㎖이상에서, PAP는 1,000ng/㎖농도에서 접종 후 15일까지 바이러스 감염증상을 나타내지 않았다.As can be seen in Table 2, the CAP30 at 100ng / ㎖ or more, PAP did not show viral infection symptoms until 15 days after inoculation at a concentration of 1,000ng / ㎖.

b) 담배 모자이크 바이러스에 대한 활성 검정b) activity assay for tobacco mosaic virus

상기 (a)의 오이모자이크 바이러스 대신에 바이러스 병징이 다른 담배 모자이크 바이러스(Tobacco mosaic virus(TMV); 농촌진흥청 농업과학기술원 병리과 바이러스연구실에서 분리한 TMV U1균주)를 사용한다는 것을 제외하고 동일한 방법으로 생물검정을 실시하고, 그 결과를 도 4 및 표 3에 나타내었다. 표 3에서 PAP-S는 미국자리공 항바이러스성 단백질로서 종자에서만 발현되는 단백질이고, PRIP-2는 호박에서 분리한 단백질이다.Instead of the cucumber mosaic virus of (a), the virus symptom is different from that of tobacco mosaic virus (Tobacco mosaic virus (TMV); TMV U1 strain isolated from the Pathology Department and the Virus Laboratory of Rural Development Administration). The assay was carried out and the results are shown in FIG. 4 and Table 3. In Table 3, PAP-S is a US pore antiviral protein expressed only in seeds, and PRIP-2 is a protein isolated from amber.

표 3에서 알 수 있는 바와 같이, 단백질 농도 0.5㎍/㎖ 이하에서는 CAP30처리가 PAP처리에 비하여 바이러스 감염 저해효과가 좋았다.As can be seen from Table 3, at the protein concentration of 0.5 µg / ml or less, CAP30 treatment showed better virus infection inhibition effect than PAP treatment.

단백질 농도(ng/㎖)Protein concentration (ng / ml) 국부 병반 수 number of local lesions CAP 30CAP 30 PAPPAP PAP-SPAP-S PRIP-2PRIP-2 2.02.0 00 1±11 ± 1 1±11 ± 1 NTNT 1.01.0 1±11 ± 1 15±715 ± 7 4±24 ± 2 NTNT 0.50.5 4±24 ± 2 20±820 ± 8 6±46 ± 4 NTNT 0.250.25 33±1233 ± 12 27±727 ± 7 19±619 ± 6 42±2342 ± 23 0.1250.125 47±1447 ± 14 56±1756 ± 17 58±1358 ± 13 56±1656 ± 16 0.06250.0625 NTNT NTNT NTNT 58±1758 ± 17 TMV 단독TMV alone 64±964 ± 9 ♪ : 6개 흰명아주 잎의 국부병반수 NT: 국부 병반이 나타나지 않음♪: Local lesions of 6 white leaves. NT: No local lesions.

c) 기내 단백질 합성 저해율 측정c) Determination of in-flight protein synthesis inhibition

기내 단백질 합성 저해력은 토끼 망적혈구 분해질(rabbit reticulocyte lysate)을 사용하는 기내 번역 시스템(in vitro translation system; Promega)으로 측정하였다. 즉, 에펜도르프 튜브(1.5㎖)에 리보뉴클레아제가 없는 물(ribonuclease free H2O) 3.5㎕, RNasin 리보뉴클레아제 저해제(ribonuclease inhibior; 40 unit/㎕) 0.5㎕, 1mM 아미노산 혼합물((-)-로이신) 0.5㎕, [14C] 로이신 leucine; 50μCi/㎖) 2.5㎕, 브롬 모자이크 바이러스(Brome mosaic virus) mRNA(0.5㎍/㎕) 1.0㎕를 넣어서 혼합한 후, 여기에 각각의 단백질 분획 3㎕와 토끼 망적혈구 분해질 17.5㎕를 넣고 30℃에서 60분간 반응을 진행시켰다. 반응은 1.5M 수산화칼륨 10㎕를 넣어 중지시킨 후 글라스 필터에 반응액 8㎕를 흡착시켰다. 합성된 단백질외에 포함된 방사성(radioactive) 아미노산 잔기는 세척하여 제거하였다. 세척은 냉각된 10% 트리클로로아세트산(TCA) 용액에 10분, 끓는 물에 중탕시킨 5% TCA 용액에 5분, 5% TCA 용액에서 세척 2회, 에탄올 세척 2회순으로 실시하였다. 글라스 필터는 세척후 건조시킨 다음 Liquid Scintilation Counter(Beckman LS5801)에서 cpm을 측정하여 단백질 합성 저해율을 측정하고, 그 결과를 도 5에 나타내었다. 도 5에서 알 수 있는 바와 같이, 기내 단백질 합성 50% 저해농도는 PAP-S는 14pM, CAP30 9.2pM, PAP 23pM, PRIP-2는 29pM이었다.In vitro protein synthesis inhibition was measured by an in vitro translation system (Promega) using rabbit reticulocyte lysate. That is, 3.5 μl of ribonuclease free H 2 O in a eppendorf tube (1.5 mL), 0.5 μl of RNasin ribonuclease inhibior (40 unit / μl), 1 mM amino acid mixture ((- ) -Leucine) 0.5 [mu] l, [ 14 C] leucine leucine; 2.5 μl of 50 μCi / ml) and 1.0 μl of Bromine mosaic virus mRNA (0.5 μg / μl) were added and mixed. Then, 3 μl of each protein fraction and 17.5 μl of rabbit reticulocyte lysate were added thereto. The reaction was allowed to proceed for 60 minutes at. After the reaction was stopped by adding 10 µl of 1.5 M potassium hydroxide, 8 µl of the reaction solution was adsorbed onto the glass filter. Radioactive amino acid residues included in the synthesized protein were removed by washing. The washing was performed in 10 minutes in a cooled 10% trichloroacetic acid (TCA) solution, 5 minutes in a 5% TCA solution bathed in boiling water, twice in a 5% TCA solution, twice in an ethanol wash. After the glass filter was washed and dried, the cpm was measured in a Liquid Scintilation Counter (Beckman LS5801) to measure the protein synthesis inhibition rate, and the results are shown in FIG. 5. As can be seen in Figure 5, 50% inhibition of in-flight protein synthesis was 14pM for PAP-S, 9.2pM for CAP30, 23pM for PAP, and 29pM for PRIP-2.

따라서, 기존에 강한 항바이러스 활력을 보이는 것으로 보고된 단백질보다도 본 발명에 따른 CAP30이 바이러스에 대한 억제효과가 뛰어남을 알 수 있다.Therefore, it can be seen that the CAP30 according to the present invention has a superior inhibitory effect on the virus than the protein reported to show strong antiviral vitality.

상기에서 설명한 바와 같이, 본 발명의 CAP30은 라이보좀 불활성화 및 항바이러스 활력을 갖는 단백질이므로, 바이러스 방제용 생물농약으로 사용될 수 있으며, 사람에 감염하는 바이러스를 인식하는 항체와 결합하여 인체용 항바이러스성 제제로 사용될 수 있다. 또한, CAP30의 cDNA 유전자는 병저항성 작물개발의 바이러스 저항성 유전인자로 사용될 수 있으며 동 유전자를 식물체에 도입, 발현시키게 되면 주요 작물의 재배에 있어서 식물바이러스의 발병으로 인한 피해를 줄 일 수 있게 된다.As described above, since CAP30 of the present invention is a protein having inactivation of ribosome and antiviral vitality, it can be used as a biopesticide for virus control, and is combined with an antibody that recognizes a virus that infects humans. Can be used as a sex agent. In addition, the cDNA gene of CAP30 can be used as a viral resistance gene for disease-resistant crop development. When the gene is introduced and expressed in a plant, it can reduce the damage caused by the development of plant viruses in the cultivation of major crops.

·서열목록Sequence List

서열번호(SEQ IN NO): 1SEQ IN NO: 1

서열의 길이(Sequence length): 840bp(헥산) 279aa(단백질)Sequence length: 840 bp (hexane) 279aa (protein)

서열의 타입(Sequence type): 헥산 및 아미노산Sequence type: hexane and amino acid

쇄의 수(Strandedness): 2본쇄(헥산)Strandedness: 2 strands (hexane)

토폴로지(Topology): 선형(헥산), 불명(단백질)Topology: linear (hexane), unknown (protein)

분자의 타입(Molecule type): cDNA for rRNA, proteinMolecule type: cDNA for rRNA, protein

추정서열(Hypothetical): 아니오Hypothetical: No

앤티센스(Anti-sense): 아니오Anti-sense: no

기원(Original source)Original source

(A)생물명(Organism): 흰명아주(Chenopodium album var.)(A) Organism: Chenopodium album var.

(B)주명(Strain): 흰명아주(Chenopodium album var.)(B) Strain: Chenopodium album var.

(C)개체 분리클론명(Individual isolate): CAP30(C) Individual isolate clone name: CAP30

(D) 세포기관(Organelle): 잎(D) Organelle: leaf

직접적인 기원(Immediate source)Immediate source

(A)라이브러리명(Library): 흰명아주(Chenopodium album L.) 라이브러리(A) Library name: Chenopodium album L. Library

(B)클론명(Clone): CAP30(B) Clone name: CAP30

서열의 특징(Feature)Feature of Sequence

(A)특징을 나타내는 기호(Name/Key): CAP30(A) Characteristic symbol (Name / Key): CAP30

(B) 특징을 결정하는 방법(Identification method) : E(B) Identification method: E

Claims (1)

국내 자생 흰명아주(Chenopodium album var.)의 잎으로부터 분리되고, 분자량이 30,000달톤이며, 유전자의 염기서열이 서열 1로 표시되는 항바이러스성 단백질 CAP30.An antiviral protein CAP30 isolated from the leaves of native Korean Magnolia vulgaris (Chenopodium album var.), Molecular weight 30,000 Daltons, and the nucleotide sequence of the gene represented by SEQ ID NO: 1.
KR1019980013096A 1998-04-13 1998-04-13 An antiviral protein cap30 isolated from the chenopodium album var. KR100270927B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980013096A KR100270927B1 (en) 1998-04-13 1998-04-13 An antiviral protein cap30 isolated from the chenopodium album var.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980013096A KR100270927B1 (en) 1998-04-13 1998-04-13 An antiviral protein cap30 isolated from the chenopodium album var.

Publications (2)

Publication Number Publication Date
KR19990080096A KR19990080096A (en) 1999-11-05
KR100270927B1 true KR100270927B1 (en) 2000-11-01

Family

ID=19536163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980013096A KR100270927B1 (en) 1998-04-13 1998-04-13 An antiviral protein cap30 isolated from the chenopodium album var.

Country Status (1)

Country Link
KR (1) KR100270927B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112641101A (en) * 2020-12-24 2021-04-13 常州市芙丽佳生物科技有限公司 Albumen powder containing olive kernel extract and preparation method thereof

Also Published As

Publication number Publication date
KR19990080096A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
Lin et al. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR 15 polypeptide
Linthorst et al. Tobacco and tomato PR proteins homologous
RU2158762C2 (en) Antimicrobial proteins
Huynh et al. Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds
Sacks et al. Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma
Bucher* et al. Two genes encoding extensin-like proteins are predominantly expressed in tomato root hair cells
JP3410734B2 (en) Biocidal protein
McGrogan et al. Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein.
Tosi et al. Molecular cloning of human C1 inhibitor: sequence homologies with α1-antitrypsin and other members of the serpins superfamily
Kooman-Gersmann et al. Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity
CA2154274C (en) Novel genes, polypeptides, and compositions for cold tolerance and drought resistance in plants
US8242250B2 (en) Nucleic acid molecule encoding a cystine knot polypeptide
Finkina et al. A novel defensin from the lentil Lens culinaris seeds
Kovaleva et al. Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings
EP1006785A1 (en) Antimicrobial proteins
Takahashi et al. cDNA sequence analysis and expression of two cold-regulated genes in soybean
WO1995024486A1 (en) ANTIMICROBIAL PROTEINS FROM ARALIA AND $i(IMPATIENS)
KR100270927B1 (en) An antiviral protein cap30 isolated from the chenopodium album var.
KR100346928B1 (en) Antimicrobial protein
US5723326A (en) Genome coding phytolacca antiviral protein and a recombinant expression vector therefor
Arias et al. Isolation and characterization of two new N-glycosidase type-1 ribosome-inactivating proteins, unrelated in amino-acid sequence, from Petrocoptis species
AU662844B2 (en) A novel expression vector for phytolacca antiviral protein
Wang et al. Cloning and analysis of a disease resistance gene homolog from soybean
RU2325398C2 (en) Antibacterial protein chlamisin b, gene, which is coding it, and system that expresses it
AU713922B2 (en) Toxins from the wasp bracon hebetor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
EXPY Expiration of term