KR100270768B1 - Turing angle speed sensor. - Google Patents

Turing angle speed sensor. Download PDF

Info

Publication number
KR100270768B1
KR100270768B1 KR1019970059811A KR19970059811A KR100270768B1 KR 100270768 B1 KR100270768 B1 KR 100270768B1 KR 1019970059811 A KR1019970059811 A KR 1019970059811A KR 19970059811 A KR19970059811 A KR 19970059811A KR 100270768 B1 KR100270768 B1 KR 100270768B1
Authority
KR
South Korea
Prior art keywords
sensing electrodes
angular velocity
rotational angular
amplifier
vibration bar
Prior art date
Application number
KR1019970059811A
Other languages
Korean (ko)
Other versions
KR19990039646A (en
Inventor
이상권
Original Assignee
밍 루
주식회사만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 밍 루, 주식회사만도 filed Critical 밍 루
Priority to KR1019970059811A priority Critical patent/KR100270768B1/en
Publication of KR19990039646A publication Critical patent/KR19990039646A/en
Application granted granted Critical
Publication of KR100270768B1 publication Critical patent/KR100270768B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/483Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable capacitance detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Abstract

PURPOSE: A yaw rate sensor is provided to detect a small change in yaw rate by enlarging cross section between vibration bar and sensing electrodes and altering shape of the vibration bar and the sensing electrodes. CONSTITUTION: A sensor(1) detects the capacitance change caused by the yaw rate from the outside by enlarging cross section between sensing electrodes on both sides and a vibration bar. An amplifier(OP1) amplifies the reference signal from the sensor(1). A differential amplifier(OP2) obtains a difference of the detection signals detected by the two sensing electrodes. A synchronization demodulator(2) divides the phase change of the amplifier(OP1) and the differential amplifier(OP2) to DC(direct current) component and high-frequency component. Another amplifier(OP3) amplifies the DC component while removing the high-frequency component.

Description

회전 각속도 센서Rotary angular velocity sensor

본 발명은 차량 등을 비롯하여 소정의 물체가 좌측 및/또는 우측으로 회전할 경우에 그 물체의 회전각도를 검출하는 회전 각속도 센서(Yaw Rate Sensor)에 관한 것으로 특히 피에조 액츄에이터(Piezo Actuator)를 이용하여 회전 각속도를 측정함에 있어서 좌우 양측의 감지전극과, 진동바아(Vibration Bar)의 단면적을 확장시켜 회전 각속도의 변화에 따른 정전용량(Capacitance)의 변화폭을 증대시키고, 물체의 미세한 움직임에 대한 회전각을 정확하게 검출할 수 있도록 하는 회전 각속도 센서에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a yaw rate sensor that detects a rotation angle of an object when a predetermined object, such as a vehicle, rotates to the left and / or right. In particular, the present invention relates to a piezo actuator using a piezo actuator. In measuring the rotational angular velocity, the cross-sectional areas of the sensing electrodes on the left and right sides and the vibration bar are expanded to increase the variation in capacitance according to the change in the rotational angular velocity, and the rotational angle of the minute movement of the object is increased. The present invention relates to a rotational angular velocity sensor that enables accurate detection.

즉, 본 발명은 회전 각속도 센서를 구성하는 캐패시터를 병렬로 복수개 구성하여서 외부에서 가해지는 회전 각속도에 의해 변화하는 정전용량의 변화폭을 증대시킴으로써 미세한 회전 각속도 변화까지도 정확하게 감지할 수 있도록 하는 회전 각속도 센서에 관한 것이다.That is, the present invention provides a rotational angular velocity sensor that can accurately detect even minute rotational angular velocity changes by increasing a change in capacitance changed by rotational angular velocity applied from the outside by configuring a plurality of capacitors constituting the rotational angular velocity sensor in parallel. It is about.

종래의 회전 각속도 센서 및 증폭회로는 제1도에 도시된 바와 같이, 외부에서 가해지는 회전 각속도에 따른 정전용량의 변화량을 감지하는 감지부(1)와, 이 감지부(1)에 가해지는 기준신호를 얻어서 증폭하는 증폭기(OP1)와, 두 개의 감지전극(14)(15)에 의해 감지되는 각 감지신호의 차이 값을 구하는 차동 증폭기(OP2)와, 이 증폭기(OP1)와 차동 증폭기(OP2)의 위상 변화 값을 DC성분과 고주파 성분으로 분리하는 동기식 디모듈레이터(2)와, 상기 동기식 디모듈레이터(2)의 출력에서 고주파 성분을 제거하고 직류 성분만을 증폭하여 출력하는 증폭기(OP3)로 구성된다.Conventional rotational angular velocity sensor and amplification circuit, as shown in Figure 1, the sensing unit (1) for detecting the amount of change of capacitance according to the rotational angular velocity applied from the outside, and the reference applied to the detection unit (1) An amplifier OP1 for acquiring and amplifying a signal, a differential amplifier OP2 for obtaining a difference value between respective sensing signals sensed by the two sensing electrodes 14 and 15, and the amplifier OP1 and the differential amplifier OP2. A synchronous demodulator 2 that separates the phase change value of the into a DC component and a high frequency component, and an amplifier OP3 that removes the high frequency component from the output of the synchronous demodulator 2 and amplifies and outputs only the DC component.

이와 같이 구성된 회전 각속도 센서의 동작을 살펴보면, 드라이브 신호원(11)으로부터 출력되는 일정 주파수의 드라이브 신호가 피에조 액츄에이터(12)에 공급되면, 이 드라이브 신호에 의해 피에조 액츄에이터(12)가 상하로 진동하게 되면서 두 개의 감지전극(14)(15) 사이의 안착홈(17)에 내입된 진동바아(16)가 공진상태를 유지하게 된다.Referring to the operation of the rotational angular velocity sensor configured as described above, when a drive signal of a predetermined frequency output from the drive signal source 11 is supplied to the piezo actuator 12, the piezo actuator 12 vibrates up and down by this drive signal. As a result, the vibration bar 16 embedded in the mounting groove 17 between the two sensing electrodes 14 and 15 maintains the resonance state.

이렇게 진동바아(16)가 공진 상태를 유지하는 중에 외부로부터 회전 각속도(Ω:Yaw Rate)가 작용되면, 진동바아(16)가 안착홈(17) 내에서 좌우로 유동하므로 진동바아(16)와 각 감지전극(14)(15)과의 거리(d)가 변화하게 된다. 이에 따라 진동바아(16)와 각 감지전극(14)(15)과의 정전용량(C)이 수학식 1에서와 같이 변화되면서 이들 감지전극(14)(15)으로부터 감지되는 감지신호의 주파수와 진폭이 달라지게 된다.When the rotational angular velocity (Ω: Yaw Rate) is applied from the outside while the vibration bar 16 maintains the resonance state, the vibration bar 16 flows from side to side within the seating groove 17 and thus the vibration bar 16 and The distance d from each of the sensing electrodes 14 and 15 is changed. Accordingly, the capacitance C between the vibration bar 16 and each of the sensing electrodes 14 and 15 is changed as in Equation 1, and the frequency of the sensing signal detected from these sensing electrodes 14 and 15 is changed. The amplitude will be different.

[수학식 1][Equation 1]

Figure kpo00001
Figure kpo00001

이다.to be.

여기서, C는 정전용량이고, A는 감지전극(14)(15)과 진동바아(16)와의 단면적이며, d는 감지전극(14)(15)과 진동바아(16)와의 거리이다.Here, C is the capacitance, A is the cross-sectional area of the sensing electrodes 14, 15 and the vibration bar 16, d is the distance between the sensing electrodes 14, 15 and the vibration bar 16.

이렇게 드라이브 신호원(11)으로부터 출력되는 일정 주파수의 드라이브 신호(V)에 진동바아(16)가 공진상태를 유지하는 중에 외부에서 회전 각속도(Ω)가 가해지면, 양측의 감지전극(14)(15)에 의해 감지되는 감지신호(Fc)는 다음의 수학식 2에서와 같이 감지된다.When the rotational angular velocity Ω is applied to the drive signal V having a constant frequency output from the drive signal source 11 while the vibration bar 16 maintains the resonance state, the sensing electrodes 14 on both sides ( The detection signal Fc detected by 15 is detected as in Equation 2 below.

[수학식 2][Equation 2]

Figure kpo00002
Figure kpo00002

이다.to be.

위에서와 같이, 외부에서 가해지는 회전 각속도(Ω)에 의해 두 개의 감지전극(14)(15)에 의해 감지되는 신호를 처리하는 과정을 보면, 제2(a)도와 같은 감지신호(기준신호)가 전계효과 트랜지스터(Q1)에 의해 제2(b)도와 같이 완충된 후 감지신호 중 DC성분이 DC 커플링용 커패시터(C1)에 의해 차단되어서 증폭기(OP1)에 입력되면, 증폭기(OP1)는 이 기준신호를 제2(c)도와 같이 증폭하여 동기식 디모듈레이터(2)에 공급하게 된다.As described above, in the process of processing the signals sensed by the two sensing electrodes 14 and 15 by the rotational angular velocity Ω applied from the outside, the sensing signal (reference signal) as shown in FIG. When the DC component of the sense signal is blocked by the DC coupling capacitor C1 and inputted to the amplifier OP1 after being buffered by the field effect transistor Q1 as shown in FIG. 2 (b), the amplifier OP1 The reference signal is amplified as shown in FIG. 2 (c) and supplied to the synchronous demodulator 2.

또한, 두 개의 감지전극(14)(15)에 의해 제2(d), 제2(e)도와 같이 감지되는 감지신호를 전계효과 트랜지스터(Q2)(Q3)에 의해 완충된 후 감지신호 중 DC성분이 DC 커플링용 커패시터(C2)(C3)에 의해 차단되어서 차동 증폭기(OP2)의 비반전 입력단자(+)와 반전 입력단자(-)에 각각 입력되고, 이어서 차동 증폭기(OP2)는 두 개의 감지전극(14)(15)에 의해 감지되는 각 감지신호의 차이 값을 제2(f)도와 같이 구하게 된다.In addition, the sensing signal sensed by the two sensing electrodes 14 and 15 as shown in the second (d) and the second (e) diagrams is buffered by the field effect transistors Q2 and Q3, and then the DC of the sensing signal. The components are cut off by the DC coupling capacitors C2 and C3 and input to the non-inverting input terminal (+) and the inverting input terminal (-) of the differential amplifier OP2, respectively, followed by two differential amplifiers OP2. The difference value of each sensing signal detected by the sensing electrodes 14 and 15 is obtained as shown in FIG. 2 (f).

이렇게 기준신호와 두 감지신호의 위상 차이 값을 공급받은 동기식 디모듈레이터(2)는 차동 증폭기(OP2)의 위상 변화 값의 DC성분과 고주파 성분으로 분리한 제2(g)도와 같은 출력을 증폭기(OP3)에 공급하게 된다.The synchronous demodulator 2, which is supplied with the phase difference value between the reference signal and the two sensed signals, outputs an output such as a second (g) diagram separated into a DC component and a high frequency component of a phase change value of the differential amplifier OP2. ) Will be supplied.

이에 따라 증폭기(OP3)는 제2(g)도와 같은 동기식 디모듈레이터(2)의 출력중 고주파 성분을 제거하고, DC성분만을 제2(h)도와 같이 증폭하여 후단으로 출력하게 된다. 그러므로 이 DC성분을 판독하여 회전 각속도 센서에 의해 감지되는 회전 각속도를 판단할 수 있는 것이다.Accordingly, the amplifier OP3 removes the high frequency component from the output of the synchronous demodulator 2 such as the second (g) degree, amplifies only the DC component as the second (h) degree, and outputs it to the rear stage. Therefore, by reading this DC component, it is possible to determine the rotational angular velocity detected by the rotational angular velocity sensor.

그러나 상기한 바와 같은 회전 각속도 센서에서는 진동바아와 두 개의 전극간 단면적이 적어서 회전 각슥도에 의해 변화하는 정전용량의 변화 폭이 적기 때문에 회전 각속도의 변화량을 보다 정확하게 감지하지 못하게 된다. 또한 정전용량의 변화량을 증대시키기 위해서 진동바아와 두 개의 감지전극과의 단면적을 확장하게 되면, 회전 각속도 센서의 전체 부피가 증가되는 결점을 갖는다.However, in the rotational angular velocity sensor as described above, since the cross-sectional area between the vibration bar and the two electrodes is small, the amount of change in capacitance changed by the rotational angle is small so that the amount of change in the rotational angular velocity cannot be detected more accurately. In addition, when the cross-sectional area between the vibration bar and the two sensing electrodes is increased to increase the amount of change in capacitance, the total volume of the rotational angular velocity sensor is increased.

본 발명은 상기와 같은 종래의 결점을 해소하기 위해 안출한 것으로서, 진동바아와 감지전극 간의 단면적을 확장하되, 다수개의 캐패시터가 병렬 연결되도록 진동바아와 감지전극의 형상을 변경하여 회전 각속도 센서의 부피를 그대로 유지하면서도 미세한 회전 각속도 변화까지도 감지할 수 있도록 하는 회전 각속도 센서를 제공하고자 하는데 그 목적이 있는 것이다.The present invention has been made to solve the above-mentioned drawbacks, while extending the cross-sectional area between the vibration bar and the sensing electrode, the volume of the rotational angular velocity sensor by changing the shape of the vibration bar and the sensing electrode so that a plurality of capacitors are connected in parallel. The purpose of the present invention is to provide a rotational angular velocity sensor that can detect a slight rotational angular velocity change while maintaining the same.

이러한 목적을 달성하기 위한 본 발명의 회전 각속도 센서는 양측 감지전극과 진동바아와의 단면적을 확장시켜서 외부로부터 가해지는 회전각속도에 따른 정전용량의 변화량을 감지하는 감지수단과, 이 감지수단에 가해지는 기준신호를 얻어서 증폭하는 증폭수단과, 두 개의 감지전극에 의해 감지되는 각 감지신호의 차이 값을 구하게 되는 차동 증폭수단과, 이 증폭수단과 차동 증폭수단의 위상 변화 값을 DC성분과 고주파 성분으로 분리하는 동기식 디모듈레이터와, 이 동기식 디모듈레이터의 출력 중 고주파 성분을 제거하면서 DC성분을 증폭하게 되는 증폭수단을 포함하여 구성된다.The rotational angular velocity sensor of the present invention for achieving this object is to extend the cross-sectional area between the sensing electrode and the vibration bar on both sides to detect the amount of change of capacitance according to the rotational angular velocity applied from the outside, and applied to the sensing means An amplifying means for obtaining and amplifying a reference signal, a differential amplifying means for obtaining a difference value of each sensing signal sensed by two sensing electrodes, and a phase change value of the amplifying means and the differential amplifying means as a DC component and a high frequency component. And amplifying means for amplifying the DC component while removing the high frequency component from the output of the synchronous demodulator.

특히, 상기 감지수단은 일정한 주파수를 갖는 드라이브 신호에 의해 상하로 진동하는 피에조 액츄에이터와, 이 피에조 액츄에이터의 상면에 안착되어서 중앙에 복수개의 안착홈이 형성되게 하는 복수개의 감지전극와, 이 감지전극 사이에 형성된 복수개의 안착홈에 내입되어서 드라이브 신호에 의해 공진하면서 외부로부터 가해지는 회전 각속도에 의해 좌우로 유동하게 되는 다수개의 진동바아를 포함하여 구성됨을 특징으로 한다.In particular, the sensing means includes a piezo actuator which vibrates up and down by a drive signal having a constant frequency, a plurality of sensing electrodes which are seated on an upper surface of the piezo actuator so that a plurality of seating grooves are formed in the center thereof, and between the sensing electrodes. It is characterized in that it comprises a plurality of vibration bars that are embedded in the plurality of seating grooves formed to flow from side to side by the rotational angular velocity applied from the outside while resonating by the drive signal.

제1도는 종래의 회전 각속도 센서의 일예를 보인 도면이고,1 is a view showing an example of a conventional rotational angular velocity sensor,

제2(a)도 내지 제2(h)도는 제1도의 각 부위에서 출력되는 신호를 보인 파형도이며,2 (a) to 2 (h) is a waveform diagram showing a signal output from each part of FIG.

제3도는 본 발명에 따른 회전 각속도 센서의 구성을 보인 도면이다.3 is a view showing the configuration of a rotational angular velocity sensor according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 감지부 2 : 동기식 디모듈레이터1 sensing unit 2 synchronous demodulator

11 : 드라이브 신호원 12 : 피에조 액츄에이터11 drive signal source 12 piezo actuator

14a~14c, 15a~15c : 감지전극 16a : 진동바아14a ~ 14c, 15a ~ 15c: sensing electrode 16a: vibration bar

17a, 17b, 17c : 안착홈 Q1, Q2, Q3 : 전계효과 트랜지스터17a, 17b, 17c: settling grooves Q1, Q2, Q3: field effect transistor

OP1, OP2, OP3 : 증폭기 C1, C2, C3 : 캐패시터OP1, OP2, OP3: Amplifier C1, C2, C3: Capacitor

이하, 첨부된 도면을 참고하여 본 발명에 의한 회전 각속도 센서의 구성 및 동작을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation of the rotational angular velocity sensor according to the present invention.

종래의 구성에서와 동일한 부분에 대해서는 부호를 동일하게 기입하여 설명한다.The same parts as in the conventional configuration will be described with the same reference numerals.

제3도는 본 발명에 따른 회전 각속도 센서의 구성도로서, 감지부(1)의 기준신호와 감지전극(14a)(14b)(14c)(15a)(15b)(15c)(본 발명에서는 구성상 3개의 전극으로 설명하고 있으나, 필요에 따라 전극의 수는 변화시킬 수 있다)이 게이트에 연결된 전계효과 트랜지스터(Q1)(Q2)(Q3)의 소오스에는 DC 커플링용 캐패시터(C1)(C2)(C3)를 매개로 증폭기(OP1)의 입력단과 차동 증폭기(OP2)의 비반전단자(+) 그리고 반전단자(-)에 각각 연결되어 있다.3 is a configuration diagram of the rotational angular velocity sensor according to the present invention, and the reference signal of the sensing unit 1 and the sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c (in the present invention, Although described with three electrodes, the number of electrodes can be changed as necessary). The source of the field effect transistors Q1, Q2, and Q3 connected to the gate is a capacitor for DC coupling C1 (C2) ( C3) is connected to the input terminal of the amplifier OP1, the non-inverting terminal (+) and the inverting terminal (-) of the differential amplifier OP2, respectively.

그리고, 기준신호를 증폭하는 증폭기(OP1)와 다수개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)에 의해 감지되는 각 감지신호의 차이 값을 구하는 차동 증폭기(OP2)가 동기식 디모듈레이터(2)에 각각 연결되어서 증폭기(OP1)와 차동 증폭기(OP2)의 위상 변화 값을 DC성분과 고주파 성분으로 분리하도록 한다. 이러한 동기식 디모듈레이터(2)의 출력단에는 증폭기(OP3)가 연결되어서 동기식 디모듈레이터(2)의 출력 중 고주파 성분을 제거하고, DC성분을 증폭하도록 한다.The differential amplifier OP2 calculates a difference value between the amplifier OP1 for amplifying the reference signal and the respective sensed signals detected by the plurality of sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c. ) Are connected to the synchronous demodulator 2 so as to separate the phase change values of the amplifier OP1 and the differential amplifier OP2 into DC and high frequency components. An amplifier OP3 is connected to an output terminal of the synchronous demodulator 2 to remove a high frequency component of the output of the synchronous demodulator 2 and to amplify the DC component.

여기서, 감지부(1)는 드라이브 신호원(11)으로부터 일정 주파수의 드라이브 신호가 인가되는 피에조 액츄에이터(12a)의 상면에는 다수개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)이 다수개의 안착홈(17a)(17b)(17c)이 형성되도록 병렬로 수평지게 설치되어서 전계효과 트랜지스터(Q1)(Q2)(Q3)에 연결되어 있다. 그리고 이 안착홈(17a)(17b)(17c)에는 진동바아(16a)가 내입되어서 외부로부터 가해지는 회전 각속도에 의해 좌우로 유동되도록 한다.Here, the sensing unit 1 has a plurality of sensing electrodes 14a, 14b, 14c, 15a, and 15b on the upper surface of the piezo actuator 12a to which a drive signal of a predetermined frequency is applied from the drive signal source 11. 15c is provided horizontally in parallel so as to form a plurality of seating grooves 17a, 17b and 17c, and is connected to the field effect transistors Q1, Q2 and Q3. Vibration bars 16a are embedded in the seating grooves 17a, 17b, and 17c so as to flow left and right by a rotational angular velocity applied from the outside.

이와 같이 구성된 본 발명의 동작을 설명한다.The operation of the present invention configured as described above will be described.

종래의 기술에서와 같이, 드라이브 신호원(11)으로부터 출력되는 일정 주파수의 드라이브 신호가 피에조 액츄에이터(12a)에 공급되게 되면, 이 드라이브 신호에 의해 피에조 액츄에이터(12a)가 상하로 진동하게 되면서 두 개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c) 사이의 안착홈(17a)(17b)(17c)에 내입된 진동바아(16a)가 공진상태를 유지하게 된다.As in the related art, when a drive signal of a constant frequency output from the drive signal source 11 is supplied to the piezo actuator 12a, the piezo actuator 12a vibrates up and down by the drive signal, thereby causing two vibrations. The vibration bars 16a embedded in the mounting grooves 17a, 17b, and 17c between the sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c maintain the resonance state.

드라이브 신호에 의해 진동바아(16a)가 공진상태를 유지하는 중에 외부로부터 회전 각속도(Ω)가 작용되면, 진동바아(16a)가 안착홈(17a)(17b)(17c) 내에서 좌우로 유동하므로 진동바아(16a)와 다수개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)과의 거리(d)가 변화하게 된다. 이에 따라 진동바아(16a)와 각 감지전극(14a)(14b)(14c)(15a)(15b)(15c)과의 정전용량(C)이 수학식 3에서와 같이 변화되면서 이들 감지전극(14a)(14b)(14c)(15a)(15b)(15c)으로부터 감지되는 감지신호의 주파수와 진폭이 달라지게 된다.When the rotational angular velocity (Ω) is applied from the outside while the vibration bar 16a maintains the resonance state by the drive signal, the vibration bar 16a flows left and right within the seating grooves 17a, 17b, and 17c. The distance d between the vibration bar 16a and the plurality of sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c is changed. Accordingly, the capacitance C between the vibration bar 16a and each of the sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c is changed as in Equation 3, and these sensing electrodes 14a are changed. 14b, 14c, 15a, 15b, and 15c, the frequency and amplitude of the detection signal detected from each other are changed.

[수학식 3][Equation 3]

Figure kpo00003
Figure kpo00003

이다.to be.

여기서, C는 정전용량이고, A는 각 감지전극(14a)(14b)(14c)(15a)(15b)(15c)과 진동바아(16)와의 단면적이며, d는 감지전극(14a)(14b)(14c)(15a)(15b)(15c)과 진동바아(16a)와의 거리이다.Where C is the capacitance, A is the cross-sectional area of each of the sensing electrodes 14a, 14b, 14c, 15a, 15b, 15c and the vibration bar 16, and d is the sensing electrodes 14a, 14b. 14c, 15a, 15b and 15c are the distances between the vibration bar 16a.

즉, 수평으로 설치된 각 감지전극(14a)(14b)(14c)(15a)(15b)(15c)과 진동바아(16a) 사이의 정전용량이 가산되어서 전체적인 정전용량이 증대되는 것이다.That is, the capacitance between each of the sensing electrodes 14a, 14b, 14c, 15a, 15b, 15c and the vibration bar 16a, which are horizontally installed, is added to increase the overall capacitance.

이렇게 드라이브 신호원(11)으로부터 출력되는 일정 주파수의 드라이브 신호(V)에 진동바아(16a)가 공진상태를 유지하는 중에 외부에서 회전 각속도(Ω)가 가해지면, 양측의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)에 의해 감지되는 감지신호(Fc)는 수학식 4에서와 같이 계산된다.When the rotational angular velocity? Is applied to the drive signal V having a predetermined frequency output from the drive signal source 11 while the vibration bar 16a is maintained in a resonance state, the sensing electrodes 14a on both sides ( The detection signal Fc sensed by 14b) 14c, 15a, 15b and 15c is calculated as in Equation (4).

[수학식 4][Equation 4]

Figure kpo00004
Figure kpo00004

이다.to be.

상기에서와 같이, 외부에서 가해지는 회전 각속도(Ω)에 의해 두 개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)에 의해 감지되는 신호를 처리(이는 종래의 회전 각속도 센서보다는 정전용량의 변화 폭이 증대되기 때문에 주파수와 진폭이 달라지나, 기본적인 원리는 동일함으로 종래의 기술에서와 같이 제2도에 의해서 설명한다)하는 과정을 보면, 감지신호(기준신호:제2(a)도)가 전계효과 트랜지스터(Q1)에 의해 완충(제2(b)도)된 후 감지신호 중 DC성분이 DC 커플링용 커패시터(C1)에 의해 차단되어서 증폭기(OP1)에 입력되면, 증폭기(OP1)는 이 기준신호를 증폭(제2(c)도)하여 동기식 디모듈레이터(2)에 공급하게 된다.As described above, the signals sensed by the two sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c are processed by the rotational angular velocity? The frequency and amplitude are different because the change in capacitance is increased rather than the angular velocity sensor, but the basic principle is the same, which is explained by FIG. 2 as in the prior art. After 2 (a) is buffered by the field effect transistor Q1 (second (b)), the DC component of the sense signal is cut off by the DC coupling capacitor C1 and input to the amplifier OP1. The amplifier OP1 amplifies this reference signal (figure 2 (c)) and supplies it to the synchronous demodulator 2.

또한, 두 개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)에 의해 감지되는 감지신호(제2(d)도, 제2(e)도)는 전계효과 트랜지스터(Q2)(Q3)에 의해 완충된 후 감지신호 중 DC성분이 DC 커플링용 커패시터(C2)(C3)에 의해 차단되어서 차동 증폭기(OP2)의 반전 입력단자(-)와 비반전 입력단자(+)에 입력되고, 이어서 차동 증폭기(OP2)는 두 개의 감지전극(14a)(14b)(14c)(15a)(15b)(15c)에 의해 감지되는 각 감지신호의 차이 값(제2(f)도)을 구하게 된다.In addition, the detection signals (second (d) and second (e)) sensed by the two sensing electrodes 14a, 14b, 14c, 15a, 15b, and 15c may be field effect transistors. After buffered by Q2) (Q3), the DC component of the sense signal is cut off by the DC coupling capacitors C2 and C3 so that the inverting input terminal (-) and the non-inverting input terminal (+) of the differential amplifier OP2 are blocked. The differential amplifier OP2 is then input to the difference value (second (f) of the respective sensed signals sensed by the two sensing electrodes 14a, 14b, 14c, 15a, 15b and 15c. ).

이렇게 기준신호와 두 감지신호의 위상 차이 값을 공급받은 동기식 디모듈레이터(2)는 차동 증폭기(OP2)의 위상 변화 값의 DC성분과 고주파 성분으로 분리(제2(g)도)하여 증폭기(OP3)에 공급하게 된다.The synchronous demodulator 2, which is supplied with the phase difference value between the reference signal and the two detection signals, is separated into the DC component and the high frequency component of the phase change value of the differential amplifier OP2 (second (g)) to the amplifier OP3. Will be supplied to

이에 따라 증폭기(OP3)는 동기식 디모듈레이터(2)의 출력(제2(g)도) 중에서 고주파 성분을 제거하면서 DC성분만을 증폭(제2(h)도)하여 후단으로 출력하게 된다. 그러므로 이 DC성분을 판독하여 회전 각속도 센서에 의해 감지되는 회전 각속도를 판단할 수 있는 것이다.Accordingly, the amplifier OP3 amplifies only the DC component (second (h)) and outputs it to the rear stage while removing the high frequency component from the output (second (g)) of the synchronous demodulator 2. Therefore, by reading this DC component, it is possible to determine the rotational angular velocity detected by the rotational angular velocity sensor.

이상에서 설명한 바와 같이 본 발명은 같은 크기의 회전 각속도 센서에서도 단면적이 확장되어서 외부에서 가해지는 회전 각속도의 변화에 따른 정전용량의 변화 폭이 크기 때문에 센서의 크기를 줄일 수 있을 뿐만 아니라, 회전 각속도의 변화량을 보다 정확하게 감지할 수 있는 것이다.As described above, the present invention can not only reduce the size of the sensor but also reduce the size of the rotational angular velocity due to the large change in capacitance due to the change in the rotational angular velocity applied from the outside, even when the rotational angular velocity sensor of the same size is expanded. The amount of change can be detected more accurately.

Claims (1)

소정 주파수의 드라이브 신호에 의해 진동되는 피에조 액츄에이터; 상호간에 소정이 간격을 유지하면서 상기 피에조 액츄에이터의 상면에 설치되고 그 피에조 액츄에이터의 진동에 공진되면서 외부로부터 가해지는 회전 각속도에 따라 좌우로 유동되는 복수의 진동바아; 및 상기 복수의 진동바아의 좌우 양측에 각기 설치되고 그 복수의 진동바아의 좌우 유동에 따른 간격 변화로 정전용량의 변화를 검출하는 복수의 감지전극으로 구성됨을 특징으로 하는 회전 각속도 센서.A piezo actuator vibrated by a drive signal of a predetermined frequency; A plurality of vibration bars installed on an upper surface of the piezo actuator while maintaining a predetermined interval therebetween, and moving left and right according to a rotational angular velocity applied from the outside while resonating with the vibration of the piezo actuator; And a plurality of sensing electrodes installed on both left and right sides of the plurality of vibration bars, respectively, and detecting a change in capacitance by a change in distance according to the left and right flow of the plurality of vibration bars.
KR1019970059811A 1997-11-13 1997-11-13 Turing angle speed sensor. KR100270768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970059811A KR100270768B1 (en) 1997-11-13 1997-11-13 Turing angle speed sensor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970059811A KR100270768B1 (en) 1997-11-13 1997-11-13 Turing angle speed sensor.

Publications (2)

Publication Number Publication Date
KR19990039646A KR19990039646A (en) 1999-06-05
KR100270768B1 true KR100270768B1 (en) 2000-11-01

Family

ID=19524665

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970059811A KR100270768B1 (en) 1997-11-13 1997-11-13 Turing angle speed sensor.

Country Status (1)

Country Link
KR (1) KR100270768B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908200B2 (en) * 2018-03-29 2021-02-02 Cirrus Logic, Inc. Resonant phase sensing of resistive-inductive-capacitive sensors

Also Published As

Publication number Publication date
KR19990039646A (en) 1999-06-05

Similar Documents

Publication Publication Date Title
JP5627582B2 (en) Angular velocity sensor
US7368923B2 (en) Time interval trimmed differential capacitance sensor
US7673529B2 (en) Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
JPH10512046A (en) Integrated resonant microbeam sensor and transistor oscillator
US6907784B2 (en) Vibration type angular velocity sensor
JP4310571B2 (en) Capacitance detection type vibration gyro and capacitance change detection method
US7466119B2 (en) Sensor circuit for detection of an abnormal offset voltage
KR100270768B1 (en) Turing angle speed sensor.
JP5187836B2 (en) Sensor sensitivity adjusting means and sensor manufacturing method
US6786094B2 (en) Process of making an acceleration detecting element
JP2001153659A (en) Angular velocituy sensor
JPH06294654A (en) Oscillation gyro
KR960018525A (en) Vibrating gyroscope
US6538458B2 (en) Electrostatic capacitance probe device and displacement measuring circuit
US6508123B2 (en) Angular velocity sensor
JP3319015B2 (en) Semiconductor yaw rate sensor
JP3039344B2 (en) Vibrating gyroscope and method of adjusting characteristics of vibrating gyroscope
JPH0682465A (en) Rotation detection device
JP2001091261A (en) Vibrating gyro
KR20050082097A (en) A micro gyroscope and a method for tuning the q-factor thereof
JPS6120810A (en) Oscillatory type angular velocity detecting device
JPH06130084A (en) Capacity type semiconductor acceleration sensor
JPH109849A (en) Frequency extraction apparatus
JPS63201518A (en) Angular velocity detecting device
KR20040085618A (en) Device for two axis piezo-electric gyroscope and excitation detecting circuit

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051220

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee