KR100270091B1 - Method of treating sulphur compounds - Google Patents

Method of treating sulphur compounds Download PDF

Info

Publication number
KR100270091B1
KR100270091B1 KR1019960070061A KR19960070061A KR100270091B1 KR 100270091 B1 KR100270091 B1 KR 100270091B1 KR 1019960070061 A KR1019960070061 A KR 1019960070061A KR 19960070061 A KR19960070061 A KR 19960070061A KR 100270091 B1 KR100270091 B1 KR 100270091B1
Authority
KR
South Korea
Prior art keywords
hydrogen sulfide
water
coke oven
gas
hydrogen
Prior art date
Application number
KR1019960070061A
Other languages
Korean (ko)
Other versions
KR19980051187A (en
Inventor
이덕성
정종식
송재활
양희정
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019960070061A priority Critical patent/KR100270091B1/en
Publication of KR19980051187A publication Critical patent/KR19980051187A/en
Application granted granted Critical
Publication of KR100270091B1 publication Critical patent/KR100270091B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/408Cyanides, e.g. hydrogen cyanide (HCH)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method is provided to efficiently treating vapor of water into which hydrogen sulfide is primarily divided in a coke oven by completely oxidizing the vapor of water into which hydrogen sulfide is primarily divided in a coke oven with an inert gas, and circulating through hydrogen sulfide collecting process after converting sulfur dioxide into hydrogen sulfide in the reduction process. CONSTITUTION: In treating sulfur compounds in vapor of water into which hydrogen sulfide is primarily divided in a coke oven after first treating hydrogen sulfide in coke oven gas, the method for efficiently treating the water into which hydrogen sulfide is primarily divided in a coke oven comprises the steps of converting the sulfur dioxide into hydrogen sulfide in a reduction reactor after high temperature oxidizing the vapor of water into which hydrogen sulfide is primarily divided in a coke oven in an oxidation furnace, thereby oxidizing ammonia into water and nitrogen, hydrogen sulfide into sulfur dioxide and water, cyanic acid into nitrogen, carbon dioxide and water, and hydrocarbon into carbon dioxide and water; and circulating by collecting the hydrogen sulfide.

Description

안수증기중 황화합물의 효율적인 처리 방법Efficient Treatment of Sulfur Compounds in Ordinal Steam

본발명은 황화수소를 1차 분리한 안수증기중의 황화합물의 효과적인 처리 방법에 관한 것이며, 보다 상세히는 제철소 등에서 발생하는 코크스 오븐 가스중 황화수소를 1차 분리한 안수에 함유된 암모니아 및 황화수소와 기타 불순물을 처리한 다음 황화수소를 순환하는 방법에 관한 것이다.The present invention relates to an effective method for treating sulfur compounds in ordinal steam in which hydrogen sulfide is firstly separated. It relates to a method of circulating hydrogen sulfide after treatment.

제철소의 코크스 제조 공정에서 발생하는 코크스 오븐 가스는 수소가 50%이상 함유되어 있어 양질의 연료로 사용되고 있다. 여기에는 다량의 암모니아와 황화수소가 함유되어 있어 1차로 이를 제거하는 암모니아 및 황화수소 포집 과정에서 안수가 생성된다.The coke oven gas generated in the coke manufacturing process of steel mills contains more than 50% of hydrogen and is used as a high quality fuel. It contains a large amount of ammonia and hydrogen sulfide, and the ordination is produced during the ammonia and hydrogen sulfide capture process, which removes it primarily.

상기 안수의 주성분은 물, 암모니아, 황화수소 및 기타 불순물로 구성되어 있다.The main component of the ordination consists of water, ammonia, hydrogen sulfide and other impurities.

종래 안수는 황화수소 성분을 제거한 후 소각 처리한 다음 대기중으로 배출하고 황화수소는 클라우스 공정에서 원소황의 형태로 회수하였다.Conventional ordination removes the hydrogen sulfide component, incinerates it, discharges it into the atmosphere, and hydrogen sulfide is recovered in the form of elemental sulfur in the Klaus process.

본 발명에서 회수하고자 하는 황화수소에는 과량의 수증기(약 70부피% 정도)와 과량의 암모니아(약 20부피% 정도)가 포함되어 있기 때문에 매우 열악한 조건이다.The hydrogen sulfide to be recovered in the present invention is a very poor condition because it contains excess water vapor (about 70% by volume) and excess ammonia (about 20% by volume).

황화수소를 직접 산화시키는 방법에는 클라우스 공정, MODOP 공정 및 수퍼 클라우스 공정등이 있다.Direct oxidation of hydrogen sulfide includes the Klaus process, the MODOP process, and the superclaus process.

클라우스 공정은 고농도의 황화수소 함유가스 처리 공정으로 클라우스 반응을 통하여 원소황으로 전화, 회수하는 방법으로 3단계 촉매 반응 공정의 경우 황화수율이 95-98% 정도이다.The Klaus process is a high-concentration hydrogen sulfide-containing gas treatment process that converts and recovers elemental sulfur through the Klaus reaction. In the three-stage catalytic reaction process, the sulfidation yield is about 95-98%.

2H2S + SO3→ 3S + 2H2O (1)2H 2 S + SO 3 → 3S + 2H 2 O (1)

상기 반응식(1)은 열역학적 평형이 존재하는 가역 반응으로서 반응 가스중에 수분이 많이 함유되어 있으면 황화수율이 떨어지게 되며, H2S/SO2의 비를 당량비로 맞추어야 최대의 황회수율을 얻을 수 있다.The reaction formula (1) is a reversible reaction in which the thermodynamic equilibrium exists, and if the reaction gas contains a large amount of water, the sulfidation yield is decreased, and the maximum sulfur recovery yield can be obtained only by adjusting the ratio of H 2 S / SO 2 to an equivalent ratio.

저농도의 황화수소 함유가스 처리 공정은 주로 클라우스 공정의 미제거된 황화수소의 처리를 위한 TGT(Tail Gas Treatment) 공정으로 많이 개발되어 왔으며, 최근의 건식 공정으로서 MODOP 공정과 수퍼 클라우스 공정이 있다.Low concentration hydrogen sulfide-containing gas treatment process has been mainly developed as a TGT (Tail Gas Treatment) process for the treatment of hydrogen sulfide, which is not removed in the Klaus process, and as a recent dry process is a MODOP process and a superclaus process.

두 공정 모두 반응식(2)와 같이 촉매의 존재하에 황화수소를 직접 공기와 반응하여 원소황으로 전환시켜 제거한다.In both processes, hydrogen sulfide is directly reacted with air in the presence of a catalyst and converted to elemental sulfur as shown in Scheme (2).

H2S + 1/2O2→ S + H2O (2)H 2 S + 1/2 O 2 → S + H 2 O (2)

MODOP 공정(Oil and Gas Journal, Jan 11,63,1988)의 촉매 반응은 비가역반응이나 반응가스에 12부피% 정도의 수분이 포함되면 황회수율이 70% 이하로 크게 감소하며, H2S/SO2의 비를 당량비로 맞추어야 최대의 황회수율을 얻을 수 있다.Catalytic reactions of the MODOP process (Oil and Gas Journal, Jan 11,63,1988) are irreversible or when the reaction gas contains about 12% by volume of water, the sulfur recovery rate is greatly reduced to 70% or less, and H 2 S / SO The ratio of 2 to the equivalence ratio can be obtained to obtain the maximum yellow yield.

수퍼 클라우스 공정(Oil and Gas Journal, 86(41), 68, 1988)은 상기 단점을 보완한 것으로서 과량의 산소 및 수분이 존재하여도 촉매 활성에 전혀 영향을 받지 않는다고 알려져 있으나 그 촉매에 대하여는 알려져 있지 않다,The Super Klaus process (Oil and Gas Journal, 86 (41), 68, 1988) supplements the above disadvantages and is known to have no effect on the catalytic activity even in the presence of excess oxygen and moisture. not,

또한 황화수소가 포함된 가스는 대부분 불활성 기체로 일반적으로 약간의 수분을 포함한다.Also, gases containing hydrogen sulfide are mostly inert gases and generally contain some moisture.

본 발명자들에 의한 특허 출원 제 93-15403 및 93-31657에서는 과량의 수분, 산소 및 불순물로 과량의 암모니아가 존재하여도 촉매의 활성에 영향을 주지 않음을 실증하였다. 그러나 촉매 반응 과정에서 반응 (2)외에 반응 (3)과 같은 암모니아의 산화가 일어나 반응을 제어하기가 어렵다.Patent applications 93-15403 and 93-31657 by the present inventors demonstrated that the presence of excess ammonia as excess moisture, oxygen and impurities does not affect the activity of the catalyst. However, in addition to reaction (2), oxidation of ammonia such as reaction (3) occurs during the catalytic reaction, making it difficult to control the reaction.

2NH3+ 3/2O2→ N2+ 3H2O (3)2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O (3)

이와 관련하여 본발명자들은 과량의 수증기와 암모니아가 포함된 황화합물 함유혼합가스로부터 황화수소를 선택적으로 원소황(S)과 티오황산 암모늄 ((NH4)2S2O3)의 형태로 제거하는 방법을 제시한바 있다(대한민국 특허출원 제 93-15403호 및 제 93-31657호).In this regard, the present inventors have found a method for selectively removing hydrogen sulfide in the form of elemental sulfur (S) and ammonium thiosulfate ((NH 4 ) 2 S 2 O 3 ) from a sulfur-containing mixed gas containing excess water vapor and ammonia. (Korean Patent Application Nos. 93-15403 and 93-31657).

그러나 상기 방법은 암모니아가 부분적으로 산화하기 때문에 산화열이 발생하여 반응기의 온도를 조절하기 어렵고 생성된 원소황과 티오황산암모늄의 분리 공정이 필요하며, 반응후 가스에는 암모니아가 다량 함유되어 있으므로 이를 소각 등과 같은 추가처리 공정을 거쳐야만 한다.However, since the ammonia partially oxidizes, it is difficult to control the temperature of the reactor due to the heat of oxidization, and it is necessary to separate the generated elemental sulfur and ammonium thiosulfate, and since the reaction gas contains a large amount of ammonia, it is incinerated. Must be subjected to further processing such as

이에 본 발명의 목적은 안수증기를 불활성 기체로 완전 산화시키고 환원과정에서 이중 이산화황을 황화수소로 전환한 다음 황화수소 포집 공정을 거쳐 순환함으로써 안수증기를 효율적으로 처리하는 방법에 관한 것이다.Accordingly, an object of the present invention relates to a method of efficiently treating ordination steam by completely oxidizing the ordination vapor with an inert gas, converting double sulfur dioxide to hydrogen sulfide in the reduction process, and then circulating the hydrogen sulfide through the hydrogen sulfide collection process.

도1은 본 발명에 의한 방법을 실시하기 위한 공정 개략도이다.1 is a process schematic diagram for carrying out the method according to the invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 산화 반응기 2 : 버너1: oxidation reactor 2: burner

3,6 : 코크스 오븐 가스 4,7 : 냉각기3,6: coke oven gas 4,7: cooler

5 : 환원반응기 8 : 황화수소 포집 장치5: reduction reactor 8: hydrogen sulfide capture device

본 발명에 의하면, 코크스 오븐 가스중에서 황화수소를 1차 처리한 다음 안수증기중 황화합물을 처리하는데 있어서, 안수증기를 산화로에서 고온산화시켜-암모니아는 물과 질소로, 황화수소는 이산화황과 물로, 시안산은 질소, 이산화탄소와 물로 그리고 탄화수소는 이산화탄소와 산화시킨 다음, 환원반응기에서 상기 이산화황을 황화수소로 전환시키는 단계;및 상기 황화수소를 포집하여 순환하는 단계;를 포함하는 안수증기의 효율적인 처리방법이 제공된다.According to the present invention, in the first treatment of hydrogen sulfide in coke oven gas and then in the treatment of sulfur compounds in ordination steam, the ophthalmic vapors are hot-oxidized in an oxidation furnace-ammonia is water and nitrogen, hydrogen sulfide is sulfur dioxide and water, silver cyanate Nitrogen, carbon dioxide and water, and hydrocarbons are oxidized with carbon dioxide, and then converting the sulfur dioxide into hydrogen sulfide in a reduction reactor; and collecting and circulating the hydrogen sulfide.

이하, 본발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 과량의 암모니아와 수증기 및 황화수소가 포함된 안수증기를 산화로에서 불꽃 산화반응과 촉매 분해 반응을 통하여 완전 산화시킴으로서 이산화황과 그밖의 불활성 기체를 얻고 상기 이산화황은 수소 혹은 코크스 오븐 가스를 이용하여 촉매하에서 수소화하여 황화수소로 전환한후 포집하여 순환함으로써 반응 (3)의 영향을 배제하고 대기중으로 황산화물을 배출하지 않는 것이다.According to the present invention, sulfur dioxide and other inert gases are obtained by completely oxidizing anhydrous steam containing excess ammonia, water vapor, and hydrogen sulfide through a flame oxidation reaction and a catalytic decomposition reaction in an oxidation furnace, and the sulfur dioxide is hydrogen or coke oven gas. It is hydrogenated under a catalyst, converted to hydrogen sulfide, and then collected and circulated to exclude the influence of reaction (3) and to not release sulfur oxides into the atmosphere.

본 발명에서 안수증기는 버너에서 공기와 함께 연소 반응을 일으켜 대부분의 성분이 완전 산화된다.In the present invention, the ordinal steam causes a combustion reaction with the air in the burner so that most of the components are completely oxidized.

주요 반응을 하기 반응식(4)에 나타내었다.The main reaction is shown in Scheme (4) below.

2NH3+ 3/2O2→ N2+ 3H2O2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O

H2S + 3/2O2→ SO2+ H2OH 2 S + 3 / 2O 2 → SO 2 + H 2 O

2HCN + 5/2O2→ N2+ 2CO2+ H2O2HCN + 5 / 2O 2 → N 2 + 2CO 2 + H 2 O

CmHn + (m + n/4)O2→ mCO2+ n/2H2O (4)CmHn + (m + n / 4) O 2 → mCO 2 + n / 2H 2 O (4)

미반응된 암모니아는 니켈과 마그네슘이 주성분인 촉매상에서 분해되었다.Unreacted ammonia was decomposed on a catalyst consisting mainly of nickel and magnesium.

NH3→ 1/2N2+ 3/2H2(5)NH 3 → 1 / 2N 2 + 3 / 2H 2 (5)

산화로의 목적은 안수증기를 완전히 산화시키는 것이므로 연소에 필요한 당량만큼의 공기가 필요하며 안정된 조업을 위해서는 산화로의 온도를 1100℃ 이상으로 유지하여야 한다.Since the purpose of the oxidation furnace is to completely oxidize the water vapor, the amount of air required for combustion is required.

산화로에서 완전산화된 가스는 이산화황, 질소, 물 및 이산화탄소를 함유하고 있으며 상기 가스는 냉각기에서 냉각한 후, 수소 또는 수소 함유 가스인 코크스 오븐가스와 혼합하여 환원 반응기에서 하기식(6)과 같이 이산화황을 황화수소로 환원시킨 후 냉각기에서 넹각한 다음 황화수소 포집 공정으로 보내 처리하게 된다.The gas completely oxidized in the furnace contains sulfur dioxide, nitrogen, water and carbon dioxide. The gas is cooled in a cooler, mixed with hydrogen or a coke oven gas, which is a hydrogen-containing gas, in a reduction reactor as shown in Equation 6 below. The sulfur dioxide is reduced to hydrogen sulphide, which is then detected in a cooler and sent to a hydrogen sulphide capture process for processing.

SO2+ 3H2→ H2S + 2H2O (6)SO 2 + 3H 2 → H 2 S + 2H 2 O (6)

본 발명에서는 산화로 조업에 있어서 혼합가스 대비 산소량을 연소당량비이상의 과량으로 운전하므로 조업이 용이하다.In the present invention, the operation is easy because the amount of oxygen relative to the mixed gas in the oxidation furnace operation is operated in excess of the combustion equivalent ratio.

즉, 산소를 연소당량비 이상으로 도입하더라도 산화반응후 남은 미반응산소는 산화로 후단에 수소함유가스를 도입하여 연소시키면 쉽게 제거된다.That is, even if oxygen is introduced at a combustion equivalent ratio or more, the unreacted oxygen remaining after the oxidation reaction is easily removed by introducing and burning hydrogen-containing gas at the rear of the oxidation furnace.

여기서 혼합가스 산화용으로 사용된 과량의 산소는 환원촉매에 영향을 미칠수 있으므로 연소당량비로 1:1 - 1:1.5를 도입하는 것이 바람직하다.The excess oxygen used for the mixed gas oxidation may affect the reduction catalyst, so it is preferable to introduce 1: 1 to 1: 1.5 in the combustion equivalent ratio.

한편 상기 수소 함유가스중 산소를 제거하는데 사용하고 남은 수소가스는 환원반응기의 반응가스로 사용된다. 상기 수소 가스는 수소가 50% 이상으로 과량 함유된 코크스 오븐 가스로 대체할 수 있다. 코크스 오븐 가스는 본 발명에서 의도하는 바인 황화수소를 포집하여 순환하는 공정을 연속적으로 반복하도록 하는 이중 효과를 갖는다.Meanwhile, the remaining hydrogen gas used to remove oxygen in the hydrogen-containing gas is used as a reaction gas of a reduction reactor. The hydrogen gas may be replaced with coke oven gas containing excess of 50% hydrogen. The coke oven gas has the dual effect of continuously repeating the process of capturing and circulating hydrogen sulfide as intended in the present invention.

본발명의 방법에 의하면 산화반응기1에 필요한 높은 온도는 상기 반응식(2)및 (3)에서 암모니아 및 황화수소의 발열량만으로도 추가 연료의 장입없이 운전온도를 유지할 수 있다는 잇점이 있다.According to the method of the present invention, the high temperature required for the oxidation reactor 1 has the advantage that the operating temperature can be maintained without charge of additional fuel only by the calorific value of ammonia and hydrogen sulfide in the reaction formulas (2) and (3).

상기 운전온도는 혼합가스의 완전 산화및 설비에 무리가 없는 1000-1200℃ 이상이 바람직하다. 운전 온도가 1000℃이하로 되면 혼합 가스 산화시 완전한 산화가 일어나지 않는 문제가 발생하였다. 온도가 1200℃를 넘게 되면 설비 자체에 문제가 발생하였다.The operating temperature is preferably 1000-1200 ° C or more without complete oxidation of the mixed gas and the installation. If the operating temperature is less than 1000 ℃ problem occurred that the complete oxidation does not occur during the mixed gas oxidation. If the temperature exceeds 1200 ℃ problem occurred in the equipment itself.

이같은 산화 반응기(1)을 거친 탈암모니아 가스는 알루미나에 코발트 및 몰리브데늄을 담지한 촉메(Co-Mo/Al2O3)를 채운 환원 반응기5에서 수소 함유 가스를 환원가스로 사용하여 환원반응기 온도 300℃에서 황화수소로 전환하였다.The deammonia gas passed through the oxidation reactor 1 is a reduction reactor using hydrogen-containing gas as the reducing gas in a reduction reactor 5 in which alumina is loaded with cobalt and molybdenum-containing catalyst (Co-Mo / Al 2 O 3 ). The temperature was converted to hydrogen sulfide at 300 ° C.

상기와 같은 산화로와 환원반응기를 거친 가스는 황화수소 포집공정을 거쳐서 포집한 다음 수세하고 농축하여 재생된 황화수소를 순환하였다.The gas passed through the oxidation furnace and the reduction reactor was collected through a hydrogen sulfide capture process, washed with water and concentrated to circulate the recycled hydrogen sulfide.

상기한 바와 같이 본 발명의 방법에 의하면 추가 연료의 도입없이 산화로의 조업이 용이하고 암모니아를 제거함과 동시에 황화수소를 포집함으로써 황화합물을 배출하지 않고 순환할 수 있다.As described above, according to the method of the present invention, it is easy to operate the oxidation furnace without introducing additional fuel, and it is possible to circulate without discharging sulfur compounds by collecting hydrogen sulfide while simultaneously removing ammonia.

이하, 본발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예 1]Example 1

환원 반응기에서 이산화황의 전환율Conversion Rate of Sulfur Dioxide in Reduction Reactor

황화수소 3부피%, 암모니아 30부피%, 이산화탄소 5부피% 및 수증기 62부피%로 이루어진 안수 301/min와 공기 401/1nin을 산화로에 도입하여 1100℃에서 불꽃 산화반응시키고, 산화로 후단에 장착된 냉각기에서 300℃로 냉각하였다. 반응후 생성물을 분석한 결과 황화수소와 암모니아는 완전히 산화되어 검출되지 않았으며, 상기 가스를 환원 반응기에 장입하고 수소를 31/min을 도입하고 촉매로는 Co-Mo/Al2O3를 사용하여 환원 반응한 결과, 이산화황에서 황화수소로의 전환율은 99%이상이었다.301 / min of ordination consisting of 3% by volume of hydrogen sulfide, 30% by volume of ammonia, 5% by volume of carbon dioxide, and 62% by volume of water and 401 / 1nin of air were introduced into the oxidation furnace, and flame oxidation was carried out at 1100 ° C. Cooled to 300 ° C. in a chiller. As a result of analysis of the product after the reaction, hydrogen sulfide and ammonia were not completely oxidized and detected. The gas was charged into a reduction reactor, hydrogen was introduced in 31 / min, and the catalyst was reduced using Co-Mo / Al 2 O 3 . As a result, the conversion rate from sulfur dioxide to hydrogen sulfide was more than 99%.

[실시예 2]Example 2

환원 반응기에서 코크스 오븐 가스를 사용한 이산화황 전환율Sulfur Dioxide Conversion with Coke Oven Gas in a Reduction Reactor

수소를 대신하여 코크스 오븐가스를 61/min 도입한 것을 제외하고는 실시예 1과 같은 방법으로 실험하고 환원반응한 결과 이산화황에서 황화수소로의 전환율은 99%이상으로서, 고가의 수소 대신 제철 부생가스인 코크스 오븐 가스를 사용할 수 있었다.Except for introducing 61 / min of coke oven gas in place of hydrogen, the experiment was conducted in the same manner as in Example 1 and the reduction reaction resulted in a conversion rate of sulfur dioxide to hydrogen sulfide of 99% or more. Coke oven gas could be used.

[실시예 3]Example 3

산화로의 온도에 따른 안수 처리 효과Effect of Ordination on Temperature of Oxidation Furnace

산화로의 온도를 700-1200℃까지 변화시킨 것을 제외하고는 실시예 1과 같은 방법으로 실험하고 환원 반응한 결과 1000℃이하 온도에서는 완전한 산화가 일어나지 않아 미반응된 암모니아와 황화수소가 검출되었으며 따라서 반응에 필요한 온도는 1000-1200℃임을 알 수 있다.Except that the temperature of the oxidation furnace was changed to 700-1200 ℃, the experiment was conducted in the same manner as in Example 1 and the reduction reaction resulted in the complete oxidation does not occur at a temperature below 1000 ℃ unreacted ammonia and hydrogen sulfide was detected It can be seen that the temperature required for is 1000-1200 ℃.

본 발명에서는 황화 수소가 함유된 안수를 산화로에서 불활성기체와 이산화황으로 완전 산화시킨 다음 환원반응을 통하여 이산화황을 황화수소로 전환시킨 후 황화수소 포집 공정으로 보내 처리하게 함으로써, 안수를 직접 산화시킬 경우 암모니아의 발열 반응으로 인하여 반응 제어가 어렵고, 안수를 완전 산화한 후 그대로 황화수소 포집 공정으로 보낼 때 이산화황으로 인한 부식이나 부산물이 발생하는 문제를 해결하고, 대기중에 황화합물을 배출하지 않음을 특징으로 한다.In the present invention, the hydrogen sulfide-containing ordination is completely oxidized into an inert gas and sulfur dioxide in an oxidizing furnace, and then converted to sulfur sulfide through hydrogen reduction and then sent to a hydrogen sulfide collection process, whereby the ordination is directly oxidized. Due to the exothermic reaction, it is difficult to control the reaction, and it solves the problem of corrosion or by-products caused by sulfur dioxide when it is completely oxidized and sent to the hydrogen sulfide collection process, and does not emit sulfur compounds in the atmosphere.

Claims (3)

코크스 오븐 가스중에서 황화수소를 1차 처리한 다음 안수증기중 황화합물을 처리하는데 있어서, 안수증기를 산화로에서 고온산화시켜 암모니아는 물과 질소로, 황화수소는 이산화황과 물로, 시안산은 질소, 이산화탄소와 물로 그리고 탄화수소는 이산화탄소와 산화시킨 다음, 환원반응기에서 상기 이산화황을 황화수소로 전환시키는 단계;및 상기 황화수소를 포집하여 순환시키는 단계;를 포함하는 안수의 효율적인 처리 방법.In the primary treatment of hydrogen sulphide in coke oven gas followed by the treatment of sulfur compounds in ordinal steam, the hot water is oxidized in an oxidation furnace to ammonia with water and nitrogen, hydrogen sulphide with sulfur dioxide and water, cyanic acid with nitrogen, carbon dioxide and water, and And oxidizing the hydrocarbon with carbon dioxide and then converting the sulfur dioxide into hydrogen sulfide in a reduction reactor; and collecting and circulating the hydrogen sulfide. 제1항에 있어서, 상기 산화 반응은 1000-1200℃에서 일어남을 특징으로 하는 방법.The method of claim 1 wherein the oxidation reaction occurs at 1000-1200 ° C. 제1항에 있어서, 상기 안수증기 대비 산소량은 산소의 연소 당량비로 1:1 내지 1:1.5임을 특징으로 하는 방법.The method of claim 1, wherein the amount of oxygen relative to the ordinal steam is 1: 1 to 1: 1.5 in terms of the combustion equivalent ratio of oxygen.
KR1019960070061A 1996-12-23 1996-12-23 Method of treating sulphur compounds KR100270091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960070061A KR100270091B1 (en) 1996-12-23 1996-12-23 Method of treating sulphur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960070061A KR100270091B1 (en) 1996-12-23 1996-12-23 Method of treating sulphur compounds

Publications (2)

Publication Number Publication Date
KR19980051187A KR19980051187A (en) 1998-09-15
KR100270091B1 true KR100270091B1 (en) 2000-10-16

Family

ID=19490223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960070061A KR100270091B1 (en) 1996-12-23 1996-12-23 Method of treating sulphur compounds

Country Status (1)

Country Link
KR (1) KR100270091B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766973A (en) * 2016-12-20 2017-05-31 四川金象赛瑞化工股份有限公司 One kind oxidation furnace technology interlocking control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040038337A (en) * 2002-10-31 2004-05-08 주식회사 포스코 Method for removing sulfuration hydrogen contained ammonia water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766973A (en) * 2016-12-20 2017-05-31 四川金象赛瑞化工股份有限公司 One kind oxidation furnace technology interlocking control method

Also Published As

Publication number Publication date
KR19980051187A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
JP4847949B2 (en) A highly efficient method for the recovery of sulfur from acid gas streams.
JP2617216B2 (en) Method for converting and removing sulfur compounds from carbon monoxide-containing gas
US4041130A (en) Process for desulfurization of coke oven gas
JP3638618B2 (en) Production method of high purity hydrogen
US9981849B2 (en) Zero emissions sulphur recovery process with concurrent hydrogen production
US10654719B2 (en) Zero emissions sulphur recovery process with concurrent hydrogen production
WO2006052424B1 (en) Configurations and methods for sox removal in oxygen-containing gases
US4117100A (en) Process for reduction of sulfur dioxide to sulfur
MXPA06011999A (en) Cos-claus configurations and methods.
CN108884503B (en) Method and apparatus for producing sponge iron
US4048293A (en) Process for purifying a sulfur dioxide containing gas
US4012488A (en) Process for the treatment of sulfur and nitrogen oxides formed during power generation
KR100270091B1 (en) Method of treating sulphur compounds
EP1448294B1 (en) Method of treating a regeneration gas from s-zorb process
US4011299A (en) Process for removing sulfur dioxide and nitrogen oxides from gases
US4620967A (en) Method of recovering sulfur in a Claus process from vapors obtained in coke oven gas cleaning
US4101642A (en) Method for converting the ammonia and hydrogen sulfide contained in coke-oven gases into nitrogen and water and sulfur respectively
US20090226364A1 (en) Process for treating acid gas in staged furnaces with inter-stage heat recovery and inter-stage sulfur production
US3956460A (en) Process for the treatment of gas streams containing hydrogen cyanide
US4575453A (en) Modified Claus furnace
US4396594A (en) Sulfur dioxide reduction process
US20020094308A1 (en) Process and apparatus for processing hydrogen sulfide from a gas
US4039621A (en) Power generation wherein sulfur and nitrogen oxides are removed
US9987591B2 (en) Method for removing sulphur dioxide from gas streams, using titanium dioxide as catalyst
JPH08290904A (en) Treatment of tail gas in sulfur recovery unit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee