KR100270085B1 - Decomposition method for organic chloride compound - Google Patents

Decomposition method for organic chloride compound Download PDF

Info

Publication number
KR100270085B1
KR100270085B1 KR1019960068742A KR19960068742A KR100270085B1 KR 100270085 B1 KR100270085 B1 KR 100270085B1 KR 1019960068742 A KR1019960068742 A KR 1019960068742A KR 19960068742 A KR19960068742 A KR 19960068742A KR 100270085 B1 KR100270085 B1 KR 100270085B1
Authority
KR
South Korea
Prior art keywords
activated carbon
catalyst
carbon fiber
surface area
specific surface
Prior art date
Application number
KR1019960068742A
Other languages
Korean (ko)
Other versions
KR19980049990A (en
Inventor
홍익표
김제영
이규동
이종규
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019960068742A priority Critical patent/KR100270085B1/en
Publication of KR19980049990A publication Critical patent/KR19980049990A/en
Application granted granted Critical
Publication of KR100270085B1 publication Critical patent/KR100270085B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: Disclosed is a decomposition method of organic chlorine compound using a catalyst, which is composed of Cu or Co as active species and activated carbon fiber as support. CONSTITUTION: The activated carbon fiber used as a catalyst support has a surface area of 700 m2/g and is a fitch-type material in isotropy. For Cu-impregnated catalyst, Cu of below 50 wt% is loaded on the fiber and the decomposition reaction is carried out at catalyst bulk density of 0.1 g/cm3 and space velocity of 1000 h-1. For Co-impregnated catalyst Co of 10 - 100 wt% is loaded on the fiber and the reaction is conducted at space velocity of 12000 h-1. In addition, the reaction temperature for respective catalysts is good at 200-500 deg.C and about 1000 ppm as concentration of organic chlorine compound is proper.

Description

금속이 담지된 활성탄소섬유를 이용한 유기염소화합물의 분해방법Decomposition of Organic Chlorine Compounds Using Metal-Based Activated Carbon Fibers

본 발명은 유기염소화합물을 분해·제거하는 방법에 관한 것으로, 보다 상세하게는 구리 또는 코발트가 담지된 활성탄소섬유를 사용하여 유기염소화합물을 보다 효율적으로 분해·제거하는 방법에 관한 것이다.The present invention relates to a method for decomposing and removing organochlorine compounds, and more particularly, to a method for more efficiently decomposing and removing organochlorine compounds using activated carbon fibers loaded with copper or cobalt.

유기염소화합물은 농약 등의 제조시 불순물로 혼입되거나 쓰레기소각로 등에서 주로 PW 등의 합성수지의 소각시 생성되는 유독성 물질로서 주로 폴리클로로디벤조파라다이옥신(PCDD;Dioxin), 폴리클로로디벤조푸란(PCDF), 폴리클로로비페닐(PCB) 및 테트라클로로에틸렌등을 들 수 있는데 이는 700℃이상의 고온으로 반응시키면 분해되나 이정도의 고온으로 처리하려면 추가적인 공정 및 에너지가 소요된다. 따라서 반응온도를 300℃이하의 낮은 온도로 열처리하여야 소요되는 에너지를 감소시킬 수 있다. 이에 관하여는 Hiraoka 등에 의해 Chemosphere, Vol.19, Nos.1-6, p.361-366, 1989에 허니컴형태의 백금촉매를 이용하는 방법이 개시되어 있으나 촉매특성상 처리비용이 상당히 높은 단점이 있는 것이다. 또한 Hagemmaier 등에 의해 0rganohalogen Compound 3, p65-68에는 400℃이하의 온도에서 TiO2계 촉매를 이용하여 다이옥신(dioxin)을 제거하는 방법이 개시되어 있으나, 이는 촉매의 비표면적이 작아 효과적으로 분해하기 어려운 문제가 있는 것이다.Organochlorine compounds are toxic substances that are mixed with impurities in the manufacture of pesticides, or are produced during incineration of synthetic resins such as PW mainly in waste incinerators. , Polychlorobiphenyl (PCB) and tetrachloroethylene, etc., which can be decomposed when reacted at a high temperature of 700 ° C. or higher, but additional processing and energy are required to treat this high temperature. Therefore, it is possible to reduce the energy required to heat the reaction temperature to a low temperature of less than 300 ℃. In this regard, Cheirasphere, Vol. 19, Nos. 1-6, p. 361-366, 1989 discloses a method using a honeycomb-type platinum catalyst by Hiraoka et al., But the treatment cost is considerably high due to the characteristics of the catalyst. In addition, Hagemmaier et al. 0rganohalogen Compound 3, p65-68 discloses a method for removing dioxin using TiO 2 catalyst at a temperature of 400 ℃ or less, which is difficult to effectively decompose due to the small specific surface area of the catalyst There is.

본 발명은 상기한 바와 같은 문제를 해결하기 위해 제안된 것으로, 본 발명의 목적은 금속이 담지된 활성탄소섬유를 촉매로 사용하여, 그리고 최적의 반응조건을 설정함으로서 보다 효율적이며 경제적으로 유기염소화합물을 분해·제거할 수 있는 방법을 제공하고자 하는 것이다.The present invention has been proposed to solve the above problems, and an object of the present invention is to use an organic carbon-supported activated carbon fiber as a catalyst, and to set the optimum reaction conditions more efficiently and economically organochlorine compound It is to provide a method that can decompose and remove.

본 발명에 의하여, 200-500℃의 반응온도에서 금속이 담지된 비표면적이 700m2/g이상인 등방성 핏치계 활성 탄소섬유 촉매에 유기염소화합물 함유기체를 일정한 공간속도로 반응에 도입하여 유기염소화합물을 연속적으로 자체 분해·제거하는 방법이 제공된다.According to the present invention, an organic chlorine compound is introduced by introducing an organic chlorine compound-containing gas into a reaction at a constant space velocity into an isotropic pitch-based activated carbon fiber catalyst having a specific surface area of 700 m 2 / g or more at a reaction temperature of 200-500 ° C. A method of continuously decomposing and removing self is provided.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 핏치계 활성탄소섬유의 높은 비표면적을 이용하여 활성탄소섬유 표면에 금속성분을 담지하여 금속과 활성탄소섬유 자체의 촉매작용을 이용함으로써 활성탄소섬유 자체만으로된 촉매를 사용하는 경우에 비하여 유기염소화합물을 보다 효과적으로 분해·제거하는 방법에 관한 것이다.The present invention uses a high specific surface area of the pitch-based activated carbon fibers to support the metal components on the surface of the activated carbon fibers to utilize the catalytic action of the metal and the activated carbon fibers themselves, compared to the case of using a catalyst composed only of the activated carbon fibers itself The present invention relates to a method for more effectively decomposing and removing organochlorine compounds.

본 발명에서 상기 유기염소화합물 분해시 촉매로 사용되는 활성탄소섬유는 등방성 핏치를 원료로 제조된 것이 바람직하다. 활성섬유탄소는 핏치계 및 PAN(poly acrylonitrile)으로 제조할 수 있으나, 핏치계가 PAN계에 비하여 저렴하며, 활성탄소섬유 제조시 수율이 우수하고 비표면적이 높은 활성탄소섬유를 제조할 수 있음으로 바람직한 것이다.In the present invention, the activated carbon fiber used as a catalyst in the decomposition of the organic chlorine compound is preferably made of isotropic pitch as a raw material. Activated fiber carbon can be produced by pitch and poly acrylonitrile (PAN), but the pitch is cheaper than the PAN system, it is preferable to produce activated carbon fiber with high yield and high specific surface area when manufacturing activated carbon fiber will be.

더욱이, 본 발명에서는 촉매로 비표면적이 700m2/g 이상인 등방성 핏치계 활성탄소섬유에 금속이 담지된 촉매가 사용되며, 활성탄소섬유는 비표면적이 클수록 효과적이다. 촉매로서 활성탄소섬유의 비표면적이 700m2/g이하로 활성정도가 낮은 활성탄소섬유를 사용하면 비표면적에 따른 촉매반응면적이 작아 효과적으로 반응을 활성화시키지 못함으로 비표면적이 700m2/g 이상인 등방성 핏치계 활성탄소섬유가 사용된다.Moreover, in the present invention, a catalyst in which a metal is supported on isotropic pitch-based activated carbon fibers having a specific surface area of 700 m 2 / g or more is used as the catalyst, and activated carbon fibers are more effective as the specific surface area is larger. If the specific surface area of activated carbon fiber is less than 700m 2 / g as a catalyst, the activated carbon fiber with low activity level has a small catalytic reaction area according to the specific surface area, which does not activate the reaction effectively, so the specific surface area is more than 700m 2 / g. Pitch-based activated carbon fibers are used.

상기 핏치계 활성탄소섬유에 구리 또는 코발트를 담지하여 촉매로 사용한다.Copper or cobalt is supported on the pitch-based activated carbon fibers and used as a catalyst.

핏치계 활성탄소섬유에 구리를 담지하는 경우, 구리는 활성탄소섬유 중량의 50%이하로 담지한다. 상기 핏치계 활성탄소섬유에 구리를 활성탄소섬유 중량의 50%이상으로 담지하는 경우에는 구리가 활성탄소섬유의 기공입구에 존재하게되어 활성탄소섬유의 비표면적을 크게 저하시킴으로 구리의 촉매작용에도 불구하고 촉매전체의 비표면적이 감소됨으로 역시 반응이 효과적으로 활성화되지 않고 오히려 반응효율이 낮아져 효과적으로 유기염소화합물을 분해하기 어렵다. 따라서 상기 활성탄소섬유에 구리를 50중량% 이하로 담지하는 것이 바람직하다.When copper is supported on the pitch-based activated carbon fibers, copper is supported at 50% or less of the weight of the activated carbon fibers. When copper is supported on the pitch-based activated carbon fiber by 50% or more of the weight of the activated carbon fiber, copper is present at the pore inlet of the activated carbon fiber, thereby greatly reducing the specific surface area of the activated carbon fiber, despite the catalytic action of copper. In addition, since the specific surface area of the entire catalyst is reduced, the reaction is not effectively activated, but rather, the reaction efficiency is lowered, so that it is difficult to effectively decompose the organic chlorine compound. Therefore, it is preferable to support 50 wt% or less of copper on the activated carbon fiber.

또한, 핏치계 활성탄소섬유에 코발트를 담지하는 경우, 코발트는 활성탄소섬유 중량의 10-100%로 담지한다. 상기 비표면적이 700m2/g 이상인 등방성 핏치계 활성탄소섬유에 코발트를 활성탄소섬유 중량의 10%이하로 담지하는 경우에는 촉매중 코발트의 함량이 낮아 촉매작용이 효율적이지 못함으로 반응이 층분히 활성화되지 않아 공간속도가 증대되는 경우, 유기염소화합물을 50%이상 분해하기 어렵다. 한편 코발트를 100%이상으로 담지하는 경우에는 구리와 마찬가지로 코발트가 활성탄소섬유의 기공을 폐쇄시켜 활성탄소섬유의 비표면적이 저하됨으로, 코발트의 촉매작용에도 불구하고 오히려 반응효율이 감소되고 따라서 높은 공간속도로 반응시키는 경우, 유기염소화합물을 분해하기 어려운 것이다.In addition, when cobalt is supported on the pitch-based activated carbon fiber, cobalt is supported by 10-100% of the weight of the activated carbon fiber. When cobalt is supported on the isotropic pitch-based activated carbon fibers having a specific surface area of 700 m 2 / g or more, less than 10% of the weight of the activated carbon fibers, the content of cobalt in the catalyst is low, so that the reaction is not activated efficiently. If the space velocity is increased, it is difficult to decompose the organic chlorine compound by more than 50%. On the other hand, in the case of supporting more than 100% of cobalt, like copper, cobalt closes pores of activated carbon fibers, thereby lowering the specific surface area of activated carbon fibers. When reacting at a rate, organochlorine compounds are difficult to decompose.

상기한 바와 같이 구리 또는 코발트가 담지된 활성탄소섬유를 촉매로 하여 유기염소화합물을 분해하는 경우, 분해시 반응온도는 200∼500℃가 바람직하다. 200℃이하의 온도에서는 촉매에 의해서도 유기염소화합물이 자체 분해되지 않으며, 500℃이상에서는 촉매를 사용하지 않더라도 분해반응이 시작됨으로 촉매를 사용하는 잇점이 없기 때문이다.As described above, when the organic chlorine compound is decomposed by using activated carbon fiber carrying copper or cobalt as a catalyst, the reaction temperature during decomposition is preferably 200 to 500 ° C. This is because the organic chlorine compound does not decompose itself by the catalyst at a temperature of 200 ° C. or lower, and since the decomposition reaction starts even when the catalyst is not used above 500 ° C., there is no advantage of using the catalyst.

상기한 바와 같은 분해반응 조건에서 기체중 유기염소기체의 부피농도 1000ppm을 기준으로 그리고 충진된 활성탄소섬유의 겉보기 밀도 0.1g/㎤을 기준으로, 분해하려는 유기염소함유화합물을 함유하는 기체를 구리가 담지된 활성탄소섬유 촉매에는 8000h-1이하 그리고 코발트가 담지된 활성탄소섬유 촉매에는 12000h-1이하의 공간속도로 도입한다.Under the decomposition reaction conditions as described above, based on the volume concentration of 1000 ppm of the organic chlorine gas in the gas and based on the apparent density of 0.1 g / cm 3 of the activated carbon fiber, copper containing the organic chlorine-containing compound to be decomposed the supported activated carbon fiber catalyst 8000h -1 or less, and the cobalt-supported catalyst, the activated carbon fiber is introduced at a space velocity of 12000h -1 or less.

구리가 담지된 활성탄소섬유 촉매에 8000h-1이상 그리고 코발트가 담지된 활성탄소섬유 촉매에 12000h-1이상의 공간속도로 분해하려는 유기염소화합물을 함유하는 기체를 도입하여 분해반응시키는 경우에는 반응접촉시간이 층분하지 않아 반응이 효율적으로 진행되지 않으며, 공간속도가 작을수록 유기염소화합물의 분해효율이 증대된다.The case of reaction with copper is introduced to 8000h -1 or more and a gas containing an organic chlorine compound to cobalt digested with a space velocity of 12000h -1 or more in the supported catalyst to the activated carbon fibers impregnated activated carbon fibers, the reaction catalyst contact time The reaction does not proceed efficiently because this layer is not divided, and the smaller the space velocity, the higher the decomposition efficiency of the organic chlorine compound.

분해하려는 유기염소화합물을 함유하는 기체중 유기염소의 부피농도를 1000ppm으로 그리고 활성섬유탄소의 겉보기 밀도를 0.1g/㎤로 규정한 것을 반응시 공간속도를 한정하기 위한 기준을 설정하기 위한 것이며, 기체의 부피농도가 증가하는 경우에는 그 증가비율에 따라 촉매의 양 및 공간속도를 조절할 수 있다.It is to set the standard for limiting the space velocity in the reaction by defining the volume concentration of organic chlorine in the gas containing the organic chlorine compound to be decomposed to 1000 ppm and the apparent density of activated fiber carbon to 0.1 g / cm 3. When the volume concentration of is increased, the amount and space velocity of the catalyst can be adjusted according to the increase ratio.

본 발명에 의한 방법으로 자체 분해되는 유기염소화합물의 예로는 이에 한정하는 것은 아니지만, 폴리클로로디벤조파라다이옥신, 폴리클로로디벤조푸란, 폴리클로로비페닐 및 테트라클로로에틸렌 등을 포함한다.Examples of organochlorine compounds that decompose themselves by the method according to the present invention include, but are not limited to, polychlorodibenzoparadioxin, polychlorodibenzofuran, polychlorobiphenyl, tetrachloroethylene and the like.

이하, 실시예를 통하여 본 발명을 설명한다.Hereinafter, the present invention will be described through examples.

[실시예 Ⅰ]Example I

구리가 담지된 등방성핏치계 활성탄소섬유 촉매를 이용한 유기염소화합물의 분해·제거시험Decomposition and Removal of Organochlorine Compounds Using Copper Supported Isotropic Pitch Activated Carbon Fiber Catalysts

[발명예 1]Invention Example 1

활성탄소섬유에 담지후 활성탄소섬유 1g당 구리담지량이 0.2g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 황산구리 수용액으로 처리한 후 감압조건하여 수분을 제거한 후 불활성분위기하에서 500℃로 1시간 열처리하여 황화물을 제거한 것을 촉매로 사용하였다. Hagennnier등의 Organohalogen Compound 3, p.65-68에 따라 모델가스로서 PCDD보다 분해 되기 어려운 화합물인 테트라클로로에틸렌을 기화시켜 1000ppm부피 농도로 유지시키고 촉매 g당 분당 400cc식 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 92% 분해됨을 나타내었다.After supporting the activated carbon fiber, the activated carbon fiber having an isotropic pitch system having a specific surface area of 1500m 2 / g was treated with copper sulfate aqueous solution so that the copper supporting amount per 1g of activated carbon fiber was 0.2g. After removing the sulfide by heat treatment at 1 ° C. for 1 hour, a catalyst was used. According to Organohalogen Compound 3 of Hagennnier et al., P.65-68, tetrachloroethylene, a compound that is more difficult to decompose than PCDD as a model gas, was vaporized and maintained at 1000 ppm volume concentration, and reacted at 250 ° C. while supplying 400 cc / g of catalyst per minute. The composition of the gas was then analyzed continuously. The space velocity at this time was 2500 h -1 . As a result, it was 92% decomposed compared to the initial concentration of the feed gas.

[발명예 2]Invention Example 2

활성탄소섬유에 담지후 활성탄소섬유 1g당 구리담지량이 0.4g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 황산구리 수용액으로 처리한 후 감압조건하여 수분을 제거한 후 불활성 분위하에서 500℃로 1시간 열처리하여 황화물을 제거한 것을 촉매로 사용하였다. 모델가스인 톄트라클로로에틸렌을 기화시켜 1000ppm 부피 농도로 유지시키고 촉매 g당 분당 400cc씩 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 87% 분해됨을 나타내었다.After being supported on activated carbon fibers, activated carbon fibers with an isotropic pitch system having a specific surface area of 1500m 2 / g were treated with copper sulfate aqueous solution so that the copper loading per 0.4g of activated carbon fibers was 0.4g. After removing the sulfide by heat treatment at 1 ° C. for 1 hour, a catalyst was used. Ethyl chloroethylene, a model gas, was maintained at a volume concentration of 1000 ppm, reacted at 250 ° C. while supplying 400 cc / g of catalyst per minute, and the composition of the gas was continuously analyzed after the reaction. The space velocity at this time was 2500 h -1 . The result shows 87% degradation compared to the initial concentration of the feed gas.

[발명예 3]Invention Example 3

활성탄소섬유에 담지후 활성탄소섬유 1g당 구리담지량이 0.2g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 황산구리 수용액으로 처리한 후 감압건조하여 수분을 제거한 후, 불활성 분위기하에서 500℃로 1시간 열처리하여 황화물을 제거한 것을 촉매로 사용하였다. 모델가스인 테트라클로로에틸렌을 기화시켜 1000ppm 부피 농도로 유지시키고 촉매 g당 분당 400cc씩 공급하면서 350℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 95%분해됨을 나타내었다.After supporting the activated carbon fiber, the activated carbon fiber with an isotropic pitch system having a specific surface area of 1500m 2 / g was treated with copper sulfate aqueous solution to remove the water by drying under reduced pressure, so that the copper supporting amount per 1g of the activated carbon fiber was 0.2g. Heat treatment at 500 ° C. for 1 hour to remove sulfides was used as a catalyst. Tetrachloroethylene, a model gas, was vaporized and maintained at a volume concentration of 1000 ppm, and reacted at 350 ° C. while supplying 400 cc / g of catalyst per minute. The composition of the gas was continuously analyzed after the reaction. The space velocity at this time was 2500 h -1 . As a result, it showed 95% decomposition compared to the initial concentration of the feed gas.

[비교예 1]Comparative Example 1

활성탄소섬유에 담지후 활성탄소섬유 1g당 구리담지량이 1g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 황산구리 수용액으로 처리한 후 감압건조하여 수분을 제거한 후 불활성 분위기하에서 500℃에서 1시간 열처리하여 황화물을 제거한 것을 촉매로 사용하였다. 모델가스인 테트라클로로에틸렌을 기화시켜 1000ppm부피 농도로 유지시키고 촉매 g당 분당 400cc씩 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 45%분해됨을 나타내었다.After supporting the activated carbon fiber, the activated carbon fiber with an isotropic pitch system having a specific surface area of 1500m 2 / g is treated with copper sulfate aqueous solution to remove 1 minute of moisture after drying under reduced pressure, so that the amount of copper supported per 1g of activated carbon fiber is 1g. The sulfide removed by heat treatment at 1 hour was used as a catalyst. Tetrachloroethylene, a model gas, was vaporized and maintained at a 1000 ppm volume concentration, and reacted at 250 ° C. while supplying 400 cc / g of catalyst per minute. The composition of the gas was continuously analyzed after the reaction. The space velocity at this time was 2500 h -1 . The results showed 45% degradation compared to the initial concentration of the feed gas.

[비교예 2]Comparative Example 2

테트라클로로에틸렌을 기화시켜 1000ppm부피 농도로 유지시키고 비표면적이 1500m2/g인 등방성핏치계 활성탄소섬유를 촉매로하여 촉매 g당, 분당 400cc공급하면서 200℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 72%분해됨을 나타내었다.Vaporized tetrachloroethylene was maintained at 1000 ppm volume concentration, and isotropic pitch-based activated carbon fibers having a specific surface area of 1500 m 2 / g were used as catalysts and reacted at 200 ° C. while supplying 400 cc / g of catalyst per minute. Analyzed. The space velocity at this time was 2500 h -1 . As a result, it showed 72% degradation compared to the initial concentration of the feed gas.

[실시예 Ⅱ]Example II

코발트가 담지된 등방성핏치계 활성탄소섬유 촉매를 이용한 유기염소화합물의 분해·제거시험Decomposition and Removal of Organochlorine Compounds Using Cobalt Supported Isotropic Pitch Activated Carbon Fiber Catalysts

[발명예 4]Invention Example 4

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 0.2g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한 후 감압조건하여 수분을_제거한 후 불활성분위기하에서 500℃로 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하였다. Hagennnier등의 Organo-halogen Compound 3, p.65-68에 따라 모델가스로서 PCDD보다 분해되기 어려운 화합물인 테트라클로로에틸렌을 기화시켜 1000ppm부피 농도로 유지시키고 촉매 g당 분당 400cc씩 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 95% 분해됨을 나타내었다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500 m 2 / g with a cobalt nitrate solution [Co (NO 3 ) 2 · 6H 2 O] so that the amount of cobalt supported per 0.2 g of activated carbon fibers was supported on activated carbon fibers. After the removal of moisture under reduced pressure conditions, the heat treatment was performed at 500 ° C. for 1 hour under an inert atmosphere to remove nitric oxide. According to Organo-halogen Compound 3 of Hagennnier et al., P. 65-68, tetrachloroethylene, a compound that is more difficult to decompose than PCDD as a model gas, was vaporized and maintained at 1000 ppm volume concentration, and was reacted at 250 ° C. while supplying 400 cc / g of catalyst per minute. After the reaction, the composition of the gas was analyzed continuously. The space velocity was 2500 h -1 . As a result, it showed 95% degradation compared to the initial concentration of the feed gas.

[발명예 5]Invention Example 5

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 0.5g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한 후 감압조건하여 수분을 제거한 후 불활성 분위하에서 500℃로 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하었다. 모델가스로서 PCDD보다 분해되기 어려운 화합물인 테트라클로로에틸렌을 기화시켜 1000ppm 부피 농도로 유지시키고 촉매 g당 분당 1000cc씩 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다. 이때의 공간속도는 6250h-1이었다. 그 결과 공급기체의 초기농도에 비하여 76% 분해됨을 나타내었다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500m 2 / g with cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O] aqueous solution so that the amount of cobalt supported per 0.5g of activated carbon fibers after loading on activated carbon fibers After the removal of water under reduced pressure and heat treatment at 500 ℃ for 1 hour under inert atmosphere was used as a catalyst to remove the nitric oxide. As a model gas, tetrachloroethylene, a compound that is more difficult to decompose than PCDD, was vaporized and maintained at a volume concentration of 1000 ppm, and reacted at 250 ° C. while supplying 1000 cc / g of catalyst per minute. The composition of the gas was continuously analyzed after the reaction. The space velocity at this time was 6250h -1 . As a result, it showed 76% degradation compared to the initial concentration of the feed gas.

[발명예 6]Invention Example 6

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 0.5g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한후 감압건조하여 수분을 제거한 후, 불활성 분위기하에서 500℃로 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하였다. 모델가스로서 PCDD보다 분해되기 어려운 화합물인 테트라클로로에틸렌을 기화시켜 1000ppm 부피 농도로 유지시키고 촉매 g당 분당 1000cc씩 공급하면서 350℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하었다. 이때의 공간속도는 6250h-1이었다. 그 결과 공급기체의 초기농도에 비하여 86%분해됨을 나타내었다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500m 2 / g with cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O] aqueous solution so that the amount of cobalt supported per 0.5g of activated carbon fibers after loading on activated carbon fibers After drying under reduced pressure to remove moisture, the resultant was heat-treated at 500 ° C. under inert atmosphere for 1 hour to remove nitric oxide. As a model gas, tetrachloroethylene, a compound that is more difficult to decompose than PCDD, was vaporized and maintained at a volume concentration of 1000 ppm, and reacted at 350 ° C while supplying 1000 cc / g of catalyst per minute, and the composition of the gas after the reaction was analyzed continuously. The space velocity at this time was 6250h -1 . The results showed 86% degradation compared to the initial concentration of the feed gas.

[발명예 7]Invention Example 7

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 0.5g이 되도록 비표면적이 1500m2/g인 등방성핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한후 감압건조하여 수분을 제거한 후, 불활성 분위기하에서 500℃로 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하였다. 모델가스로서 PCDD보다 분해되기 어려운 화합물인 테트라클로로에틸렌을 기화시켜 1000ppm 부피 농도로 유지시키고 촉매 g당 분당 1600cc씩 공급하면서 350℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하었다. 이때의 공간속도는 10000h-1이었다. 그 결과 공급기체의 초기농도에 비하여 56%분해됨을 나타내었다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500m 2 / g with cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O] aqueous solution so that the amount of cobalt supported per 0.5g of activated carbon fibers after loading on activated carbon fibers After drying under reduced pressure to remove moisture, the resultant was heat-treated at 500 ° C. under inert atmosphere for 1 hour to remove nitric oxide. As a model gas, tetrachloroethylene, a compound that is more difficult to decompose than PCDD, was vaporized and maintained at a volume concentration of 1000 ppm, and reacted at 350 ° C. while supplying 1600 cc / g of catalyst per minute. The composition of the gas after the reaction was analyzed continuously. The space velocity at this time was 10000h -1 . As a result, it showed 56% decomposition compared to the initial concentration of the feed gas.

[비교예 3]Comparative Example 3

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 1.5g이 되도록 비표면적이 1500m2/g인 등방성 핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한 후 감압건조하여 수분을 제거한 후 불활성 분위기하에서 500℃에서 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하였다. 모델가스인 테트라클로로에틸렌을 기화시켜 1000ppm부피 농도로 유지시키고 촉매 g당 분당 400cc씩 공급하면서 250℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하였다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500 m 2 / g with a cobalt nitrate solution [Co (NO 3 ) 2 · 6H 2 O] so that the amount of cobalt supported per 1.5 g of activated carbon fibers after loading on activated carbon fibers After drying under reduced pressure to remove water, heat treatment was performed at 500 ° C. under inert atmosphere for 1 hour to remove nitric oxide. Tetrachloroethylene, a model gas, was vaporized and maintained at a 1000 ppm volume concentration, and reacted at 250 ° C. while supplying 400 cc / g of catalyst per minute. The composition of the gas was continuously analyzed after the reaction.

이때의 공간속도는 2500h-1이었다. 그 결과 공급기체의 초기농도에 비하여 38%분해됨을 나타내었다.The space velocity at this time was 2500 h -1 . As a result, it showed 38% degradation compared to the initial concentration of the feed gas.

[비교예 4][Comparative Example 4]

활성탄소섬유에 담지후 활성탄소섬유 1g당 코발트 담지량이 1.5g이 되도록 비표면적이 1500m2/g인 등방성 핏치계인 활성탄소섬유를 질산코발트 [Co(NO3)2·6H2O] 수용액으로 처리한 후 감압건조하여 수분을 제거한 후 불활성 분위기하에서 500℃에서 1시간 열처리하여 질산화물을 제거한 것을 촉매로 사용하였다. 모델가스인 테트라클로로에틸렌을 기화시켜 1000ppm부피농도로 유지시키고 촉매 g당 분당 2000cc씩 공급하면서 350℃에서 반응시키고 반응후 기체의 조성을 연속적으로 분석하었다. 이때의 공간속도는 12500h-1이였다. 그 결과 공급기체의 초기농도에 비하여 43%분해됨을 나타내었다.Treated activated carbon fibers with an isotropic pitch system having a specific surface area of 1500 m 2 / g with a cobalt nitrate solution [Co (NO 3 ) 2 · 6H 2 O] so that the amount of cobalt supported per 1.5 g of activated carbon fibers after loading on activated carbon fibers After drying under reduced pressure to remove water, heat treatment was performed at 500 ° C. under inert atmosphere for 1 hour to remove nitric oxide. Tetrachloroethylene, a model gas, was vaporized and maintained at a volume of 1000 ppm, reacted at 350 ° C. while supplying 2000 cc / g of catalyst per minute, and the composition of the gas after the reaction was analyzed continuously. The space velocity at this time was 12500h -1 . The results showed a 43% degradation over the initial concentration of the feed gas.

상기 발명예 및 비교예의 시험조건 및 유기염소화합물의 분해율을 하기 표1에 나타냈다.Test conditions and decomposition rates of the organic chlorine compounds of Examples and Comparative Examples are shown in Table 1 below.

* 활성탄소섬유의 비표면적 1500m2/g* Specific surface area of activated carbon fiber 1500m 2 / g

상기 발명예 및 비교예로 부터 50중량%이하의 구리 또는 10-100중량%의 코발트가 담지된 활성탄소섬유 촉매를 사용하여 본 발명에서 한정하는 반응조건으로 유기염소화합물을 함유하는 분해하려는 기체를 분해·제거하는 경우, 유독성 유기염소화합물이 유해하지 않는 물질로 50%이상, 보다 효과적으로 자체분해된다.From the examples and comparative examples described above, using a activated carbon fiber catalyst carrying less than 50% by weight of copper or 10-100% by weight of cobalt, a gas to be decomposed containing an organic chlorine compound under the reaction conditions defined in the present invention. In the case of decomposition and removal, toxic organochlorine compounds are non-hazardous substances and decompose themselves more than 50% more effectively.

Claims (3)

200-500℃의 반응온도에서 금속이 담지된 비표면적이 700m2/g이상인 등방성 핏치계 활성 탄소섬유 촉매에 유기염소화합물 함유기체를 일정한 공간속도로 도입하여 유기염소화합물을 자체 분해·제거하는 방법.A method of self-decomposing and removing organic chlorine compounds by introducing organic chlorine-containing gas at a constant space velocity into an isotropic pitch-based activated carbon fiber catalyst having a specific surface area of 700 m 2 / g or more at a reaction temperature of 200-500 ° C. . 제 1항에 있어서, 상기 촉매는 합성탄소섬유 중량의 50%이하로 구리가 담지된 비표면적 700m2/g이상인 등방성 핏치계 활성탄소섬유이며, 유기염소화합물 함유기체는 활성탄소섬유의 겉보기 밀도 0.1g/㎤ 및 유기염소화합물을 함유하는 기체의 부피농도 1000ppm을 기준으로, 8000h-1이하의 공간속도로 촉매에 도입됨을 특징으로 하는방법.The catalyst according to claim 1, wherein the catalyst is an isotropic pitch-based activated carbon fiber having a specific surface area of 700 m 2 / g or more supported by copper at 50% or less of the weight of the synthetic carbon fiber, and the organic chlorine compound-containing gas has an apparent density of 0.1 characterized in that it is introduced into the catalyst at a space velocity of 8000 h −1 or less, based on a volume concentration of 1000 ppm of gas containing g / cm 3 and an organochlorine compound. 제 1항에 있어서, 상기 촉매는 합성탄소섬유 중량의 10-100%로 코발트가 담지된 비표면적 700m2/g이상인 등방성 핏치계 활성탄소섬유이며, 유기염소화합물 함유기체는 활성탄소섬유의 겉보기 밀도 0.1g/㎤ 및 유기염소화합물을 함유하는 기체의 부피농도 1000ppm을 기준으로, 12000h-1이하의 공간속도로 촉매에 도입됨을 특징으로 하는 방법.2. The catalyst of claim 1, wherein the catalyst is an isotropic pitch-based activated carbon fiber having a specific surface area of 700 m 2 / g or more supported by cobalt at 10-100% of the weight of the synthetic carbon fiber, and the organic chlorine-containing gas is the apparent density of the activated carbon fiber. Characterized in that it is introduced into the catalyst at a space velocity of 12000 h −1 or less, based on a volume concentration of 1000 ppm of the gas containing 0.1 g / cm 3 and the organochlorine compound.
KR1019960068742A 1996-12-20 1996-12-20 Decomposition method for organic chloride compound KR100270085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960068742A KR100270085B1 (en) 1996-12-20 1996-12-20 Decomposition method for organic chloride compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960068742A KR100270085B1 (en) 1996-12-20 1996-12-20 Decomposition method for organic chloride compound

Publications (2)

Publication Number Publication Date
KR19980049990A KR19980049990A (en) 1998-09-15
KR100270085B1 true KR100270085B1 (en) 2000-10-16

Family

ID=19489614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960068742A KR100270085B1 (en) 1996-12-20 1996-12-20 Decomposition method for organic chloride compound

Country Status (1)

Country Link
KR (1) KR100270085B1 (en)

Also Published As

Publication number Publication date
KR19980049990A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
AU670471B2 (en) Catalytic process
EP0473680B1 (en) Process for the purification of contaminated water by activated ozone
KR20020043946A (en) Oxidation catalyzer, method for fabricating the same, method for recycling the same, and method for treating waste water using the same
WO1993004984A1 (en) Removal of cyanide from water
US4654149A (en) Process for treating ammonium nitrate-containing waste water
WO1997014657A1 (en) Advanced oxidation of water using catalytic ozonation
US4115264A (en) Method of purifying polluted water
US6596664B2 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
US6464951B1 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
KR100270085B1 (en) Decomposition method for organic chloride compound
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP3293181B2 (en) Gas phase decomposition treatment method for volatile organic halogen compound-containing gas
JP2002361044A (en) Method for treating waste gas and liquid chemicals
JPH06134315A (en) Catalyst for reduction treatment of volatile organic halogen compound
KR100398409B1 (en) Method for decomposing organic chlorine compound by using activated carbon fiber
JPH11253733A (en) Method for two stage wet detoxification treatment of incinerator gas
JPH11300374A (en) Treatment of waste water
JPH0227035B2 (en)
KR100215737B1 (en) Selective oxidation catalyst of hydrogen sulfide including ammonia and water and its use for removing hydrogen sulfide
JP2000185216A (en) Treatment of exhaust gas from incinerator
KR100502852B1 (en) Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
JP3326910B2 (en) Method for treating volatile organic halogen compounds
KR100279922B1 (en) Waste gas treatment method and apparatus generated in organic matter oxidation process
JPS6120329B2 (en)
JPH06106171A (en) Treatment of volatile organohalogen compound

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040723

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee