KR100267744B1 - Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev - Google Patents

Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev Download PDF

Info

Publication number
KR100267744B1
KR100267744B1 KR1019980000446A KR19980000446A KR100267744B1 KR 100267744 B1 KR100267744 B1 KR 100267744B1 KR 1019980000446 A KR1019980000446 A KR 1019980000446A KR 19980000446 A KR19980000446 A KR 19980000446A KR 100267744 B1 KR100267744 B1 KR 100267744B1
Authority
KR
South Korea
Prior art keywords
tgev
recombinant
spike protein
baculovirus
spike
Prior art date
Application number
KR1019980000446A
Other languages
Korean (ko)
Other versions
KR19990065234A (en
Inventor
탁동섭
권준헌
김병한
송재영
강신영
안수환
Original Assignee
.
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ., 대한민국 filed Critical .
Priority to KR1019980000446A priority Critical patent/KR100267744B1/en
Publication of KR19990065234A publication Critical patent/KR19990065234A/en
Application granted granted Critical
Publication of KR100267744B1 publication Critical patent/KR100267744B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/866Baculoviral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: Provided are a genetic recombinant baculovirus and a recombinant spike protein of transmissible gastroenteritis virus(TGEV) manufactured therefrom. And a monoclonal antibody capture enzyme linked immunosorbent assay for detecting the antibody of TGEV using the same protein is also provided, thereby the antibody of TGEV can be rapidly detected. CONSTITUTION: The recombinant spike protein of TGEV is produced by the steps of: isolating and identifying TGEV from pigs died of diarrhea; analyzing the nucleotide sequence of spike protein of TGEV; inserting the TGEV spike gene into the baculovirus gene to produce a recombinant baculovirus(KFCC-11015); infecting the recombinant baculovirus into SF9 cells to express TGEV spike protein. The antibody of TGEV is produced by inoculating the expressed recombinant TGEV spike protein into Guinea pigs. The monoclonal antibody capture enzyme linked immunosorbent assay using TGEV spike protein that is produced from the recombinant baculovirus(KFCC-11015) in Guinea pigs as an antigen is used in detecting the neutralizing antibody of TGEV.

Description

유전자 재조합 바큘로바이러스 및 이에 의한 재조합 돼지 전염성위장염바이러스 스파이크 단백질을 이용한 돼지 전염성위장염바이러스 항체검출을 위한 효소면역검사 방법Enzyme-Immunosorbent Assay for Detection of Porcine Infectious Gastritis Virus Antibodies Using Genetically Recombinant Baculovirus and Recombinant Porcine Infectious Gastritis Virus Spike Protein

본 발명은 국내분리 돼지 전염성위장염 바이러스(NVRI 48)의 스파이크 유전자의 염기서열을 분석하여 스파이크 당단백 유전자를 클로닝하여 곤충바이러스인 바큘로바이러스에서 발현시킨 유전자재조합 스파이크 단백질을 이용하여 돼지 전염성 위장염 바이러스에 대한 중화항체를 신속하게 검사하는 방법을 찾고자 하였다.The present invention analyzes the nucleotide sequence of the spike gene of the isolated swine infectious gastroenteritis virus (NVRI 48) by cloning the spike glycoprotein gene and expresses the recombinant recombinant protein expressed in the insect virus baculovirus against swine infectious gastroenteritis virus. We wanted to find a way to quickly test for neutralizing antibodies.

돼지전염성위장염은 1946년 도일(Doyle)과 허칭(Hutching)에 의해 최초로 보고된 질병으로, 2주령 이하의 자돈에서 심한 설사, 구토 그리고 높은 폐사를 일으키는 질병이다. 돼지전염성위장염의 원인체는 코로나비리디(Coronaviridae)의 코로나바이러스 속(coronavirus genus)에 속하는 TGEV로써 크기가 60 - 220nm로 엔빌로프(envelope)와 곤봉상의 스파이크를 갖는 다형태의 바이러스이다. TGEV는 23.6 kilobase의 포지티브 스트랜디드 게놈(positive-stranded genome)을 갖는 RNA 바이러스로 세 개의 주요한 구조단백질인 뉴클레오캡시드 단백질(nucleocapsid protein(N)), integral-membrane glycoprotein(M) 그리고 스파이크 당단백질 (glycoprotein(S))로 구성되어 있다. 스파이크 단밸질은 크기가 약 20nm이고 분자량이 220kDa이며, 높은 수준으로 글라이코실레이션(glycosylation)된 폴리펩티드 (polypeptide)로써 바이러스의 세포부착, 세포막 융합 및 자돈이 TGEV에 대해 저항할 수 있는 중화항체의 생산을 유도하는 최소한 4개 이상의 주요 에피토프 (epitope)를 갖고 있음이 알려져있다. 따라서 여러 연구자들에 의해 TGEV 스파이크 단백질을 바큘로바이러스, 백시니아바이러스 또는 아데노바이러스 발현 시스템을 이용하여 발현시켜 돼지전염성위장염을 예방하기 위한 백신개발에 힘쓰고 있다. 본 발명은 국내분리 돼지 TGEV를 이용하여 중화항체를 유발하는 스파이크 단백질을 바큘로바이러스 발현시스템에서 발현시켰고, 생산된 재조합 스파이크 단백질을 이용하여 신속 정확하게 돼지 TGEV 중화항체를 검사함으로써 돼지 전염성위장염을 효과적으로 예방할 목적으로 이루어졌다.Swine infectious gastroenteritis was first reported by Doyle and Hutching in 1946 and causes severe diarrhea, vomiting and high mortality in piglets less than two weeks old. The causative agent of swine infectious gastroenteritis is TGEV belonging to the coronavirus genus of Coronaviridae, a polymorphic virus with envelopes and club-shaped spikes of 60-220 nm in size. TGEV is an RNA virus with a positive-stranded genome of 23.6 kilobases, three major structural proteins, the nucleocapsid protein (N), the integral-membrane glycoprotein (M), and the spike glycoprotein. It consists of (glycoprotein (S)). Spike protein is about 20 nm in size and has a molecular weight of 220 kDa and is a highly glycosylated polypeptide that produces neutralizing antibodies that allow cell adhesion, cell membrane fusion and piglets to resist TGEV. It is known to have at least four major epitopes that lead to Therefore, several researchers have been trying to develop a vaccine to prevent swine infectious gastroenteritis by expressing the TGEV spike protein using a baculovirus, vaccinia virus or adenovirus expression system. The present invention was expressed in the baculovirus expression system using a domestically isolated pig TGEV spike protein that induces neutralizing antibodies, and by using the recombinant spike protein produced to test the pig TGEV neutralizing antibody quickly and accurately to prevent swine infectious gastroenteritis It was done for the purpose.

즉 본 발명은 유전자재조합으로 생산된 돼지 TGEV 스파이크 단백질을 이용하여 효소면역항체법(monoclonal antibody capture enzyme linked immunosorbent assay ; MACELISA)을 개발하여 돼지 TGEV에 대한 중화항체를 검출하고자 한다.In other words, the present invention is to detect a neutralizing antibody to swine TGEV by developing a monoclonal antibody capture enzyme linked immunosorbent assay (MACELISA) using a pig TGEV spike protein produced by genetic recombination.

제1도는 효소중합연쇄반응(PCR)을 이용한 국내분리 NVRI 48주의 스파이크 유전자 부위와 프라이머를 나타낸 모식도.1 is a schematic diagram showing the spike gene region and primers of domestically isolated NVRI 48 weeks using enzyme polymerase chain reaction (PCR).

제2도는 PCR을 이용하여 NVRI 스파이크 유전자 증폭산물을 전기영동한 사진.Figure 2 is a photograph of the electrophoresis of the NVRI spike gene amplification product using PCR.

제3도는 NVRI 48 스파이크 유전자 염기서열 분석을 위한 클로닝 모식도.3 is a schematic diagram of cloning for NVRI 48 spike gene sequencing.

제4도는 NVRI 48 스파이크 유전자 염기서열 분석을 위한 서브클로닝 모식도.4 is a subcloning schematic for NVRI 48 spike gene sequencing.

제5도는 NVRI 48주 스파이크 유전자 염기서열도.Figure 5 is the NVRI 48 week spike gene sequence.

제6도는 NVRI 48주 스파이크 유전자가 클로닝된 바큘로바이러스 발현벡터 작성 모식도.Figure 6 is a schematic diagram of baculovirus expression vector cloned cloned NVRI 48-week spike gene.

제7도는 유전자 재조합 바큘로바이러스에서 발현된 TGEV 스파이크 단백질을 TGEV 스파이크 단백질에 특이적으로 결합하는 단클론항체(5C8)를 이용하여 형광항체법으로 검출한 사진.Figure 7 is a photograph of the detection of TGEV spike protein expressed in recombinant baculovirus using a monoclonal antibody (5C8) that specifically binds to the TGEV spike protein by fluorescent antibody method.

제8도는 유전자 재조합 바큘로바이러스에서 발현된 TGEV 스파이크 단백질을 TGEV 스파이크 단백질에 특이적으로 결합하는 단클론항체(5C8)를 이용하여 면역조직화학염색법으로 검출한 사진.Figure 8 is a photograph of the TGEV spike protein expressed in recombinant baculovirus detected by immunohistochemical staining using a monoclonal antibody (5C8) that specifically binds to the TGEV spike protein.

제9도는 면역침강법(Immunoprecipitation)을 이용한 재조합 TGEV스파이크 단백질 확인사진.Figure 9 is a photograph of recombinant TGEV spike protein identification using immunoprecipitation (Immunoprecipitation).

제10도는 MACELISA를 이용한 돼지 전염성위장염 바이러스 중화항체검사법 순서도.Figure 10 is a flow chart of porcine infectious gastroenteritis virus neutralizing antibody test using MACELISA.

제11도는 MACELISA용 적정 단클론항체 희석농도 결정도.Figure 11 is a determination of the appropriate dilution concentration of monoclonal antibody for MACELISA.

제12도는 MACELISA용 적정 재조합 단백질 농도 결정도.Figure 12 is a determination of the appropriate recombinant protein concentration for MACELISA.

제13도는 MACELISA용 적정 혈청희석 배수 결정도.Figure 13 is a determination of the appropriate serum dilution multiples for MACELISA.

제14도는 MACELISA용 적정 콘쥬게이트 희석 배수 결정도.14 is a titration conjugate dilution fold crystallinity for MACELISA.

제15도는 현행 바이러스 중화시험법과 개발된 MACELISA와의 검출효율을 비교 조사한 도표.Figure 15 is a chart comparing the detection efficiency between the current virus neutralization test and the developed MACELISA.

이하, 본원 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

[실시예 1]Example 1

바이러스 및 세포Viruses and cells

국내분리 TGEV(NVRI 48)주는 ST(Swine Testicle)세포주에서 계대하였으며, 세포배양액은 알파 최소필수배지(alpha Minimum Essential Medium(α-MEM, Gibco)에 10% 태아송아지혈청 (fetal calf serum (FCS, Gemini)), 안티바이오틱-안티마이코틱 (Antibiotic-antimycotic(Gibco, 100×))을 첨가하여 사용하였다. 야생주 바큘로바이러스인 아우토그라파 칼리포니카 뉴클리어 폴리 헤드로시스 바이러스 (Autographa californica nuclear polyhedrosis virus(AcNPV: Pharmigen)) 및 재조합 바이러스는 스포도프테라 프루지페라 (Spodoptera frugiperda (Sf9 : Invitrogen)) 세포주에서 증식, 배양하였으며, Sf9 세포주는 그레이스 배지 (Grace's media)에 10% 태아송아지혈청 (fetal calf serum)과 안티바이오틱-안티마이코틱 (Antibiotic-antimycotic (Gibco, 100×))을 첨가한 배지로 28℃ 저온 항온기에서 배양하였다. 그리고, 방사성동위원소 식별을 위하여 메치오닌 결핍 배지 (methionine free Grace medium(Gibco, USA))를 사용하였다.Domestically isolated TGEV (NVRI 48) strains were passaged in the Wine Testicle (ST) cell line, and the cell culture medium was 10% fetal calf serum (FCS, in alpha minimum essential medium (α-MEM, Gibco). Gemini)), and antibiotic-antimycotic (Gibco, 100 ×), were used in addition to the wild-type baculovirus Autographa californica nuclear polyhedrosis virus (Autographa californica nuclear polyhedrosis). virus (AcNPV: Pharmigen)) and recombinant virus were propagated and cultured in Spodoptera frugiperda (Sf9: Invitrogen) cell line, and the Sf9 cell line was in 10% fetal calf serum in Grace's media. Calf serum) and antibiotic-antimycotic (Gibco, 100 ×) were added to the medium at low temperature incubator at 28 ° C. The radioisotope was identified for identification. A methionine-deficient medium (methionine free Grace medium (Gibco, USA)) was used.

[실시예 2]Example 2

바이러스 RNA추출 및 cDNA합성Viral RNA Extraction and cDNA Synthesis

PCR 프라이머는 유전자 은행 (Gene bank)에서 검색한 퍼듀(Purdue)주 및 밀러(Miller)주의 스파이크 유전자 서열을 참고로 DNA/RNA 합성기(Applied Biosystems)을 이용하여 3 조(set)를 합성하였다. 프라이머 F1 과 F2의 경우는 증폭산물의 클로닝을 쉽게 하기 위하여 제한효소 BamHI 및 EcoRI site를 도입하였다(제1도 참조). TGEV의 전체 RNA는 3일간 배양한 ST세포에 NVRI48주를 접종한 후 세포변성효과가 나타나기 시작할 때 세포성분만을 수확하여 울트라스펙 Ⅱ RNA 분리장치 (UltraspecⅡ RNA isolation kit (BIOTECX))를 이용하여 추출하였다. cDNA의 합성은 약 5㎍의 전체 RNA를 역 프라이머와 혼합하여 5분간 끓인후, 즉시 얼음에 넣고 5분간 냉각시켜 10,000rpm에서 1분간 원심분리 하였다. first-strand cDNA는 5㎍의 전체 RNA, 40 unit RNAsin(Promega), 50mM Tris-HCl pH8.3, 3mM MgCl2, 75mM KCl, 10mM DTT, 0.4mM dATP, 0.4mM dCTP, 0.4mM dTTP, 0.4mM dGTP, 역프라이머를 50㎕의 반응액에 넣고 50℃에서 2분간 반응시킨 다음, 4 unit의 역전사효소 (SUPERSCIPT Ⅱ RNase H-Reverse Transcriptase, GIBCO BRL)를 첨가하여 50℃에서 50분간 반응시켜 합성하였다. cDNA는 합성된 3종의 프라이머와 THERMALASE Tbr Kit(AMRESCO)를 사용하여 Gene Amp PCR system 9600 (Perkin Elmer)에서 95℃ 5분간 변성 (denature)시킨 후 50℃ 1분, 72℃ 2분, 92℃ 1분씩 29 순환 반응시킨 다음 50℃ 1분, 72℃ 5분간 반응하여 증폭하였다.(도 2 참조)PCR primers were synthesized using a DNA / RNA synthesizer (Applied Biosystems) based on the Purdue and Miller strain spike gene sequences searched in the Gene bank to synthesize three sets. In the case of primers F1 and F2, restriction enzymes BamHI and EcoRI sites were introduced to facilitate cloning of amplification products (see FIG. 1). Total RNA of TGEV was inoculated with STRI cells incubated for 3 days and then harvested for cell degeneration when the cell degeneration effect began to occur. The RNA was extracted using Ultraspec II RNA isolation kit (BIOTECX). . Synthesis of cDNA was carried out by mixing about 5 ㎍ of total RNA with reverse primer, and boiled for 5 minutes, immediately put on ice, cooled for 5 minutes, and centrifuged at 10,000 rpm for 1 minute. first-strand cDNA contains 5 μg total RNA, 40 unit RNAsin (Promega), 50 mM Tris-HCl pH8.3, 3 mM MgCl 2 , 75 mM KCl, 10 mM DTT, 0.4 mM dATP, 0.4 mM dCTP, 0.4 mM dTTP, 0.4 mM dGTP and reverse primer were added to 50 μl of reaction solution and reacted at 50 ° C. for 2 minutes. Then, 4 units of reverse transcriptase (SUPERSCIPT II RNase H - Reverse Transcriptase, GIBCO BRL) were added and reacted at 50 ° C. for 50 minutes. . cDNA was denatured at 95 ° C for 5 minutes in Gene Amp PCR system 9600 (Perkin Elmer) using 3 primers synthesized and THERMALASE Tbr Kit (AMRESCO), followed by 50 ° C for 1 minute, 72 ° C for 2 minutes, and 92 ° C. After 29 cycles of 1 minute reaction, 50 ° C. for 1 minute and 72 ° C. for 5 minutes were amplified. (See FIG. 2)

[실시예 3]Example 3

NVRI 48주 스파이크 유전자의 클로닝 및 DNA 염기서열 분석Cloning and DNA Sequencing of the NVRI 48-Week Spike Gene

PCR을 이용하여 증폭된 DNA 단편은 1,186bp, 1,362bp 그리고 2,246bp로 전자의 두 DNA단편은 제한효소 처리없이 바로 pGEM-T 벡터(Promega)에 클로닝 (pGF2,pGF3) 하였고, 2,246bp의 단편은 KpnI와 EcoRI으로 처리하여 pTZ18R 벡터에 클로닝(pTF2-K23)하였다. 클로닝된 세단편은 적당한 제한효소(1,186bp : BamHI-XhoI, 1,362bp : XhoI-KpnI, 2,246bp : KpnI-EcoRI)로 처리한 후 전체를 라이게이션 (4,458bp)하여 pTZ18R 벡터에 다시 클로닝(pTF5-BE10)하였다(제3도 참조). NVRI48 스파이크 유전자 전체에 대한 염기서열분석을 보다 용이하게 하기 위해 Sau3AI, HaeIII, HindIII등의 제한효소로 처리하여 9개의 단편으로 나눠 각각을 pTZ18R 벡터에 subcloning 하였다(제4도 참조). 염기서열분석법은 디디옥시 체인 터미네이션법 (dideoxy chain termination method)에 준하였으며, Sequenase version 2.0 DNA sequencing kit(USB, USA)와 방사선 동위원소 [α-35S] dATP를 사용하였다. 반응이 완료된 시료는 7M 요소(urea)가 포함된 6% 폴리아크릴아미드겔 (polyacrylamide gel)상에서 전기영동하여 X-레이 필름(Kodak, X-Omat AR)에 15 - 20시간 노출시켰다. 뉴클레오티드 서열은 양방향으로 판독하였다(도 5 참조).DNA fragments amplified by PCR were 1,186bp, 1,362bp and 2,246bp, and the former two DNA fragments were immediately cloned (pGF2, pGF3) into pGEM-T vector (Promega) without restriction enzyme treatment. Treatment with KpnI and EcoRI was cloned (pTF2-K23) into the pTZ18R vector. The cloned three fragments were treated with appropriate restriction enzymes (1,186 bp: BamHI-XhoI, 1,362 bp: XhoI-KpnI, 2,246 bp: KpnI-EcoRI), and then cloned (4,458 bp) and cloned back into the pTZ18R vector (pTF5). -BE10) (see Figure 3). To facilitate sequencing of the entire NVRI48 spike gene, it was treated with restriction enzymes such as Sau3AI, HaeIII, and HindIII, divided into nine fragments, and each was subcloned into the pTZ18R vector (see Figure 4). The sequencing method was based on the dioxyoxy chain termination method. Sequenase version 2.0 DNA sequencing kit (USB, USA) and radioisotope [α- 35 S] dATP were used. After the reaction was completed, the sample was electrophoresed on a 6% polyacrylamide gel containing 7M urea and exposed to X-ray film (Kodak, X-Omat AR) for 15-20 hours. Nucleotide sequences were read in both directions (see FIG. 5).

[실시예 4]Example 4

NVRI 48주 스파이크 유전자 바큘로바이러스 발현 벡터 작성NVRI 48 Week Spike Gene Baculovirus Expression Vector Construction

pTF4-BK1(도 3 참조)를 template DNA로 하여 forward primer (5'-CGGGATCC ATGAAAAAACTATTTGTGGTTT-3'), reverse primer (5'-TCCATCAGTTACGCCG AACG-3')로 PCR 증폭하였다. 증폭된 산물과 pTF4-BK1을 BamHI, XhoI처리한 후 라이게이션하여 pTF6-A를 작성하였다. pTF6-A와 universal stop sequence(5'-TAATT AATTAA-3')가 삽입된 pVL1393을 BamHI, EcoRI처리한 후 라이게이션하여 pF8A를 작성하였다. 제조합 단백질의 정제를 용이 하도록 COOH 말단에 6개의 히스티딘을 삽입하기 위해 5'-CCATCACCATCACCATCACTAAG-3', 3'-CATGGGTAGTGGTAGTGGTAGTGATTCTTAA-5'을 합성한 다음 두가닥을 결합시켜 2가닥 DNA로 만들었다. 6X histidine sequence를 포함한 DNA와 pTF6-A를 KpnI, EcoRI 처리한 후 라이게이션하여 pTF6-AH를 작성하였다. pTF6-AH와 pVL1393을 BamHI, EcoRI 처리하여 라이게이션시켜 pF6AH를 작성하였다(도 6 참조).pTF4-BK1 (see FIG. 3) was used as template DNA and PCR amplified with forward primer (5'-CGGGATCC ATGAAAAAACTATTTGTGGTTT-3 ') and reverse primer (5'-TCCATCAGTTACGCCG AACG-3'). The amplified product and pTF4-BK1 were ligated after BamHI and XhoI to prepare pTF6-A. pVL1393 containing pTF6-A and a universal stop sequence (5'-TAATT AATTAA-3 ') were ligated after BamHI and EcoRI to prepare pF8A. 5'-CCATCACCATCACCATCACTAAG-3 'and 3'-CATGGGTAGTGGTAGTGGTAGTGATTCTTAA-5' were synthesized to insert 6 histidines at the COOH end to facilitate purification of the synthesized protein, and the two strands were combined to make 2-strand DNA. DNA containing 6X histidine sequence and pTF6-A were treated with KpnI and EcoRI and ligated to prepare pTF6-AH. pTF6-AH and pVL1393 were ligated with BamHI and EcoRI to prepare pF6AH (see FIG. 6).

[실시예 5]Example 5

코트랜스펙션 (Cotransfection) 및 재조합 바큘로바이러스 작성Cotransfection and Recombinant Baculovirus Preparation

코트랜스펙션은 파밍겐(Pharmingen(USA))사의 바큘로바이러스 expression system을 이용하여, 발현벡터(pF8A, pF6AH) 플라즈미드 DNA 5㎍과 바큘로바이러스 linearized DNA 0.5㎍이 포함된 무혈청 그레이스배지 100㎕와 동량의 리포펙션 (lipofectin (0.1㎎/㎖, Gibco))과 혼합하여 코트랜스펙션 혼합물 (cotransfection mixture)을 제조하고 실온에서 15분간 방치한 후 35mm 페트리디쉬에 미리 준비된 Sf9 세포(1.5x106cells)에 첨가하여 28℃에서 5시간 배양 후 상층액을 제거하고 10% FCS가 함유된 새 그레이스배지를 5ml 첨가하고 27℃에서 4-6일간 배양하여 CPE가 관찰될 때 수확하여 재조합 바큘로바이러스를 작성하였다.Cortfection was carried out using a baculovirus expression system from Pharmingen (USA), and a serum-free gray medium containing 5 μg of expression vectors (pF8A, pF6AH) plasmid DNA and 0.5 μg of baculovirus linearized DNA 100 A cotransfection mixture was prepared by mixing μL and the same amount of lipofectin (lipofectin (0.1 mg / ml, Gibco)), and allowed to stand at room temperature for 15 minutes, and then prepared Sf9 cells (1.5 × 10) in 35 mm Petri dishes. 6 cells), incubated for 5 hours at 28 ℃, remove the supernatant, add 5 ml of fresh Grace medium containing 10% FCS, incubated for 4-6 days at 27 ℃ harvested when CPE is observed and recombinant baculo Virus was written.

[실시예 6]Example 6

재조합 TGEV 스파이크 단백질 발현 확인Confirmation of Recombinant TGEV Spike Protein Expression

재조합바이러스를 Sf9 세포에 감염시킨 후 3일째에 감염세포를 100% 냉 아세톤으로 10분간 고정하고 TGEV 스파이크 단백질에 특이적으로 결합하는 단클론항체 (5C8)를 이용하여 실온에서 40분 반응 후, PBS로 세척하고, anti-mouse FITC(KPL, German)와 반응하여 형광현미경으로 관찰하였다(제7도 참조). 또한 감염세포를 80% 냉 아세톤으로 - 20℃에서 10분간 고정시킨 후 단클론항체(5C8)과 실온에서 40분간 반응시킨 후 PBS로 세척하고 anti-mouse IgG HRP(KPL)로 40분 반응, 세척후 다이아미노벤지딘 (diaminobenzidine (DAB, Pierce))로 발색하여 확인 하였다(제8도 참조). 간접형광항체검사법 및 면역조직화학염색법을 통하여 검사한 결과 재조합바이러스감염세포에서만 특이 반응을 나타내어 재조합 TGEV 스파이크 단백질의 발현을 확인할 수 있었다. 이렇게 확인된 재조합바이러스를 pF8A-Bac와 pF6AH-Bac으로 명명하였다.After infecting the recombinant virus with Sf9 cells, the infected cells were fixed with 100% cold acetone for 10 minutes and monoclonal antibody (5C8) that specifically binds to the TGEV spike protein. Washed and reacted with anti-mouse FITC (KPL, German) and observed by fluorescence microscopy (see Figure 7). In addition, the infected cells were fixed with 80% cold acetone for 10 minutes at 20 ° C, and then reacted with monoclonal antibody (5C8) for 40 minutes at room temperature. It was confirmed by color development with diaminobenzidine (DAB, Pierce) (see Figure 8). Indirect fluorescence antibody test and immunohistochemical staining showed specific expression only in recombinant virus-infected cells, indicating the expression of recombinant TGEV spike protein. The recombinant viruses thus identified were named pF8A-Bac and pF6AH-Bac.

[실시예 7]Example 7

면역 침강법(Immunoprecipitation)을 이용한 단백질 확인Protein Identification Using Immunoprecipitation

정상 Sf9 세포와 wild type 바큘로바이러스를 음성 대조군으로 그리고 재조합 바큘로바이러스를 감염시킨 Sf9 세포의 추출액을 단크론항체를 이용하여 면역침강시키고 SDS-PAGE한 후 오토라디오그래피 (antoradiography)하였다. 먼저 25㎠ 플라스크에 3x106cells 되게 Sf9 세포를 배양하고 재조합 및 야생주 바큘로 바이러스를 5-10 PFU(plaque forming unit)되게 1.5시간 접종후 접종액을 제거하였다. 이어서 5㎖의 5% FCS함유 그레이스 배지를 첨가하고 28℃에서 42시간 배양한 후 메치오닌 결핍 그레이스 배지(Gibco BRL)에서 1시간 starvation 시킨 후, 50μCi/㎖되게35S-메치오닌(Amersham, UK)으로 22시간 배양하여 표지하였다. 표지된 Sf9 세포 및 상층액를 따로 수확하고 세포는 PBS로 1회 세척후 라이시스 완충액 (lysis buffer(0.5% TritonX-100, 150mM NaCl, 50mM Tris-HCl, pH 7.5))를 200㎕ 첨가하고 얼음에서 10분간 정치한 후 12,000×g에서 10분간 원심하여 상층액을 -20℃에 보관하면서 면역침강시료로 공시하였다. 면역침강은 면역침강 키트 (Behringer Mannheim : BM)를 이용하였으며, 100㎕의 세포 라이세이트에 단백질 A 아가로우스를 첨가하여 4℃에서 15시간 동안 반응시킨 후 12,000rpm에서 30초간 원심하여 비특이 요소를 제거한 후 상층액을 추출하였다. 상층액에 anti-TGEV 스파이크 단백질 단클론항체를 3㎕(3㎕)첨가하고 4℃에서 1시간 진탕반응하였다. 단백질 A(BM) 아가로우스를 50㎕를 첨가하고 4℃에서 15시간 이상 진탕반응하고 12,000×g에 20분 원심하고 상층액을 제거한 후 제조사가 제안한 방법에 따라 3종의 세척 완충액으로 각각 1회씩 세척하였다. 표본완충액(10%-mercaptoethanol, 10% SDS, 25% Glycerol, 10mM Tris-Hcl pH 6.8)를 시료의 100㎕되게 첨가하고 5분간 끓이고 12000×g에서 5분간 원심 후 라미니(Lammli)등의 방법으로 7.5% 폴리아크릴아미드겔에서 전기영동 후 autoradiography를 실시하였다.35S-메치오닌으로 표지된 재조합 TGEV 스파이크 단백질의 분자량은 약 100kDa로 확인되었다(도 9 참조).Normal Sf9 cells and wild type baculovirus as a negative control, and extracts of Sf9 cells infected with recombinant baculovirus were immunoprecipitated with monoclonal antibody and subjected to SDS-PAGE followed by autoradiography. First, Sf9 cells were cultured to 3 × 10 6 cells in a 25 cm 2 flask, and the inoculum was removed after 1.5 hours of inoculation with recombinant and wild baculovirus 5-10 PFU (plaque forming unit). Subsequently, 5 ml of 5% FCS-containing Grace medium was added and cultured for 42 hours at 28 ° C., followed by 1 hour starvation in methionine deficient Grace medium (Gibco BRL), followed by 35 S-methionine (Amersham, UK) at 50 μCi / ml. It was labeled by incubating for 22 hours. The labeled Sf9 cells and the supernatant were harvested separately and the cells were washed once with PBS, followed by the addition of 200 μl of lysis buffer (0.5% TritonX-100, 150 mM NaCl, 50 mM Tris-HCl, pH 7.5) and on ice. After standing for 10 minutes, the mixture was centrifuged at 12,000 × g for 10 minutes, and the supernatant was stored at −20 ° C. and disclosed as an immunoprecipitation sample. Immunoprecipitation was performed using the immunoprecipitation kit (Behringer Mannheim: BM), and protein A agarose was added to 100 μl of cell lysate for 15 hours at 4 ° C., followed by centrifugation at 12,000 rpm for 30 seconds. After removing the supernatant. 3 μl (3 μl) of anti-TGEV spike protein monoclonal antibody was added to the supernatant and shaken at 4 ° C. for 1 hour. Add 50 μl of protein A (BM) agarose, shake at 15 ° C. for at least 15 hours, centrifuge at 12,000 × g for 20 minutes, remove the supernatant, and wash each with 1 wash buffer according to the manufacturer's method. Washed once. Add 100 μl of the sample buffer solution (10% -mercaptoethanol, 10% SDS, 25% Glycerol, 10 mM Tris-Hcl pH 6.8) to the sample, boil for 5 minutes, centrifuge for 5 minutes at 12000 × g, and then use Lammli's method. After electrophoresis on 7.5% polyacrylamide gel, autoradiography was performed. The molecular weight of the recombinant TGEV spike protein labeled with 35 S-methionine was found to be about 100 kDa (see FIG. 9).

[실시예 8]Example 8

재조합 TGEV 스파이크 단백질(pF6AH-Bac)을 이용한 효소면역 측정법 (MACELISA)Enzyme Immunoassay Using Recombinant TGEV Spike Protein (pF6AH-Bac) (MACELISA)

황산암모니아로 농축한 후 투석 정제된 단클론항체(5C8)를 coating buffer로 사용 최적농도로 희석하여 이뮤노어세이용 플레이트(Nunc 사)에 100㎕씩 분주한 후 37℃에서 15시간 흡착한다. 흡착이 끝난 항체를 플레이트에서 버린 후 ELISA 세척용액으로 1회 세척 후 블록킹버퍼 (blocking buffer)를 100㎕씩 분주한 후 37℃에서 3시간 반응하고 다시 세척액으로 3회 세척한다. 준비된 돼지혈청을 혈청희석완층액으로 최적희석배수로 희석한다. 블록킹 반응이 끝난 플레이트는 블록킹 용액을 버리고 세척액으로 3회 세척후 희석된 혈청을 100㎕씩 첨가하고 실온에서 1시간 반응한다. 반응 후 세척액으로 3회이상 세척한다. 이때 각세척은 5분씩 실시한다. Anti-swine IgG peroxidase conjugate(KPL 사)를 혈청희석 완충액에 최적희석 농도희석하여 100㎕씩 첨가한 후 실온에서 1시간 동안 반응한다. 반응후 세척액으로 3회 이상 세척한 후 남은 용액을 전부 제거한다. 발색을 하기위해 발색제로는 ABTS를 사용한다. 발색이 완료되면 ELISA 판독기를 이용하여 405nm에서 흡광도를 측정한다. 혈청의 항체가 결정은 음성혈청에 대한 검사혈청의 비로 2배이상을 양성으로 판단하였다. ELISA를 이용한 돼지 TGEV 중화항체검사법은 제 10 도와 같다.After concentration with ammonia sulfate, dialysis purified monoclonal antibody (5C8) was diluted to an optimal concentration for use as a coating buffer, and 100 μl of an immunoassay plate (Nunc) was adsorbed at 37 ° C. for 15 hours. After the adsorption-absorbed antibody was discarded from the plate, washed once with ELISA washing solution, 100 μl of blocking buffer was dispensed, and then reacted at 37 ° C. for 3 hours, and then washed three times with washing solution. The prepared porcine serum is diluted with the optimal dilution factor with serum dilution buffer solution. After the blocking reaction is completed, the blocking solution is discarded, washed three times with the washing solution, and 100 μl of diluted serum is added and reacted at room temperature for 1 hour. After the reaction, wash with washing solution three times or more. At this time, each wash is performed for 5 minutes. Anti-swine IgG peroxidase conjugate (KPL) was diluted in optimal dilution concentration in serum dilution buffer and added to 100 μl and reacted at room temperature for 1 hour. After the reaction, the solution is washed three times or more, and the remaining solution is removed. To develop color, ABTS is used as a coloring agent. Once color development is completed, absorbance is measured at 405 nm using an ELISA reader. The antibody titer of serum was positively determined more than two times by the ratio of test serum to negative serum. Porcine TGEV neutralizing antibody assay using ELISA is the same as the 10th.

[실시예 9]Example 9

MACELISA용 적정 단클론항체 희석농도 결정Determination of titer of monoclonal antibody dilution for MACELISA

최적 단클론항체의 희석농도는 1 : 4,000즉 0.3㎍/ml이 적당하였다(도11 참조).The dilution concentration of the optimal monoclonal antibody was 1: 4000 or 0.3 μg / ml (see FIG. 11).

[실시예 10]Example 10

MACELISA용 적정 재조합 단백질 농도결정Determination of Proper Recombinant Protein Concentration for MACELISA

적정 재조합 단백질의 희석 농도는 1:100 즉 5㎍/ml(전체 단백질량 측정)이 적당하였다 (도 12 참조).The dilution concentration of the appropriate recombinant protein was 1: 100 or 5 μg / ml (total amount of protein measured) (see FIG. 12).

[실시예 11]Example 11

MACELISA용 적정 혈청희석 농도결정Determination of Proper Serum Dilution Concentration for MACELISA

항체 검출을 위한 적정 혈청 희석 배수는 1/40이 가장 적당하였으며 그 결과는 도 13과 같다.The optimal serum dilution factor for antibody detection was 1/40, and the result is shown in FIG. 13.

[실시예 12]Example 12

MACELISA용 적정 콘쥬게이트 희석 농도결정Determination of titrant conjugate dilution concentration for MACELISA

중화항체를 검출하기 위한 적정 희석농도는 1:1,000이 적당하였다(도 14 참조).The proper dilution for detecting neutralizing antibodies was 1: 1,000 (see FIG. 14).

[실시예 13]Example 13

효소면역항체법(MACCELISA)을 이용한 돼지 전염성위장염바이러스Porcine Infectious Gastritis Virus Using Enzyme Immune Antibody (MACCELISA)

중화항체 검출 법과 기존 조직배양을 이용한 바이러스중화시험법과의 검출 일치율 조사(도 15 참조).Investigation of detection agreement between the neutralizing antibody detection method and the virus neutralization test method using the existing tissue culture (see Fig. 15).

이상에서 결정된 단크론항체, 항원 및 혈청 사용조건에서 기존 바이러스 중화시험법과 본 발명 방법인 MACELISA법 간에 항체검출 상관관계를 조사한 바 0.91 정도의 높은 상관성을 보이며 특이성은 91.9%, 민감성은 91.6%로 이는 MACELISA법으로 돼지 전염성위장염바이러스에 대한 중화항체를 검출할 수 있음을 증명하며 그 결과는 도 15와 같다. 이상의 결과로 보아 본 발명의 MACELISA 법은 돼지 전염성위장염바이러스 중항항체를 신속하고 정확하게 검사할 있는 방법으로 평가된다.As a result of investigating the antibody detection correlation between the virus neutralization test method and the MACELISA method of the present invention under the conditions of the monoclonal antibody, antigen and serum determined above, the correlation was as high as 0.91, with specificity of 91.9% and sensitivity of 91.6%. It is demonstrated that the MACELISA method can detect the neutralizing antibodies to Swine infectious gastroenteritis virus and the results are shown in FIG. 15. In view of the above results, the MACELISA method of the present invention is evaluated as a method capable of quickly and accurately testing pig infectious gastroenteritis virus intermediate antibody.

Claims (2)

돼지 전염성 위장염 바이러스(TGEV)에서 분리한 도 5기재의 스파이크 유전자를 함유한 도 6기재의 pF8A 또는 pF6AH를 이용하여 형질전환된 유전자 재조합 배큘로바이러스 KFCC-11015.Recombinant baculovirus KFCC-11015 transformed with pF8A or pF6AH of FIG. 6 containing the Spike gene of FIG. 5 isolated from porcine infectious gastroenteritis virus (TGEV). 효소면역검사법을 이용한 돼지 전염성 위장염 바이러스 중화항체혈청검사 방법에 있어서, 청구항 1의 유전자 재조합 배큘로바이러스 KFCC-11015가 생산하는 TGEV 스파이크 단백질을 항원으로 하는 것을 특징으로 하는 효소면역검사법을 이용한 돼지 전염성 위장염 바이러스의 중화항체혈청검사방법.Pig infectious gastroenteritis virus neutralizing antibody serum test using enzyme immunoassay, porcine infectious gastroenteritis using enzyme immunoassay characterized in that the antigen is the TGEV spike protein produced by the recombinant baculovirus KFCC-11015 of claim 1 Neutralizing antibody serum test method of virus.
KR1019980000446A 1998-01-10 1998-01-10 Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev KR100267744B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980000446A KR100267744B1 (en) 1998-01-10 1998-01-10 Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980000446A KR100267744B1 (en) 1998-01-10 1998-01-10 Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev

Publications (2)

Publication Number Publication Date
KR19990065234A KR19990065234A (en) 1999-08-05
KR100267744B1 true KR100267744B1 (en) 2000-11-01

Family

ID=19531218

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980000446A KR100267744B1 (en) 1998-01-10 1998-01-10 Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev

Country Status (1)

Country Link
KR (1) KR100267744B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331176B1 (en) * 1999-12-15 2002-04-06 대한민국(관리청:특허청장, 승계청:국립수의과학검역원장) A diagnostic method of bovine viral diarrhea using recombination protein as an antigen
KR20050057750A (en) * 2003-12-11 2005-06-16 바이오돔(주) Simultaneous rapid detection immunochromatography kit against tge and ped

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Am J Vet Res 1997 Mar, 58(3) *
Arch Virol 1994, 137(1-2) *
J Vet Diagn Invest 1993 Jan, 5(1) *

Also Published As

Publication number Publication date
KR19990065234A (en) 1999-08-05

Similar Documents

Publication Publication Date Title
CA2032381C (en) Viral agent
ES2298325T3 (en) PEPTIDES AND SEQUENCES OF NUCLEIC ACID RELATED TO THE EPSTEIN BARR VIRUS.
US5316910A (en) Bioassay for influenza A and B nucleoprotein
Anil et al. Monoclonal antibodies developed for sensitive detection and comparison of white spot syndrome virus isolates in India
Oviedo et al. High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents
KR100204258B1 (en) Recombinant feline coronavirus s proteins
Choi et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and peste des petits ruminants virus antibodies
Riley et al. Expression of recombinant parvovirus NS1 protein by a baculovirus and application to serologic testing of rodents
FR2677767A1 (en) METHOD FOR DETECTING INFECTION WITH BOVINE DIARRHEA VIRUS, NUCLEOTIDE SEQUENCE ENCODING PROTEIN INDUCED BY INFECTION WITH THIS VIRUS AND RELATED PROTEINS AND ANTIGENS.
JPH09503912A (en) Immunoreactive antigen of hepatitis E virus
US5709865A (en) Immunogenic composition against Bovine Viral Diarrhea Virus II glycoprotein 53 (BVDV-II gp53)
Utiger et al. Identification of proteins specified by porcine epidemic diarrhoea virus
KR100267744B1 (en) Recombinant baculovirus and method of macelisa using the recombinant tgev spike protein for the detection of specific antibodies to tgev
US6274307B1 (en) Immunologically active peptides or polypeptides from the parvovirus B19
Rukpratanporn et al. Generation of monoclonal antibodies specific to hepatopancreatic parvovirus (HPV) from Penaeus monodon
KR100267745B1 (en) Detection method of neutralizing antibody against porcine epidermic diarrhea virus
KR100430934B1 (en) Diagnostic methods of Foot-and-Mouth Disease using recombinant 3ABC non-structural protein expressed in insect cells and monoclonal antibody
US20040234542A1 (en) Recombinant orf2 proteins of the swine hepatitis e virus and their use as a vaccine and as a diagnostic reagent for medical and veterinary applications
KR100449906B1 (en) A diagnostic method of foot-and-mouth disease using recombinant FMDV 2C non-structural protein and monoclonal antibody
Adam et al. Approach to a general tospovirus assay using antibodies to purified tomato spotted wilt tospovirus G proteins 1
KR100248907B1 (en) Elisa for detection of neutralizing antibody against hog cholera virus by recombinant gp55 protein
Betemps et al. Overexpression and purification of an immunologically reactive His–BIV capsid fusion protein
KR100522086B1 (en) A method for diagnosing African Horsesickness using VP7 antigen of African Horsesickness Virus and monoclonal antibody
US7166287B1 (en) Viral agent
KR100449908B1 (en) A method for diagnosing vesicular stomatitis using envelope glycoprotein antigen of vesicular stomatitis virus and monoclonal antibody against the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
EXPY Expiration of term