KR100267615B1 - Manufactuing method of a radiation detector - Google Patents

Manufactuing method of a radiation detector Download PDF

Info

Publication number
KR100267615B1
KR100267615B1 KR1019960073963A KR19960073963A KR100267615B1 KR 100267615 B1 KR100267615 B1 KR 100267615B1 KR 1019960073963 A KR1019960073963 A KR 1019960073963A KR 19960073963 A KR19960073963 A KR 19960073963A KR 100267615 B1 KR100267615 B1 KR 100267615B1
Authority
KR
South Korea
Prior art keywords
radiation detector
incident
inorganic
scintillator
present
Prior art date
Application number
KR1019960073963A
Other languages
Korean (ko)
Other versions
KR19980054778A (en
Inventor
정대식
임선재
박병학
오철균
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019960073963A priority Critical patent/KR100267615B1/en
Publication of KR19980054778A publication Critical patent/KR19980054778A/en
Application granted granted Critical
Publication of KR100267615B1 publication Critical patent/KR100267615B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE: A radiation detector manufacturing method is provided to improve the resolution and output wave height characteristics of high energy beam, thereby improving the capacity of the radiation detector. CONSTITUTION: A radiation detector is formed in such a manner that gamma rays incident through an incident surface(5) of a cylindrical inorganic scintillation crystal(1) is reflected at a reflecting substance(2) and incident to an incident layer(6) of a photomultiplication tube(3) contacting with an emitting surface(4). The incident surface and a side circumference of the inorganic scintillation crystal are polished with #SiC 400-600, the emitting surface of the inorganic scintillation crystal is polished like mirror, and the reflecting substance is formed with Al2O3 plate.

Description

방사선 검출기의 제조방법Manufacturing method of radiation detector

본 발명은 무기결정 섬광체에 엑스선이나 감마선을 투사시켜 여기에서 얻어지는 섬광량을 전기적 신호로 변환 계량하여 어떤 물체의 물리량을 계측하거나 제어하는데 적용하기 위한 방사선 검출기의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a radiation detector for projecting X-rays or gamma rays onto an inorganic crystal scintillator and converting and metering the amount of scintillation to an electrical signal to measure or control the physical quantity of an object.

제철산업 현장에서의 금속용탕의 레벨제어나 압연공정중에서의 슬래브 두께제어는 온라인 상에서 계측이 이루어져야만 실시간 제어가 가능하게 된다. 특히 화학공정에서의 액체 및 분립체의 레벨제어나 이송중인 분체의 수분 계측등에서도 온라인 계측 및 제어가 이루어질 것이 요구되고 있다.The level control of the molten metal in the steel industry and the slab thickness control during the rolling process can be controlled in real time only when the measurement is performed online. In particular, it is required to perform on-line measurement and control in the level control of liquids and powders in chemical processes, and measurement of moisture in powders being transferred.

방사선 검출기는 상기의 온라인 제어를 위한 물리량의 계측 및 제어에 저합하다. 상기 방사선 검출기는 무기결정 섬광체에 엑스선이나 감마선 등의 고에너지의 빛을 받으면 섬광을 방출하게 되는데, 이때의 섬광을 광전자증배관에서 전기적 신호로 변환하여 그 값을 계산하는 것으로 측정대상물의 물리량을 계측할 수 있게 된다.The radiation detector is incompatible with the measurement and control of the physical quantity for the above online control. The radiation detector emits a flash when the inorganic crystal scintillator receives high energy light such as X-rays or gamma rays, and measures the physical quantity of the object to be measured by converting the flash to an electrical signal in the photomultiplier tube. You can do it.

이러한 방사선 검출기는 최근들어 엑스레이나 단층 촬영기나 PET(Positional Emission Tomography)등과 같은 핵의학 장비나 고에너지의 물리량 계측장비에 응용되고 있다.These radiation detectors have recently been applied to nuclear medicine equipment such as X-rays, tomography machines and PET (Positional Emission Tomography), or to high-energy physical quantity measurement equipment.

방사선 검출기의 선행기술로서, 무기결정 섬광체와 광전자 증배관과의 결합력을 증진시켜 줄 수 있는 접착제를 도포한 방사선 검출기 제조방법이 일본국 특허공개공보 평성6-51068호에 제안된바 있다. 또 무기 섬광체의 출사면을 절삭 경면 연마하는 것으로 방사선 검출기를 제조하는 기술이 일본국 특허 공개공보 평성5-27041에 제시되어 있다.As a prior art of the radiation detector, a method of manufacturing a radiation detector coated with an adhesive which can enhance the bonding force between the inorganic crystal scintillator and the photomultiplier tube has been proposed in Japanese Patent Application Laid-open No. Hei 6-51068. Moreover, the technique of manufacturing a radiation detector by cutting mirror polishing the exit surface of an inorganic scintillator is shown by Unexamined-Japanese-Patent No. 5-27041.

상기의 선행기술에서는 감마선이 Bi4Ge3O12, GdSiO5, NaI와 같은 무기 섬광체에 입사되면 가시광 파장의 섬광이 발생되게 되며, 이러한 섬광은 무기섬광체에 접착된 광 증폭기에서 전기적 신호로 변환된 다음 신호처리되어 입사된 감마선의 정보를 검출하게 된다.In the above prior art, when gamma rays are incident on inorganic scintillators such as Bi4Ge3O12, GdSiO5, NaI, flashes of visible wavelengths are generated, and these scintillations are converted into electrical signals in an optical amplifier attached to the inorganic scintillator, and then signal processed and incident. The gamma ray information is detected.

이때 입사된 감마선에 해당하여 전환된 섬광의 총량을 잃지않고 발생광량 전부를 광증폭기에 전달해 주는 것이 방사선 검출기의 핵심기술이 된다.At this time, the core technology of the radiation detector is to transmit all of the generated light to the optical amplifier without losing the total amount of flash converted according to the incident gamma rays.

즉, 섬광체의 가공과 반사체의 사용소재에 따라 섬광검출효율이 달라지게 된다.That is, the scintillation detection efficiency varies depending on the processing of the scintillator and the material used for the reflector.

본 발명의 목적은 무기결정 섬광체에 엑스선이나 감마선을 투사시켜 이 섬광체의 연마 출사면에서 얻어지는 섬광량을 전기적 신호로 변환 계량하여 어떤 물체의 물리량을 계측하거나 제어하는데 적용할 수 있는 방사선 검출기의 제조방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is a method of manufacturing a radiation detector that can be applied to measure or control the physical quantity of an object by projecting X-rays or gamma rays onto an inorganic crystal scintillator and converting and metering the scintillation amount obtained from the polishing exit surface of the scintillator into an electrical signal To provide.

본 발명의 특징은 무기 섬광체 결정의 입사면과 측면둘레는 #SiC 400-600 으로 연마하고, 상기 무기 섬광체 결정의 출사면은 경면 연마하고, 상기 무기 섬광체에 마련되는 반사체는 Al2O3판으로 제조하는 방사선 검출기의 제조방법으로 특징지울 수 있다.A feature of the present invention is that the incidence surface and side circumference of the inorganic scintillator crystal is polished with #SiC 400-600, the exit surface of the inorganic scintillator crystal is mirror polished, and the reflector provided in the inorganic scintillator is Al 2 O 3 plate. It can be characterized by the manufacturing method of the radiation detector to be manufactured.

제 1도는 본 발명에 의해 제조된 방사선 검출기의 구조 설명도이다.1 is an explanatory view of the structure of the radiation detector produced by the present invention.

제 2도는 본 발명에 의해 제조된 방사선 검출기를 이용한 검출시스템의 블록구성도이다.2 is a block diagram of a detection system using a radiation detector manufactured by the present invention.

제 3도는 본 발명에 의해 제조된 방사선 검출기를 이용한 방사선 검출 특성 그래프이다.3 is a graph of radiation detection characteristics using a radiation detector manufactured by the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 무기섬광체결정 2 : 반사체1: inorganic scintillator crystal 2: reflector

3 : 광증배관 4 : 출사면3: light piping 4: exit surface

5 : 입사면 6 : 입사층5: incident surface 6: incident layer

7 : 엑스레이 8 : 전원부7: x-ray 8: power unit

9 : 증폭부 10 : 계수부9 amplification unit 10 counter

이하에서 첨부한 도면을 참고로하여 본 발명을 설명한다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

제 1도는 본 발명에 따른 방사선 검출기의 구조도로써, 원통형의 무기섬광체결정(1)의 입사면(5)을 통하여 입사된 엑스선(또는 감마선)(7)은 반사체(2)에서 반사되어 출사면(4)에 접촉하고 있는 광증배관(3)의 입사층(6)에 입사되게 형성한 것을 보이고 있다.1 is a structural diagram of a radiation detector according to the present invention, in which X-rays (or gamma rays) 7 incident through the incident surface 5 of the cylindrical inorganic scintillator crystal 1 are reflected by the reflector 2 and thus the exit surface ( It is shown that it is made to enter the incident layer 6 of the photomultiplier pipe 3 which is in contact with 4).

이러한 구조의 방사선 검출기를 제조할 때 매우 고려되어야 할 사항은 섬광체의 제조조건이다. 이는 섬광체의 가공조건과 반사체의 종류에 따라 검출기의 성능을 결정하게 되는 분해능과 감도가 달라지기 때문이다.A very important thing to consider when manufacturing the radiation detector of this structure is the manufacturing conditions of the scintillator. This is because the resolution and sensitivity that determine the performance of the detector vary depending on the processing conditions of the scintillator and the type of reflector.

본 발명의 무기 섬광체 결정(1)의 입사면(5)과 측면둘레는 #SiC 400-600으로 연마하고, 상기 무기 섬광체 결정(1)의 출사면(4)은 경면 연마하고, 상기 무기 섬광체에 마련되는 반사체(2)는 Al2O3판으로 제조한다.The incident surface 5 and the lateral circumference of the inorganic scintillator crystal 1 of the present invention are polished with #SiC 400-600, and the exit surface 4 of the inorganic scintillator crystal 1 is mirror polished, The reflector 2 provided is manufactured from an Al 2 O 3 plate.

상기 반사체는 통상의 세라믹막 제조방법중에서 닥터브레이드 기법을 이용하여 50㎛두께로 제조한다.The reflector is manufactured to a thickness of 50 탆 using a doctor blade technique in a conventional ceramic film manufacturing method.

제2도는 본 발명에 의해 제조된 방사선 검출기를 이용한 검출시스템의 블록구성도이다.2 is a block diagram of a detection system using a radiation detector manufactured by the present invention.

여기에서 참고되는 바와 같이, 무기 섬광체 결정(1)을 통하여 입사된 엑스레이 또는 감마레이는 경면연마된 상기 섬광체 결정의 출사면과 이 출사면에 접하고 있는 입사층(6)을 통하여 광 증배관으로 입사되게 연결하고, 상기 광증배관에서 출력되는 섬광강도 비례 전기적신호는 증폭부(9)에서 증폭된후 계수부(10)로 입력되게 연결하여 구성하여, 상기 계수부에서 측정물에 대한 계측값이 디스플레이 되게 되는 것이다. 상기 방사선 검출기의 광 증배관(3)은 전원부(8)로부터 동작전압을 받아 광신호를 전기적신호로 변환하게 된다.As referred to herein, the X-ray or gamma ray incident through the inorganic scintillator crystal 1 is incident into the light multiplier through the exit surface of the scintillated scintillator crystal and the incident layer 6 in contact with the exit surface. The light intensity proportional electrical signal outputted from the optical multiplier pipe is amplified by the amplifier 9 and then inputted to the counter 10 so that the measured value for the measurement object is displayed on the counter. It will be. The optical multiplier tube 3 of the radiation detector receives an operating voltage from the power supply unit 8 and converts the optical signal into an electrical signal.

제 3도는 본 발명에 의해 제조된 방사선 검출기를 이용한 방사선 검출 특성그래프로써, 입사된 감마선의 수에 대한 펄스발생 상태를 보이고 있다.3 is a radiation detection characteristic graph using a radiation detector manufactured by the present invention, and shows a pulse generation state with respect to the number of incident gamma rays.

다음 <표>는 본 발명에 의해 제조된 무기 섬광체 결정과 기존의 섬광체 결정에서 얻어진 에너지 분해능 및 출력파고값 특성을 비교한 데이터 이다.The following <Table> is a data comparing the energy resolution and the output peak value characteristics obtained from the inorganic scintillator crystal prepared by the present invention and the existing scintillator crystal.

[표][table]

상기 표는 본발명 장치를 이용한 시스템의 계수부 출력측에서 얻은 실험치로써 제3도의 펄스에서 파고값(mV)과 분해능(ΔE/E= %)으로 산출하였다. 여기에서 알수 있는 바와 같이 본 발명에 의해 제조된 섬광체에서의 분해능등은 기존의 방식으로 제조된 섬광체에서의 분해능 등에서보다 우수한 특성을 보였다.The above table is an experimental value obtained from the output side of the counting unit of the system using the present invention and calculated as the crest value (mV) and the resolution (ΔE / E =%) in the pulse of FIG. As can be seen here, the resolution and the like in the scintillator manufactured by the present invention showed better properties than the resolution in the scintillator manufactured by the conventional method.

이상에서 설명한 바와 같은 본 발명의 방식에 따라 출사면 경면처리 및 기타면 비경면 처리방식으로 제조되는 방사선 검출기용 무기섬광체 결정은 고 에너지 빔의 분해능 및 출력 파고값 출력특성이 기존의 방식에 의해 제조된 섬광체를 가지는 방사선 검출기의 성능에 비해 매우 우수하게 나타나기 때문에, 제철소의 용탕레벨제어 및 압연 공정에서의 두께제어나 화학공정에서의 액체/분립체 제어에 있어 그 제어정밀도를 높일수 있는 효과가 나타나게 된다.The inorganic scintillator crystal for radiation detector manufactured by the exit surface mirror surface treatment and the other surface non-surface treatment system according to the method of the present invention as described above is manufactured by the conventional method in which the resolution of the high energy beam and the output crest value output characteristics are Since it shows excellent performance compared to the performance of the radiation detector having the scintillator, it is possible to increase the control precision in the molten metal level control and the thickness control in the rolling process or the liquid / powder control in the chemical process. .

특히 본 발명은 높은 정밀도를 요구하는 의료장비나 핵물질 검출장비에 응용될 방사선 검출기의 성능을 향상시키게 된다.In particular, the present invention improves the performance of the radiation detector to be applied to medical equipment or nuclear material detection equipment that requires high precision.

Claims (1)

원통형의 무기섬광체결정(1)의 입사면(5)을 통하여 입사된 감마선(7)은 반사체(2)에서 반사되어 출사면(4)에 접촉하고 있는 광증배관(3)의 입사층(6)에 입사되게 형성한 방사선 검출기에 있어서, 사이 무기 섬광체 결정(1)은 그의 입사면(5)과 측면둘레는 #SiC 400-600으로 연마하고, 상기 무기 섬광체 결정(1)의 출사면(4)은 경면 연마하고, 상기 반사체(2)는 Al2O3판으로 형성한 것을 특징으로 하는 방사선 검출기의 제조방법.The gamma ray 7 incident through the incident surface 5 of the cylindrical inorganic scintillator crystal 1 is reflected by the reflector 2 and the incident layer 6 of the light multiplier 3 which is in contact with the exit surface 4. In the radiation detector formed so as to be incident on the surface, the inorganic scintillator crystal 1 is ground to its incidence surface 5 and the side circumference to #SiC 400-600, and the exit surface 4 of the inorganic scintillator crystal 1 is formed. Is mirror polished, and the reflector (2) is formed of an Al 2 O 3 plate.
KR1019960073963A 1996-12-27 1996-12-27 Manufactuing method of a radiation detector KR100267615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960073963A KR100267615B1 (en) 1996-12-27 1996-12-27 Manufactuing method of a radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960073963A KR100267615B1 (en) 1996-12-27 1996-12-27 Manufactuing method of a radiation detector

Publications (2)

Publication Number Publication Date
KR19980054778A KR19980054778A (en) 1998-09-25
KR100267615B1 true KR100267615B1 (en) 2000-10-16

Family

ID=19491526

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960073963A KR100267615B1 (en) 1996-12-27 1996-12-27 Manufactuing method of a radiation detector

Country Status (1)

Country Link
KR (1) KR100267615B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135938A1 (en) * 2012-03-16 2013-09-19 Universitat Rovira I Virgili Station for identifying and measuring environmental gamma radiation in real time by means of spectrometry on a paper filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135938A1 (en) * 2012-03-16 2013-09-19 Universitat Rovira I Virgili Station for identifying and measuring environmental gamma radiation in real time by means of spectrometry on a paper filter

Also Published As

Publication number Publication date
KR19980054778A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3332200B2 (en) Radiation detector for X-ray CT
EP0608101A2 (en) Scintillation counter
US4317037A (en) Radiation detection apparatus
US10386499B2 (en) Device for determining a deposited dose and associated method
WO2013099528A1 (en) Dosage rate measurement system and dosage rate measurement method
JP4241942B2 (en) Imaging dose measurement method and radiation image imaging apparatus
CN111221021A (en) Radiation dose measuring method and device
KR100267615B1 (en) Manufactuing method of a radiation detector
JP2891198B2 (en) Radiation intensity distribution measuring device
US11079222B2 (en) Radiation-based thickness gauge
US4613756A (en) Mercuric iodide light detector and related method
US3319065A (en) Scintillation detector comprising a flat annular scintillating crystal
Brownell et al. Large Plastic Scintillators for Radioactivity Measurement
JPH0679067B2 (en) Scintillation β-ray detector
CN115727908B (en) Single-light quantum energy measuring method, single-light quantum energy sensor and light quantum miscible flowmeter
KR102364555B1 (en) the tritium, beta and gamma radioactive ray detecting device in water
US3154684A (en) X-ray analysis system with means to detect only the coherently scattered X-rays
RU2795377C1 (en) Ionizing radiation detector
West et al. A method of determining the absolute scintillation efficiency of an NaI (Ti) crystal for gamma rays
GB2056476A (en) Scintillation detector
RU2079172C1 (en) Device for measuring thickness of fuel element cladding
JP3112192B2 (en) X-ray analyzer
JP2000065944A (en) X-ray energy-measuring apparatus of handy type
JPH07218640A (en) Method and apparatus for measuring radioactivity
JP3063488B2 (en) γ-ray level meter

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030624

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee