KR100261120B1 - Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same - Google Patents

Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same Download PDF

Info

Publication number
KR100261120B1
KR100261120B1 KR1019970041170A KR19970041170A KR100261120B1 KR 100261120 B1 KR100261120 B1 KR 100261120B1 KR 1019970041170 A KR1019970041170 A KR 1019970041170A KR 19970041170 A KR19970041170 A KR 19970041170A KR 100261120 B1 KR100261120 B1 KR 100261120B1
Authority
KR
South Korea
Prior art keywords
lithium
manganese oxide
lithium manganese
powder
fine powder
Prior art date
Application number
KR1019970041170A
Other languages
Korean (ko)
Other versions
KR19990018077A (en
Inventor
조재필
김근배
Original Assignee
김순택
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이주식회사 filed Critical 김순택
Priority to KR1019970041170A priority Critical patent/KR100261120B1/en
Priority to GBGB9818096.1A priority patent/GB9818096D0/en
Priority to DE19837625A priority patent/DE19837625A1/en
Priority to GB9818461A priority patent/GB2328684B/en
Priority to JP10240634A priority patent/JPH11149926A/en
Publication of KR19990018077A publication Critical patent/KR19990018077A/en
Application granted granted Critical
Publication of KR100261120B1 publication Critical patent/KR100261120B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: Provided are lithium manganese oxide fine powder and process for producing the same, which are excellent in capacity properties, and electric charge and discharge properties. CONSTITUTION: The process comprises the steps of: i) dissolving lithium acetate and manganese acetate in a solvent; ii) adding gelatin to the solution and removing the solvent to form gel; iii) calcining the gel at 300-500deg.C to form lithium manganese oxide powder; iv) crushing the powder and sintering it at 750-850deg.C for 6-12hrs; and then v) cooling the sintered article. The lithium manganese oxide(LixMn2O4, wherein, x is 1-1.05) fine powder is characterized by having powder particle of octahedron, particle diameter of 0.3-1micrometer and powder particle of 3-4m¬2/g.

Description

리튬망간산화물 미세분말, 그 제조방법 및 그것을 활물질로 하는 양극을 채용한 리튬이온 이차전지{Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same}Lithium manganese oxide fine powder, a method for manufacturing the same, and a lithium ion secondary battery employing a positive electrode having the same as an active material {Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same}

본 발명은 리튬 이차전지에 관한 것으로서, 리튬망간산화물 미세분말, 그 제조방법 및 이 리튬망간산화물을 활물질로 하는 양극을 채용하고 있는 리튬이온 이차전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and relates to a lithium manganese oxide fine powder, a manufacturing method thereof, and a lithium ion secondary battery employing a positive electrode containing the lithium manganese oxide as an active material.

리튬이온 이차전지에 있어서, 양극의 충방전 용량은 활물질의 입자크기와 입자구조에 따라 달라진다. 즉, 활물질의 입자크기가 작아질수록 리튬이온의 확산이 빨라질 수 있기 때문에 양극의 충방전 용량을 증가시킬 수 있고, 리튬이온의 확산이 용이하게 일어나는 입자구조를 가지는 경우에도 양극 자체의 충방전 용량을 증가시킬 수 있다.In lithium ion secondary batteries, the charge and discharge capacity of the positive electrode varies depending on the particle size and particle structure of the active material. In other words, the smaller the particle size of the active material, the faster the diffusion of lithium ions can increase the charge / discharge capacity of the positive electrode, and the charge / discharge capacity of the positive electrode itself can be increased even when the particle structure is easily diffused. Can be increased.

리튬망간산화물은 리튬니켈산화물, 리튬코발트산화물 등과 같이 리튬이온 이차전지에서 양극 활물질로서 주로 사용되고 있는데, 다른 활물질에 비해 가격이 저렴하고 무공해이며 높은 에너지 밀도를 나타낸다는 잇점이 있어 선호되고 있다.Lithium manganese oxide is mainly used as a positive electrode active material in lithium ion secondary batteries, such as lithium nickel oxide, lithium cobalt oxide, etc., it is preferred because of the low cost, pollution-free and high energy density compared to other active materials.

양극 활물질의 제조방법으로는 여러 가지가 있는데, 여기서는 크게 두가지 방법만 설명하기로 한다.There are various methods of manufacturing the positive electrode active material, and only two methods will be described herein.

먼저, 고용체 합성방법에 의하면, 리튬망간산화물은, 리튬염과 망간산화물을 볼밀과 같은 장치를 이용하여 균일하게 혼합한 다음, 열처리하는 과정을 통해 제조될 수 있는데, 이러한 열처리 과정에서 리튬염이 열해리에 의해서 분해되고 분해된 이온중 리튬이온이 망간산화물의 격자속으로 고용되어 리튬망간산화물을 형성하게 된다. 이때, 열처리 온도가 높을수록, 그리고 열처리 시간이 길어질수록 입자가 커지기 때문에 열처리 시간과 온도를 적절하게 제어하는 것이 매우 중요하다.First, according to the solid solution synthesis method, the lithium manganese oxide may be prepared by uniformly mixing the lithium salt and manganese oxide using a device such as a ball mill, and then heat-treating the lithium salt in the heat treatment process Li ions decomposed and decomposed by ions are dissolved into the lattice of manganese oxide to form lithium manganese oxide. At this time, since the particles become larger as the heat treatment temperature is higher and the heat treatment time is longer, it is very important to properly control the heat treatment time and temperature.

다른 방법으로서, 졸-겔 방법은 원래 세라믹 합성에 널리 이용되는 방법인데, 비교적 안정화된 구조를 지닌 산화물을 합성할 수 있다는 점에서 리튬 이차전지의 양극 활물질로 사용되는 리튬금속산화물의 제조방법으로서도 이용되어 왔다. 이러한 졸-겔 방법은, 원료 물질 및 킬레이트(chelate) 화합물을 포함하는 졸 상태의 용액을 만들고, 적절한 조건하에서 킬레이트 화합물에 리튬과 금속의 양이온이 결합되도록 한 다음, 열처리를 통해 킬레이트를 분해시켜 제거함으로써 안정한 구조의 리튬금속산화물을 형성한다. 졸-겔 방법은 상기와 같은 고용체 합성방법에 비해 입경이 미세한 분말을 얻을 수 있기는 하지만, 사용되는 첨가제 (특히, 킬레이트 화합물)가 값이 비싸다는 점과 공정 자체가 가수분해-축합, 응집과정을 반복해야 하는 등 번거로운 점을 여전히 안고 있었다.As another method, the sol-gel method is widely used in the synthesis of ceramics, and is also used as a method for producing lithium metal oxides used as positive electrode active materials for lithium secondary batteries in that an oxide having a relatively stabilized structure can be synthesized. Has been. This sol-gel method produces a sol solution containing a raw material and a chelate compound, allows lithium and metal cations to bind to the chelate compound under appropriate conditions, and then decomposes the chelate by heat treatment to remove it. As a result, a lithium metal oxide having a stable structure is formed. Although the sol-gel method can obtain a powder having a finer particle size than the solid solution synthesis method described above, the additives (particularly, chelating compounds) used are expensive and the process itself is hydrolyzed-condensed and aggregated. I still had to be cumbersome to repeat.

본 발명이 이루고자 하는 기술적 과제는 전술한 문제점을 해결하여 입자크기 및 구조가 균일하고 미세하여 리튬이온 이차전지의 양극 활물질로서 사용되는 경우 양극의 용량을 증가시킬 수 있는 리튬망간산화물을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a lithium manganese oxide that can increase the capacity of the positive electrode when used as a positive electrode active material of a lithium ion secondary battery to solve the above problems by uniform and fine particle size and structure.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 리튬망간산화물을 간단하게 제조할 수 있는 방법을 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a method for simply manufacturing the lithium manganese oxide.

본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 리튬망간산화물을 활물질로 하는 양극을 채용하고 있어서 용량이 개선된 리튬 이차전지를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a lithium secondary battery having improved capacity by employing a positive electrode using the lithium manganese oxide as an active material.

도 1은 본 발명의 일 실시예에 따라 800℃에서 6시간 동안 소결처리된 리튬망간산화물을 채용하는 리튬 이차전지의, 충방전사이클의 반복실시에 따른 활물질 용량 변화를 설명하기 위한 그래프이다 (충방전율: 0.3C).1 is a graph illustrating a change in the active material capacity of a lithium secondary battery employing a lithium manganese oxide sintered at 800 ° C. for 6 hours in accordance with one embodiment of the present invention. Discharge rate: 0.3C).

도 2는 본 발명의 일 실시예에 따라 800℃에서 6시간 동안 소결처리된 리튬망간산화물을 채용하는 리튬 이차전지의 고율충방전특성 (1C)을 설명하기 위한 그래프이다.2 is a graph for explaining the high-rate charge and discharge characteristics (1C) of a lithium secondary battery employing a lithium manganese oxide sintered for 6 hours at 800 ℃ according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따라 800℃에서 12시간 동안 소결처리된 리튬망간산화물의 주사전자현미경 사진이다.3 is a scanning electron micrograph of lithium manganese oxide sintered for 12 hours at 800 ℃ according to an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따라 800℃에서 12시간 동안 소결처리된 리튬망간산화물을 채용하는 리튬 이차전지의, 충방전사이클의 반복실시에 따른 활물질 용량 변화를 설명하기 위한 그래프이다 (0.3C).4 is a graph illustrating a change in the active material capacity of the lithium secondary battery employing a lithium manganese oxide sintered at 800 ° C. for 12 hours according to one embodiment of the present disclosure according to repeated charging and discharging cycles (0.3) C).

도 5는 본 발명의 다른 실시예에 따라 800℃에서 12시간 동안 소결처리된 리튬망간산화물을 채용하는 리튬 이차 전지의, 충방전사이클의 반복실시에 따른 활물질 용량 변화를 설명하기 위한 그래프이다.5 is a graph illustrating a change in active material capacity of a lithium secondary battery employing lithium manganese oxide sintered at 800 ° C. for 12 hours according to another embodiment of the present invention.

본 발명의 첫 번째 목적을 달성하기 위해 본 발명에서는, 리튬망간산화물 (LixMn2O4(x는 1-1.05)) 미세분말로서 그 분말입자가 팔면체 형태인 리튬망간산화물이 제공된다.In order to achieve the first object of the present invention, in the present invention, lithium manganese oxide (Li x Mn 2 O 4 (x is 1-1.05)) is provided as a fine powder lithium manganese oxide powder of the octahedral form.

본 발명에 따른 리튬망간산화물에 있어서, 그 입자의 크기는 0.3-1㎛ 이며, 비표면적은 3-4.5㎡/g 이다.In the lithium manganese oxide according to the present invention, the particle size is 0.3-1 탆, and the specific surface area is 3-4.5 m 2 / g.

본 발명의 다른 목적은, a) 초산리튬과 초산망간을 용매에 용해하는 단계; b) 상기 단계에서 얻은 용액에 젤라틴을 첨가하고 용매를 제거하여 겔을 형성하는 단계; c) 상기 겔을 300 내지 500℃에서 하소하여 리튬망간산화물 분말을 형성하는 단계; d) 상기 분말을 분쇄한 다음 750 내지 850℃에서 소결하는 단계; 및 e) 상기 소결 생성물을 냉각하는 단계를 포함하는, 리튬망간산화물 (LixMn2O4(x는 1-1.05)) 미세분말의 제조방법에 의해 달성된다.Another object of the present invention, a) dissolving lithium acetate and manganese acetate in a solvent; b) adding gelatin to the solution obtained in the step and removing the solvent to form a gel; c) calcining the gel at 300 to 500 ° C. to form lithium manganese oxide powder; d) pulverizing the powder and then sintering at 750 to 850 ° C .; And e) cooling the sintered product. A method of preparing a lithium manganese oxide (Li x Mn 2 O 4 (x is 1-1.05)) fine powder is achieved.

본 발명의 방법에 의해 제조되는 상기 리튬망간산화물 미세분말은 그 입자형태가 팔면체로 되어 있고, 입자크기는 0.3-1㎛ 이며, 비표면적은 3-4.5㎡/g 이다.The lithium manganese oxide fine powder produced by the method of the present invention has an octahedral particle shape, a particle size of 0.3-1 μm, and a specific surface area of 3-4.5 m 2 / g.

또한, 본 발명의 다른 기술적 과제는, 리튬금속산화물을 활물질로 하는 양극, 카본계 음극 및 비수계 전해액을 포함하는 리튬이온 이차전지에 있어서, 상기 양극의 리튬금속산화물이 그 분말입자의 형태가 팔면체로 되어 있는 리튬망간산화물 (LixMn2O4(x는 1-1.05))인 것을 특징으로 하는 리튬이온 이차전지에 의하여 달성될 수 있다.In addition, another technical problem of the present invention is a lithium ion secondary battery comprising a positive electrode, a carbon-based negative electrode, and a non-aqueous electrolyte containing a lithium metal oxide as an active material, wherein the lithium metal oxide of the positive electrode is octahedral in the form of powder particles. It can be achieved by a lithium ion secondary battery characterized in that the lithium manganese oxide (Li x Mn 2 O 4 (x is 1-1.05)).

상기 리튬망간산화물은 입자크기가 0.3-1㎛ 이며, 비표면적은 3-4.5㎡/g 이다.The lithium manganese oxide has a particle size of 0.3-1 μm and a specific surface area of 3-4.5 m 2 / g.

이하, 본 발명에 대하여 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는, 리튬망간산화물 미세분말의 제조과정에서 젤라틴을 이용하는 것을 특징으로 하고 있다. 젤라틴은 단백질로서 아미노기와 카르보닐기를 가지고 있으며, 이러한 작용기들은 양이온들을 킬레이팅하는 반응성 위치로 작용한다. 종래의 졸-겔 방법에서 킬레이트 화합물로서 사용되는 시트르산에 비해 젤라틴은 분자당 반응성 위치 (reactive site)의 수가 약 550배나 되므로 보다 작용성이 매우 높아서 양극 활물질의 제조비용을 저하시킬 수 있다. 졸-겔법으로 양극 활물질을 제조하는 과정에 있어서, 젤라틴을 이용하면 젤라틴이 양극 활물질의 주성분으로 사용되는 리튬과 망간의 양이온을 킬레이팅하여, 최종적으로 생성되는 리튬망간산화물의 구조를 안정화시키는 작용을 하게 되고, 소량으로도 무기양이온들을 "프로즌(frogen)" 상태의 겔로 변화시키기 때문에 종래의 경우에 문제가 되었던 응집이나 가수분해-축합과정을 최소화시킬 수 있어 전체 합성공정에 소요되는 시간도 크게 줄일 수 있다. 젤라틴에 의해 결정된 구조는 후속의 하소 및 소결과정에서 젤라틴이 제거된 후에도 그대로 유지되어 생성되는 리튬망간산화물 입자의 대부분이 팔면체에 가까운 형태를 나타내며 비표면적도 증가된다.In the present invention, it is characterized in that the gelatin is used in the manufacturing process of the lithium manganese oxide fine powder. Gelatin has amino and carbonyl groups as proteins, and these functional groups serve as reactive sites that chelate cations. Compared to the citric acid used as a chelate compound in the conventional sol-gel method, gelatin has about 550 times the number of reactive sites per molecule, which is more functional and thus lowers the manufacturing cost of the positive electrode active material. In the preparation of the positive electrode active material by the sol-gel method, gelatin is used to chelate lithium and manganese cations used as the main components of the positive electrode active material, thereby stabilizing the structure of the finally formed lithium manganese oxide. By changing inorganic cations into gels in the "frogen" state, even in small amounts, the aggregation and hydrolysis-condensation processes, which have been a problem in the conventional case, can be minimized, greatly reducing the time required for the entire synthesis process. Can be. The structure determined by the gelatin is maintained even after the gelatin is removed during the subsequent calcination and sintering, so that most of the lithium manganese oxide particles produced are octahedral and the specific surface area is increased.

본 발명에 따른 리튬망간산화물의 제조방법을 보다 구체적으로 설명하면, 먼저 초산리튬과 초산망간을 용매에 용해한 다음, 여기에 젤라틴을 첨가한다. 이때, 상기 초산리튬과 초산망간은 1:2-1.05:2의 몰비로 혼합되는데, 이는 리튬 이온 이차전지의 양극 활물질로서 사용되는 리튬망간산화물에 대해 일반적으로 적용되는 것과 유사한 혼합비율이다. 젤라틴은 상기 초산리튬과 초산망간의 총량을 기준으로 하여 5-15중량% 만큼 첨가되는데, 젤라틴의 혼합비율에 따라 본 발명이 크게 영향을 받는 것은 아니며, 젤라틴이 상기 범위로 사용될 때 적절한 용해도를 얻을 수 있기 때문이다. 또한, 상기 용매로는 알콜 또는 증류수가 사용되는데, 그 중에서도 메탄올과 에탄올이 바람직하다.In more detail, the method for producing a lithium manganese oxide according to the present invention, first dissolving lithium acetate and manganese acetate in a solvent, and then gelatin is added thereto. At this time, the lithium acetate and manganese acetate are mixed in a molar ratio of 1: 2-1.05: 2, which is a mixing ratio similar to that generally applied to lithium manganese oxide used as a cathode active material of a lithium ion secondary battery. Gelatin is added as much as 5-15% by weight based on the total amount of lithium acetate and manganese acetate, the present invention is not significantly affected by the mixing ratio of gelatin, to obtain a proper solubility when gelatin is used in the above range Because it can. In addition, alcohol or distilled water is used as the solvent, among which methanol and ethanol are preferable.

그런 다음, 온도를 90 내지 150℃로 올려서 젤라틴을 완전히 용해시키면 이 과정에서 용매가 자연히 증발, 제거됨으로써 점성 물질이 만들어지고, 이를 상온으로 냉각시킴에 따라 투명한 겔이 형성된다. 300-500℃까지 온도를 증가시키면서 상기 겔을 하소하게 되면, 처음에는 겔이 서서히 용해되면서 거품이 생기기 시작하고 이어서, 폴리머가 분해되기 시작한다. 이 과정에서 이산화탄소와 수증기가 발생하면서 리튬망간산화물 파우더가 생성된다. 이 파우더를 분쇄하여 상온에서 약 750 내지 850℃, 바람직하기로는 약 800℃까지 분당 1-3℃ 정도의 승온속도로 가열하여 6-12시간 정도 유지함으로써 소결공정을 실시한다. 이때, 800℃ 정도에서 소결하는 경우에는, 소결 시간이 6시간보다 짧으면 충분하게 소결되지 않으며, 반대로 12시간을 초과하게 되면 분말입자가 성장하여 대입자를 형성하게 되어 비표면적이 감소됨에 따라 용량 감소가 일어나므로 바람직하지 않다. 그런 다음, 다시 분당 0.1-2℃의 냉각속도로 냉각하게 되면 본 발명의 양극 활물질인 팔면체 형태의 리튬망간산화물 분말을 얻게 된다. 리튬망간산화물 분말의 입자가 팔면체 형태를 가짐으로써 리튬 이온의 삽입/탈삽입이 보다 용이하게 효과적으로 이루어질 수 있고, 이에 따라 전지의 고용량화가 가능해진다.Then, the temperature is raised to 90 to 150 ℃ to completely dissolve the gelatin in this process, the solvent is naturally evaporated, removed to make a viscous material, and cooled to room temperature to form a transparent gel. When the gel is calcined while increasing the temperature to 300-500 ° C., the gel initially dissolves slowly and begins to foam and then the polymer begins to degrade. In this process, carbon dioxide and water vapor are generated to form lithium manganese oxide powder. The powder is pulverized and heated at about 750 to 850 ° C., preferably about 800 ° C., at a heating rate of about 1-3 ° C. per minute, and maintained for about 6-12 hours. At this time, in the case of sintering at about 800 ℃, if the sintering time is shorter than 6 hours, the sintering time is not sufficiently sintered, on the contrary, if it exceeds 12 hours, the powder particles grow to form large particles, and the capacity decreases as the specific surface area decreases. It is undesirable because it happens. Then, when cooled again at a cooling rate of 0.1-2 ℃ per minute to obtain the octahedral form lithium manganese oxide powder of the cathode active material of the present invention. Since the particles of the lithium manganese oxide powder have an octahedral shape, insertion / deintercalation of lithium ions can be made more easily and effectively, thereby increasing the capacity of the battery.

상기 양극 활물질로부터 양극을 제조하는 방법은 특별히 제한되지 않으므로, 통상적으로 이용되는 방법을 그대로 적용할 수 있다. 또한, 이렇게 제조된 양극을 이용하여 리튬 2차 전지를 제조하는데 있어서도, 본 발명의 분야에서 통상적으로 사용되는 도전제 및 결합제를 이용한다. 이러한 도전제의 예로서는 아세틸렌 블랙 또는 카본 블랙 등을, 결합제의 예로는 폴리비닐리덴플루오라이드 등을 들 수 있다.Since the method for producing the positive electrode from the positive electrode active material is not particularly limited, a method commonly used may be applied as it is. In addition, also in manufacturing a lithium secondary battery using the positive electrode thus prepared, the conductive agent and the binder commonly used in the field of the present invention is used. Examples of such conductive agents include acetylene black or carbon black, and examples of the binder include polyvinylidene fluoride.

이하, 하기 실시예를 들어 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예 1Example 1

0.1몰의 초산리튬 (CH3CO2Li·2H2O)과 0.2몰의 초산망간 ((CH3CO2)2Mn·4H2O)을 50㎖의 메탄올에 서서히 첨가하면서 교반하에 완전히 용해시켰다. 이어서, 이 용액에 4g의 젤라틴을 첨가한 다음, 120℃에서 가열하여 용매를 제거하고 겔을 형성하였다. 이 겔을 400℃로 하소하여 리튬망간산화물 (LiMn2O4) 분말을 형성한 다음, 이 분말을 막자사발에 넣고 분쇄하였다. 이어서, 이 분쇄된 리튬망간산화물 분말을 1℃/min의 승온속도로 약 800℃까지 승온시켜 6시간 동안 소결한 다음, 분당 0.5℃/min의 속도로 상온으로 냉각시켜서 리튬망간산화물 (LiMn2O4) 미세분말을 형성하였다. 이렇게 만들어진 리튬망간산화물 미세분말의 비표면적은 4.5㎡/g이었다.0.1 mol of lithium acetate (CH 3 CO 2 Li.2H 2 O) and 0.2 mol of manganese acetate ((CH 3 CO 2 ) 2 Mn.4H 2 O) were added to 50 ml of methanol and dissolved completely under stirring. . 4 g of gelatin was then added to the solution, which was then heated at 120 ° C. to remove the solvent and form a gel. The gel was calcined at 400 ° C. to form lithium manganese oxide (LiMn 2 O 4 ) powder, which was then ground in a mortar and ground. Subsequently, the pulverized lithium manganese oxide powder was heated to about 800 ° C. at a temperature increase rate of 1 ° C./min, sintered for 6 hours, and then cooled to room temperature at a rate of 0.5 ° C./min per minute to form lithium manganese oxide (LiMn 2 O). 4 ) A fine powder was formed. The specific surface area of the lithium manganese oxide fine powder thus prepared was 4.5 m 2 / g.

이렇게 하여 제조된 리튬망간산화물 미세분말과 카본 블랙 및 폴리비닐리덴플루오라이드의 혼합물 (88:5:7wt%) 5g에 6㎖의 NMP (N-메틸피롤리돈)를 첨가하여 페이스트가 될 때까지 완전히 혼합하였다. 이 페이스트를 진공 오븐에 넣어 버블을 제거한 다음, 닥터 블레이드를 이용하여 알루미늄 호일에 200㎛의 두께로 코팅하였다. 이것을 150℃의 진공 오븐에 넣어 2시간 동안 건조시킨 다음 가압하여 극판을 제조하였다. 이 극판을 지름 2㎝의 원형으로 자른 다음, 코인 전지의 캔에 용접하여 양극을 형성하였다. 이어서, 음극은 양극의 용량을 알아보기 위해 리튬 호일을 상기 양극과 같은 크기로 절단한 다음, 니켈 호일과 압축함으로써 제조하여 코인 전지의 캡에 있는 글로브 박스 (gloove box)안에 용접하였다. 마지막으로 세퍼레이터 (상품명: 3M)와 전해질 (EC/DMC(에틸렌카보네이트/디메틸렌카보네이트)+LiPF6)를 설치하여 코인 전지를 완성하였다.To 5 g of a mixture (88: 5: 7 wt%) of the lithium manganese oxide fine powder prepared in this way, carbon black and polyvinylidene fluoride, 6 ml of NMP (N-methylpyrrolidone) was added until a paste was obtained. Mix thoroughly. The paste was placed in a vacuum oven to remove bubbles, and then coated on aluminum foil with a thickness of 200 μm using a doctor blade. This was put in a vacuum oven at 150 ℃ dried for 2 hours and then pressurized to prepare a pole plate. The pole plate was cut into a circle having a diameter of 2 cm, and then welded to a can of a coin battery to form a positive electrode. The negative electrode was then cut into lithium foils of the same size as the positive electrode to determine the capacity of the positive electrode and then pressed with nickel foil and welded into a glove box in the cap of a coin cell. Finally, a separator (trade name: 3M) and an electrolyte (EC / DMC (ethylene carbonate / dimethylene carbonate) + LiPF 6 ) were installed to complete a coin battery.

이렇게 만들어진 코인 전지를 0.3C로 충방전한 결과를 도 1의 그래프로 나타내었다. 도 1을 보면, 활물질의 초기용량은 129mAh/g였으며, 30회 충방전 싸이클이 실시된 경우의 활물질 용량은 20회 충방전 싸이클이 실시된 경우의 활물질 용량에 비해 그다지 떨어지지 않았다.The result of charging and discharging the coin battery thus produced at 0.3C is shown in the graph of FIG. Referring to FIG. 1, the initial capacity of the active material was 129 mAh / g, and the capacity of the active material in the case of 30 charge / discharge cycles was not much lower than the capacity of the active material in the case of 20 charge / discharge cycles.

한편, 이 코인 전지를 1C로 고율 충방전을 100회까지 실시하면서 활물질 용량 변화를 측정하여 그 결과를 도 2에 나타내었다.On the other hand, the coin battery was subjected to high rate charge and discharge at 1 C up to 100 times, and the change in active material capacity was measured.

도 2의 그래프로부터 알 수 있듯이, 80회 충방전 이후부터는 활물질 용량의 감소가 일어나지 않았을 뿐 아니라 오히려 약간 증가하는 양상마저 나타내었으며, 고율로 100회 충방전 시의 활물질 용량이 초기 활물질 용량의 75% 정도에 이르는 것으로 나타났다. 이로부터, 본 발명에 따른 리튬망간산화물을 리튬이온 이차전지의 양극 활물질로 채용할 경우, 고율 충방전특성이 우수한 전지를 얻을 수 있다는 것을 알 수 있다.As can be seen from the graph of Figure 2, after 80 charge and discharge not only did not decrease the capacity of the active material but also showed a slightly increased aspect, the active material capacity at 100 charge / discharge at a high rate of 75% of the initial active material capacity To a degree. From this, it can be seen that when the lithium manganese oxide according to the present invention is employed as a positive electrode active material of a lithium ion secondary battery, a battery excellent in high rate charge / discharge characteristics can be obtained.

실시예 2Example 2

4g의 젤라틴을 증류수 50㎖에 완전히 용해시킨 다음, 여기에 1몰의 초산리튬 (CH3CO2Li·2H2O)과 2몰의 초산망간 ((CH3CO2)2Mn·4H2O)을 첨가하고 교반하에 완전히 용해시켜 용액을 제조한 다음, 90℃로 가열하여 용매를 제거함으로써 겔을 형성하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 리튬망간산화물 (LiMn2O4) 미세분말을 제조하고, 이를 양극 활물질로 사용하여 리튬 코인 전지를 제조하였다.4 g of gelatin was completely dissolved in 50 ml of distilled water, followed by 1 mol of lithium acetate (CH 3 CO 2 Li.2H 2 O) and 2 mol of manganese acetate ((CH 3 CO 2 ) 2 Mn.4H 2 O. ) Was added and dissolved completely under stirring to prepare a solution, and then heated to 90 ° C. to remove the solvent to form a gel by the same method as in Example 1 except that lithium manganese oxide (LiMn 2 O 4 ) fine Powder was prepared and a lithium coin battery was prepared using this as a positive electrode active material.

이 리튬 코인 전지에 대하여 충방전 시험을 실시한 결과, 활물질 용량특성 및 고율 충방전 특성이 대체로 실시예 1의 결과와 마찬가지로 우수하였다.As a result of performing a charge / discharge test on this lithium coin battery, the active material capacity characteristics and high rate charge / discharge characteristics were generally excellent as in the result of Example 1.

실시예 3Example 3

분쇄된 리튬망간산화물 분말을 800℃에서 12시간 동안 소결하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 리튬망간산화물 미세분말을 형성하였다. 이렇게 만들어진 리튬망간산화물 미세분말의 비표면적은 3.7㎡/g이었다. 이 미세분말에 대한 주사전사현미경 (SEM) 사진이 도 3에 도시되어 있는데, 그 입자의 형태가 거의 팔면체를 이루고 있으며, 입자크기가 1㎛ 이하인 것을 알 수 있다.A lithium manganese oxide fine powder was formed in the same manner as in Example 1 except that the pulverized lithium manganese oxide powder was sintered at 800 ° C. for 12 hours. The specific surface area of the lithium manganese oxide fine powder thus produced was 3.7 m 2 / g. A scanning electron microscope (SEM) photograph of the fine powder is shown in FIG. 3, which shows that the shape of the particles is almost octahedral, and the particle size is 1 μm or less.

이 산화물을 활물질로서 이용하여 실시예 1에서와 동일한 방법으로 코인 전지를 제조하고, 이에 대하여 충방전 시험을 실시하였다. 그 결과를 도 4의 그래프로서 나타내었다.Using this oxide as an active material, a coin battery was produced in the same manner as in Example 1, and a charge and discharge test was conducted. The result is shown as a graph of FIG.

도 4를 보면, 활물질의 초기용량은 123mAh/g로 실시예 1의 결과보다는 낮았지만 매우 양호한 수준이며, 충방전 싸이클의 반복에 따른 활물질 용량의 감소 현상 역시 실시예 1에 비해 크기는 하지만 허용가능한 범위를 벗어나지 않는 수준이다. 실시예 1의 경우에 비해 활물질의 초기용량이 낮아진 것은 소결 시간이 길어짐에 따라 분말 입자가 성장함으로써 분말 입자의 비표면적이 작아졌기 때문인 것으로 판단된다.4, the initial capacity of the active material is 123 mAh / g, which is lower than the result of Example 1, but very good level, the reduction of the active material capacity due to the repeated charge and discharge cycle is also large, but the acceptable range compared to Example 1 The level does not escape. The initial capacity of the active material is lower than that of Example 1 because it is believed that the specific surface area of the powder particles is reduced as the powder particles grow as the sintering time is longer.

실시예 4Example 4

초산리튬과 초산망간을 1.05:2의 몰비로 사용하는 것을 제외하고는 실시예 3에서와 동일한 방법으로 리튬망간산화물 (Li1.05Mn2O4) 미세분말을 제조하고, 이를 양극 활물질로 하는 리튬 코인 전지를 제조하였다. 이 리튬 코인 전지에 대하여 충방전 시험을 실시하고, 그 결과를 도 5의 그래프로서 나타내었다.A lithium manganese oxide (Li 1.05 Mn 2 O 4 ) fine powder was prepared in the same manner as in Example 3 except for using lithium acetate and manganese acetate in a molar ratio of 1.05: 2, and using lithium coin as the cathode active material. The battery was prepared. A charge and discharge test was conducted on this lithium coin battery, and the results are shown as a graph in FIG. 5.

도 5를 보면, 활물질의 초기 용량은 117mAh/g로서 매우 양호하고, 충방전 싸이클이 반복되어도 활물질 용량의 감소현상이 그다지 크지 않은 것을 알 수 있다.5, the initial capacity of the active material is very good as 117mAh / g, it can be seen that even if the charge and discharge cycle is repeated, the reduction in the capacity of the active material is not very large.

본 발명에 따른 리튬망간산화물 미세분말 입자는 팔면체 형태로 되어 있고 입자크기가 미세하여 리튬이온 이차전지의 양극 활물질로서 사용되는 경우 용량을 증가시킬 수 있다. 또한, 이러한 리튬망간산화물은 종래에 비해 용이하고도 저렴한 비용으로 제조될 수 있으며, 따라서 이를 활물질로 하는 양극을 채용하고 있는 리튬이온 이차전지는 용량특성과 고율 충방전 특성이 우수하여 응용범위가 확대될 수 있다.The lithium manganese oxide fine powder particles according to the present invention may have an octahedral shape and have a fine particle size, thereby increasing capacity when used as a cathode active material of a lithium ion secondary battery. In addition, such a lithium manganese oxide can be manufactured easily and at a low cost compared to the prior art, and thus, a lithium ion secondary battery employing a positive electrode using the active material thereof has excellent capacity characteristics and high rate charge / discharge characteristics, thereby expanding its application range. Can be.

Claims (7)

리튬망간산화물 (LixMn2O4(x는 1-1.05)) 미세분말로서, 분말의 입자 형태가 팔면체이고 입자 크기가 0.3-1㎛이며 비표면적이 3-4.5㎡/g인 것을 특징으로 하는 리튬망간산화물 미세분말.Li-manganese oxide (Li x Mn 2 O 4 (x is 1-1.05)) fine powder, characterized in that the particle shape of the powder is octahedron, the particle size is 0.3-1㎛ and specific surface area is 3-4.5㎡ / g Lithium manganese oxide fine powder. a) 초산리튬과 초산망간을 용매에 용해하는 단계;a) dissolving lithium acetate and manganese acetate in a solvent; b) 상기 단계에서 얻은 용액에 젤라틴을 첨가하고 용매를 제거하여 겔을 형성하는 단계;b) adding gelatin to the solution obtained in the step and removing the solvent to form a gel; c) 상기 겔을 300 내지 500℃에서 하소하여 리튬망간산화물 분말을 형성하는 단계;c) calcining the gel at 300 to 500 ° C. to form lithium manganese oxide powder; d) 상기 분말을 분쇄한 다음 750 내지 850℃에서 6 내지 12시간 소결하는 단계; 및d) pulverizing the powder and then sintering at 750 to 850 ° C. for 6 to 12 hours; And e) 상기 소결 생성물을 냉각하는 단계를 포함하는, 리튬망간산화물 (LixMn2O4(x는 1-1.05)) 미세분말의 제조방법.e) manufacturing a lithium manganese oxide (Li x Mn 2 O 4 (x is 1-1.05)) fine powder comprising the step of cooling the sintered product. 제2항에 있어서, 상기 리튬망간산화물 미세분말의 입자가 팔면체 형태를 가지는 것을 특징으로 하는 방법.The method of claim 2, wherein the lithium manganese oxide fine powder particles have an octahedral form. 제3항에 있어서, 상기 리튬망간산화물 미세분말의 입자크기는 0.3-1㎛ 이고, 비표면적은 3-4.5㎡/g 인 것을 특징으로 하는 방법.The method of claim 3, wherein the lithium manganese oxide fine powder has a particle size of 0.3-1 탆 and a specific surface area of 3-4.5 m 2 / g. 제2항에 있어서, 상기 단계 a)에서 상기 용매가 알콜 또는 증류수인 것을 특징으로 하는 방법.The method of claim 2 wherein the solvent in step a) is alcohol or distilled water. 제2항에 있어서, 상기 단계 b)에서 상기 젤라틴의 함량이 상기 초산리튬과 초산망간의 총량을 기준으로 하여 5-15중량%인 것을 특징으로 하는 방법.The method of claim 2, wherein the gelatin content in step b) is 5-15% by weight based on the total amount of lithium acetate and manganese acetate. 리튬금속산화물을 활물질로 하는 양극, 카본계 음극 및 비수계 전해액을 포함하는 리튬이온 이차전지에 있어서, 상기 양극의 리튬금속산화물이 그 분말입자의 형태가 팔면체이고 입자 크기가 0.3-1㎛이며 비표면적이 3-4.5㎡/g인 리튬망간산화물 LixMn2O4(x는 1-1.05임)인 것을 특징으로 하는 리튬이온 이차전지.In a lithium ion secondary battery comprising a positive electrode having a lithium metal oxide as an active material, a carbon-based negative electrode, and a non-aqueous electrolyte, the lithium metal oxide of the positive electrode has an octahedron of the powder particles, a particle size of 0.3-1 μm, and a specific ratio. Lithium manganese oxide Li x Mn 2 O 4 (x is 1-1.05) having a surface area of 3-4.5 m 2 / g Li-ion secondary battery.
KR1019970041170A 1997-08-26 1997-08-26 Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same KR100261120B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019970041170A KR100261120B1 (en) 1997-08-26 1997-08-26 Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same
GBGB9818096.1A GB9818096D0 (en) 1997-08-26 1998-08-19 A lithium manganese oxide powder, preparation method thereof, and a lithium secondary battery adopting a positive electrode containing the same
DE19837625A DE19837625A1 (en) 1997-08-26 1998-08-19 Lithium manganese oxide, process for its manufacture and lithium secondary battery
GB9818461A GB2328684B (en) 1997-08-26 1998-08-24 A lithium manganese oxide powder, preparation thereof, and a lithium secondary battery adopting a positive electrode containing the same as an active material
JP10240634A JPH11149926A (en) 1997-08-26 1998-08-26 Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970041170A KR100261120B1 (en) 1997-08-26 1997-08-26 Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same

Publications (2)

Publication Number Publication Date
KR19990018077A KR19990018077A (en) 1999-03-15
KR100261120B1 true KR100261120B1 (en) 2000-07-01

Family

ID=19518678

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970041170A KR100261120B1 (en) 1997-08-26 1997-08-26 Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same

Country Status (4)

Country Link
JP (1) JPH11149926A (en)
KR (1) KR100261120B1 (en)
DE (1) DE19837625A1 (en)
GB (2) GB9818096D0 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399025B1 (en) * 2000-11-23 2003-09-19 한국과학기술원 Preparation of lithium manganese oxide for Li-secondary battery
KR100490784B1 (en) * 2002-05-27 2005-05-19 니폰 가가쿠 고교 가부시키가이샤 Powder of lithium manganese composite oxide, manufacturing method thereof, positive electrode active material for lithium secondary batteries containing the same and lithium secondary batteries containing the same
US9905840B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375898B2 (en) * 1998-10-01 2003-02-10 日本碍子株式会社 Lithium secondary battery
KR20010002210A (en) * 1999-06-12 2001-01-05 김순택 Positive active material for secondary battery and method of preparing thereof
EP1282180A1 (en) 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
JP4340160B2 (en) * 2002-03-08 2009-10-07 アルテアナノ インコーポレイテッド Method for producing nano-sized and sub-micron sized lithium transition metal oxides
KR100903610B1 (en) * 2002-11-22 2009-06-18 삼성에스디아이 주식회사 Method of preparing negative active material for lithium secondary battery and negative active material prepared by same
WO2008121660A2 (en) 2007-03-30 2008-10-09 Altairnano, Inc. Method for preparing a lithium ion cell
JP5423253B2 (en) * 2009-08-31 2014-02-19 株式会社村田製作所 Method for producing electrode active material
KR101440678B1 (en) * 2012-08-10 2014-09-18 한국과학기술원 Lithium manganese oxide for active material of electrode in Lithium Secondary Battery and manufacturing method for the same
CN108232154A (en) * 2017-12-30 2018-06-29 国联汽车动力电池研究院有限责任公司 A kind of lithium ion battery composite cathode material and preparation method thereof and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US549664A (en) * 1895-11-12 Apparatus for heating and lighting
US5370710A (en) * 1990-10-09 1994-12-06 Sony Corporation Nonaqueous electrolyte secondary cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2022898C (en) * 1989-08-15 1995-06-20 Nobuhiro Furukawa Non-aqueous secondary cell
AU3893795A (en) * 1994-10-19 1996-05-15 Valence Technology, Inc. Lithium manganese oxide, method of preparation and uses thereof
US5820790A (en) * 1994-11-11 1998-10-13 Japan Storage Battery Co., Ltd. Positive electrode for non-aqueous cell
KR100378005B1 (en) * 1997-06-30 2003-06-12 삼성에스디아이 주식회사 Cathode active material for lithium ion battery having high capacity and stability, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US549664A (en) * 1895-11-12 Apparatus for heating and lighting
US5370710A (en) * 1990-10-09 1994-12-06 Sony Corporation Nonaqueous electrolyte secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399025B1 (en) * 2000-11-23 2003-09-19 한국과학기술원 Preparation of lithium manganese oxide for Li-secondary battery
KR100490784B1 (en) * 2002-05-27 2005-05-19 니폰 가가쿠 고교 가부시키가이샤 Powder of lithium manganese composite oxide, manufacturing method thereof, positive electrode active material for lithium secondary batteries containing the same and lithium secondary batteries containing the same
US9905840B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US10236499B2 (en) 2013-07-26 2019-03-19 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same

Also Published As

Publication number Publication date
KR19990018077A (en) 1999-03-15
GB2328684B (en) 2000-03-29
GB9818096D0 (en) 1998-10-14
GB2328684A (en) 1999-03-03
DE19837625A1 (en) 1999-03-04
GB9818461D0 (en) 1998-10-21
JPH11149926A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR102256298B1 (en) Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
KR100274236B1 (en) Cathode active material for lithium secondary battery and method for producing the same
KR20180063857A (en) Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
KR100261120B1 (en) Lithium manganese oxide, method for manufacturing the same and secondary lithiumion ion battery having same
CN108448109A (en) A kind of stratiform lithium-rich manganese-based anode material and preparation method thereof
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
CN113644274A (en) O2 type lithium ion battery anode material and preparation method and application thereof
KR100354224B1 (en) Mn-based positive active material for Li-ion battery and method of preparing the same
US20010016284A1 (en) Positive active material for rechargeable lithium battery and method of preparing same
CN116014103A (en) High-nickel ternary positive electrode material and preparation method and application thereof
CN113206241B (en) Preparation method of single crystal nickel cobalt lithium manganate ternary material
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
CN114665086A (en) Lithium-rich manganese-based positive electrode material and preparation method thereof
KR100393194B1 (en) A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
CN113161526A (en) Positive electrode material and preparation method and application thereof
CN108011096B (en) Porous cubic lithium battery cathode material lithium nickel manganese oxide and preparation method thereof
JPH08185863A (en) Positive electrode active material for lithium secondary battery and secondary battery using it
KR20060029048A (en) The cathode active material for lithium--secondary batteries and the preparation method thereof
KR100237311B1 (en) Method of manufacturing cathode active mass and made thereby
KR100485335B1 (en) Fabrication of lithium-cobalt oxide nano powder by surface modification of precursor
CN107706396B (en) Oxide composite lithium manganese silicate cathode material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120326

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160323

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee