KR100252655B1 - Heat exchanger pass line structure of air conditioner - Google Patents

Heat exchanger pass line structure of air conditioner Download PDF

Info

Publication number
KR100252655B1
KR100252655B1 KR1019970054955A KR19970054955A KR100252655B1 KR 100252655 B1 KR100252655 B1 KR 100252655B1 KR 1019970054955 A KR1019970054955 A KR 1019970054955A KR 19970054955 A KR19970054955 A KR 19970054955A KR 100252655 B1 KR100252655 B1 KR 100252655B1
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
outdoor heat
compressor
low
Prior art date
Application number
KR1019970054955A
Other languages
Korean (ko)
Other versions
KR19990033570A (en
Inventor
안병화
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019970054955A priority Critical patent/KR100252655B1/en
Publication of KR19990033570A publication Critical patent/KR19990033570A/en
Application granted granted Critical
Publication of KR100252655B1 publication Critical patent/KR100252655B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: A pass line structure for heat exchanger of air conditioner is provided to reduce cost and assembly time by converting refrigerant pass lines of the outdoor heat exchanger from two columns into one column, thus eliminating an auxiliary condenser from the configuration. CONSTITUTION: An air conditioner has a cooling cycle in which the refrigerant circulates in order of a compressor for compressing the refrigerant, an outdoor heat exchanger(90) for cooling and condensing the high temperature high pressure gas refrigerant which is compressed by the compressor, a capillary tube for expanding the low temperature high pressure liquid refrigerant which is condensed by the outdoor heat exchanger, and an indoor heat exchanger for evaporating the low temperature low pressure refrigerant expanded by the capillary tube. The outdoor heat exchanger has first, second and third refrigerant pass lines(91,92,93) which are arranged in one column at one surface of the outdoor heat exchanger.

Description

공기조화기의 열교환기 패스라인구조Heat exchanger pass line structure of air conditioner

본 발명은 냉난방운전을 수행하는 공기조화기에 관한 것으로, 특히 실외열교환기를 2열 패스에서 1열로 변환하여 보조응축기를 삭제하는 공기조화기의 열교환기 패스라인구조에 관한 것이다.The present invention relates to an air conditioner for performing a heating and cooling operation, and more particularly, to a heat exchanger pass line structure of an air conditioner for removing an auxiliary condenser by converting an outdoor heat exchanger from a two-row pass to a first row.

일반적으로, 공기조화기는 기능이나 유리트의 구성에 따라 여러 종류로 구분되어지는데, 기능면에서는 냉방전용, 냉방 및 제습전용, 냉방 및 난방겸용으로 분류될 수 있으며, 유니트의 구성면에서는 냉방과 방열기능을 일체화하여 창문등에 설치되는 일체형과 실내측에는 냉각장치를 실외측에는 방열 및 압축장치를 각각 분리시켜 설치하는 분리형으로 구분되어진다.In general, air conditioners are classified into various types according to the function and the composition of the glass. In terms of function, the air conditioners can be classified into cooling only, cooling and dehumidifying only, and cooling and heating. It is divided into an integrated type installed in windows and the like, and a separate type for separately installing a cooling device on the indoor side and a heat dissipation and compression device on the outdoor side.

상기한 분리형 공기조화기에는 하나의 실외기에 두 대이상의 실내기를 연결하여 다수의 실내공간을 각각 공기조화시키는 멀티형도 포함되어진다.The separate type air conditioner includes a multi type for air conditioning a plurality of indoor spaces by connecting two or more indoor units to one outdoor unit.

이러한, 종래의 분리형 공기조화기는 제1도에 도시한 바와 같이, 실내에 설치되는 실내기(10)와, 실외에 설치되는 실외기(20)가 하나의 시스템으로 작동하며, 필요에 따라 난방운전 및 냉방운전될 수 있다.In the conventional separate type air conditioner, as shown in FIG. 1, the indoor unit 10 installed indoors and the outdoor unit 20 installed outdoors operate as one system, and heating operation and cooling as necessary. Can be driven.

상기 실외기(20)에는 냉매를 고온고압의 기체상태로 압축시키는 압축기(30)와, 운전조건(냉방 또는 난방)에 따라 상기 압축기(30)에서 고온고압으로 압축된 기체냉매의 흐름을 변환시키는 사방밸브(35)와, 냉방운전시 상기 압축기(30)에서 고온고압으로 압축된 기체냉매를 도시되지 않은 실외팬에 의해 송풍되는 공기로 열교환하여 저온고압의 액상냉매로 냉각응축시키는 실외열교환기(40)와, 상기 실외열교환기(40)에서 냉각응축된 저온고압의 액상냉매를 증발하기쉬운 저온저압의 무상냉매로 감압팽창시키는 난방용 모세관(51) 및 모세관(50)과, 한방향밸브(55)가 설치되어 있고, 상기 실내기(10)에는 냉방운전시 상기 모세관(50)을 통과한 저온저압의 무상냉매를 도시되지 않은 실내팬에 의해 송풍되는 공기로 열교환하여 증발시키면서 저온저압의 완전 기체상태의 냉매가스로 변환시키는 실내열교환기(60)가 설치되어 있다.The outdoor unit 20 includes a compressor 30 for compressing a refrigerant into a gaseous state at high temperature and high pressure, and a gas refrigerant compressed at high temperature and high pressure in the compressor 30 according to operating conditions (cooling or heating). Valve 35 and an outdoor heat exchanger (40) for cooling and condensing the gas refrigerant compressed by the high temperature and high pressure in the compressor (30) during cooling operation with air blown by an outdoor fan (not shown) to cool and condense the liquid refrigerant with low temperature and high pressure (40). ), A heating capillary tube 51 and capillary tube 50 for expanding and decompressing the low-temperature, high-pressure liquid refrigerant cooled and condensed in the outdoor heat exchanger 40 to a low-temperature, low-pressure free refrigerant which is easy to evaporate, and the one-way valve 55 The indoor unit 10 has a low-temperature low-pressure complete gas while evaporating by heat-exchanging the low-temperature low-pressure free refrigerant passing through the capillary tube 50 during the cooling operation with air blown by an indoor fan (not shown). Womb has the indoor heat exchanger (60) for converting a refrigerant gas is provided.

상기 실외열교환기(40)는 상기 사방밸브(35)를 통해 상기 압축기(30)로부터 토출된 냉매가 도시에 유입되어 하나의 라인을 이루는 제1 및 제2냉매패스라인(41)(42)과, 상기 제1 및 제2냉매패스라인(41)(42)을 통과한 냉매가 유입되어 하나의 라인을 이루는 제3냉매패스라인(43)으로 구성되어 있으며, 상기 제1, 제2 및 제3냉매패스라인(41)(42)(43)에는 그 입추측에 각각 냉매가 유입되는 냉매입구(41a)(42a)(43a)와, 그 출구측에 냉매출구(41b)(42b)(43b)가 형성되어 있다.The outdoor heat exchanger (40) includes first and second refrigerant pass lines (41) and (42) in which refrigerant discharged from the compressor (30) through the four-way valve (35) flows into the city to form a line. And a third refrigerant pass line 43 in which refrigerant passing through the first and second refrigerant pass lines 41 and 42 is introduced to form one line, and the first, second, and third Refrigerant pass lines 41, 42, 43 are refrigerant inlets 41a, 42a, 43a through which refrigerant flows, respectively, and refrigerant outlets 41b, 42b, 43b at their outlet sides. Is formed.

상기 실내열교환기(60)에는 그 일측에 상기 모세관(50)으로부터 유입된 냉매를 분배하는 입구측 분배기(70)와, 그 타측에 각각의 출구를 통해 상기 실내열교환기(60)를 통과한 냉매가 하나의 연결배관(81)으로 흐르도록 하는 출구측 분배기(80)가 설치되어 있고, 상기 실내열교환기(60)에는 상기 입구측 분배기(70)로부터 3개의 입구측 분기관(71)(72)(73)으로 분배되는 냉매가 하나의 라인을 이루도록 제1, 제2 및 제3냉매패스라인(61)(62)(63)이 구성되어 있다.The indoor heat exchanger (60) has an inlet distributor (70) for distributing the refrigerant introduced from the capillary tube (50) on one side thereof, and a refrigerant passing through the indoor heat exchanger (60) through respective outlets on the other side thereof. Is provided with an outlet distributor (80) to allow flow to one connection pipe (81), and the indoor heat exchanger (60) is provided with three inlet distributors (71) (72) from the inlet distributor (70). The first, second and third refrigerant pass lines 61, 62, and 63 are configured to form a line of the refrigerant to be distributed to the (73).

상기 제1, 제2 및 제3냉매패스라인(61)(62)(63)에는 그 입구측에 각각 상기 입구측 분기관(71)(72)(73)으로부터 냉매가 유입되는 냉매입구(61a)(62a)(63a)와, 그 출구측에 냉매출구(61b)(62b)(63b)가 형성되어 있으며, 상기 냉매출구(61b)(62b)(63b)에는 출구측 분기관(74)(75)(76)이 연결되어 있고, 상기 출구측 분기관(74)(75)(76)에 각각 흐르는 냉매는 상기 출구측 분배기(80)에서 하나의 연결배관(81)으로 흐르면서 상기 압축기(30)로 유입되는 냉매싸이클을 형성한다.Refrigerant inlets 61a into which the refrigerant flows into the first, second, and third refrigerant path lines 61, 62, 63 from the inlet side branch pipes 71, 72, 73 at their inlet sides, respectively. 62a and 63a, and refrigerant outlets 61b, 62b and 63b are formed at the outlet side thereof, and outlet branch branches 74 at the refrigerant outlets 61b, 62b and 63b. 75 and 76 are connected, and the refrigerant flowing through the outlet branch pipes 74 and 75 and 76 respectively flows from the outlet distributor 80 to one connection pipe 81 and the compressor 30. To form a refrigerant cycle.

상기와 같이 구성된 공기조화기에 있어서, 냉방운전시에는 사방밸브(35)가 오프되어 제1도의 실선화살표 방향으로 냉매싸이클이 이루어지다.In the air conditioner configured as described above, in the cooling operation, the four-way valve 35 is turned off, and a refrigerant cycle is made in the direction of the solid arrow in FIG.

먼저, 실외기(20)의 압축기(30)로부터 토출된 고온고압의 기체냉매가 사방밸브(35)를 통해 실외열교환기(40)의 제1 및 제2냉매패스라인(41)(42)의 냉매입구(41a)(42a)로 동시에 흐르면서 냉매출구(41b)(42b)로 유출되고, 상기 제1 및 제2냉매패스라인(41)(42)을 통과한 냉매는 제3냉매패스라인(43)의 냉매입구(43a)로 흐르면서 냉매출구(43b)로 유출된다.First, the high temperature and high pressure gas refrigerant discharged from the compressor 30 of the outdoor unit 20 passes through the four-way valve 35 and the refrigerant of the first and second refrigerant pass lines 41 and 42 of the outdoor heat exchanger 40. The refrigerant flowing through the inlets 41a and 42a and flowing out to the refrigerant outlets 41b and 42b and passing through the first and second refrigerant path lines 41 and 42 is the third refrigerant path line 43. Flows to the coolant inlet 43a and flows out to the coolant outlet 43b.

이러한, 일련의 과정에 의해 실외열교환기(40)에서는 고온고압으로 압축된 기체냉매를 실외팬에 의해 송풍되는 공기로 열교환항 강제냉각시켜 응축시키고, 상기 실외열교환기(40)에서 응축된 저온고압의 액상냉매는 한방향밸브(55)를 통해 모세관(50)으로 유입된다.By the series of processes, the outdoor heat exchanger (40) is forced to condense the gas refrigerant compressed to high temperature and high pressure by heat exchanged by air blown by the outdoor fan, and condensed by the low temperature and high pressure condensed by the outdoor heat exchanger (40). Liquid refrigerant is introduced into the capillary tube 50 through the one-way valve (55).

상기 모세관(50)으로 유입된 저온고압의 액상냉매는 증발하기 쉬운 저온저압의 무상냉매로 팽창되어 실내기(10)내에 설치된 입구측 분배기(70)에서 분배되는 3개의 입구측 분기관(71)(72)(73)을 통해 각각 제1 내지 제3냉매패스라인(61)(62)(63)을 거쳐 출구측 분기관(74)(75)(76)으로 유출도면서 증발하여 기화할때 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨 다음, 그 냉각된 공기(냉풍)를 실내로 토출해서 냉방운전을 행하고, 상기 실내열교환기(60)에서 냉각된 저온저압의 기체냉매는 사방밸브(35)를 통해 다시 압축기(30)로 유입되어 압축기(30)의 단열압축작용에 의해 고온고압의 냉매가스로 변환되어 위에서 설명한 냉매싸이클을 반복한다.The low-temperature and high-pressure liquid refrigerant introduced into the capillary tube 50 is expanded into a low-temperature, low-pressure free refrigerant which is easy to evaporate, and is divided into three inlet-side branch pipes 71 distributed by the inlet-side distributor 70 installed in the indoor unit 10 ( Indoors when evaporated and vaporized while flowing through the first to third refrigerant pass lines 61, 62, 63 through the 72, 73 and exit to the outlet branch pipes 74, 75, 76, respectively. After cooling the indoor air by removing heat from the air blown by the fan, the cooled air (cold air) is discharged into the room to perform a cooling operation, and the low-temperature low-pressure gas refrigerant cooled in the indoor heat exchanger 60 is Through the four-way valve 35 again to the compressor 30 is converted into a refrigerant gas of a high temperature and high pressure by the adiabatic compression action of the compressor 30 to repeat the refrigerant cycle described above.

반면, 난방운전시에는 사방밸브(35)가 온되어 냉매가 압축기(30)→사방밸브(35)→실내기(10)의 출구측 분배기(80)→실내열교환기(60)의 제1 내지 제3냉매패스라인(61)(62)(63)→실내기(10)의 입구측 분배기(70)→모세관(50)→난방용 모세관(51)→실외열교환기(40)의 제3냉매패스라인(43)→실외열교환기(40)의 제1 및 제2냉매패스라인(41)(42)→사방밸브(35)→압축기(30)순으로 순환되어 제1도의 점선화살표 방향으로 냉매싸이클이 이루어지면서 실내열교환기(60)에서는 실내팬에 의해 송풍되는 공기를 상온의 냉각수 또는 공기에 의해 열교환하여 상온고압의 냉매로 냉각시킴에 따라 따뜻해진 공기(온풍)를 실내로 토출해서 난방을 수행한다.On the other hand, in the heating operation, the four-way valve 35 is turned on so that the refrigerant flows from the compressor 30 to the four-way valve 35 to the outlet-side distributor 80 of the indoor unit 10 and then to the indoor heat exchanger 60. 3 Refrigerant pass lines 61, 62, and 63 → Inlet distributor 70 of the room 10 → Capillary tube 50 → Heating capillary 51 → Third refrigerant pass line of the outdoor heat exchanger 40 ( 43) circulating in the order of the first and second refrigerant path lines 41 and 42 of the outdoor heat exchanger 40, the four-way valve 35, and the compressor 30, and a refrigerant cycle is made in the direction of the dotted arrow in FIG. In the indoor heat exchanger (60), the air blown by the indoor fan is exchanged with cooling water or air at room temperature and cooled with a refrigerant having a normal temperature and high pressure to discharge the warmed air (hot air) to the room to perform heating.

그런데, 이와 같은 종래 실외열교환기(40)의 패스라인구조는 제2도에 도시한 바와 같이, 2열을 사용하므로 열교환기의 재료비가 높고, 제상시 얼음이 녹는 속도가 늦어 신뢰성이 저하되며, 조립시간도 길어 생산성이 저하된다는 문제점이 있었다.However, since the pass line structure of the conventional outdoor heat exchanger 40 uses two rows, as shown in FIG. 2, the material cost of the heat exchanger is high, and the rate of melting of ice during defrosting is low, thereby reducing reliability. The assembly time is also long, there is a problem that the productivity is lowered.

따라서, 본 발명은 상술한 종래의 문제점을 해결하기 위하여 안출된 것으로, 실외열교환기를 2열 패스에서 1열로 변환하여 보조응축기를 삭제하므로 재료비를 절감함과 동시에 조립시간을 단축하고, 제상시간이 단축되어 신뢰성을 향상시킨 공기조화기의 열교환기 패스라인구조를 제공하는데 그 목적이 있다.Therefore, the present invention was devised to solve the above-described problems, and since the outdoor heat exchanger is converted from the two-row pass to the first row, the auxiliary condenser is deleted, thereby reducing the material cost and reducing the assembly time and shortening the defrost time. The purpose of the present invention is to provide a heat exchanger pass line structure of an air conditioner having improved reliability.

상기 목적을 달성하기 위하여 본 발명에 의한 공기조화기의 열교환기 패스라인구조는 냉매를 압축시키는 압축기와, 상기 압축기에서 압축된 고온고압의 기체냉매를 냉각시켜 응축시키는 실외열교환기와, 상기 실외열교화기에서 응축된 저온고압의 액상냉매를 팽창시키는 모세관과, 상기 모세관에서 팽창된 저온저압의 무상냉매를 증발시키는 실내열교환기의 순으로 냉매를 순환시켜 냉방싸이클을 형성하는 공기조화기에 있어서, 상기 실외열교환기는 제1, 제2 및 제3냉매패스라인을 구비하고, 상기 제1, 제2 및 제3냉매패스라인은 동일면상에 1열로 배열된 것을 특징으로 한다.In order to achieve the above object, a heat exchanger pass line structure of an air conditioner according to the present invention includes a compressor for compressing a refrigerant, an outdoor heat exchanger for cooling and condensing a gas refrigerant of high temperature and high pressure compressed by the compressor, and the outdoor heat exchanger. In the air conditioner to form a cooling cycle by circulating the refrigerant in the order of the capillary tube for expanding the low-temperature high-pressure liquid refrigerant condensed in the, and the indoor heat exchanger for evaporating the low-temperature low-pressure free refrigerant expanded in the capillary, the outdoor heat exchange The machine is provided with first, second and third refrigerant path lines, wherein the first, second and third refrigerant path lines are arranged in one row on the same surface.

제1도는 종래에 의한 공기조화기의 냉매싸이클도.1 is a refrigerant cycle diagram of a conventional air conditioner.

제2도는 종래의 의한 열교환기의 패스라인 구조도.2 is a structure diagram of a pass line of a conventional heat exchanger.

제3도는 본 발명에 의한 공기조화기의 냉매싸이클도.3 is a refrigerant cycle diagram of an air conditioner according to the present invention.

제4도는 본 발명에 의한 공기조화기의 패스라인 구조도.4 is a structure diagram of a pass line of an air conditioner according to the present invention.

제5도는 본 발명에 의한 열교환기의 냉난방능력을 도시한 도표.5 is a diagram showing the cooling and heating capacity of the heat exchanger according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 실내기 20 : 실외기10: indoor unit 20: outdoor unit

30 : 압축기 50 : 모세관30 compressor 50 capillary tube

51 : 난방용 모세관 60 : 실내열교환기51: capillary for heating 60: indoor heat exchanger

90 : 실외열교환기 91,92,93 : 실외열교환기의 냉매패스라인90: outdoor heat exchanger 91,92,93: refrigerant pass line of outdoor heat exchanger

이하, 본 발명의 일실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

제3도는 본 발명에 의한 공기조화기의 냉매싸이클도로서, 종래의 구성과 동일한 부분에 대해서는 동일부호를 명기한다.3 is a refrigerant cycle diagram of an air conditioner according to the present invention, and the same reference numerals are used for the same parts as in the conventional configuration.

제3도에 도시한 바와 같이, 실내기(10)와 실외기(20)를 구비한 공기조화기에 있어서, 상기 실외기(20)에는 냉매를 고온고압의 기체상태로 압축시키는 압축기(30)와, 운전조건(냉방 또는 난방)에 따라 상기 압축기(30)에서 고온고압으로 압축된 기체냉매의 흐름을 변환시키는 사방밸브(35)와, 냉방운전시 상기 압축기(30)에서 고온고압으로 압축된 기체냉매를 도시되지 않은 실외팬에 의해 송풍되는 공기로 열교환하여 저온고압의 액상냉매로 냉각응축시키는 실외열교환기(90)와, 상기 실외열교환기(90)에서 냉각응축된 저온고압의 액상냉매를 증발하기 쉬운 저온저압의 무상냉매로 감압팽창시키는 모세관(50) 및 난방용 모세관(51)과, 한방향밸브(55)가 설치되어 있다.As shown in FIG. 3, in the air conditioner including the indoor unit 10 and the outdoor unit 20, the outdoor unit 20 includes a compressor 30 for compressing a refrigerant into a gaseous state of high temperature and high pressure, and an operating condition. The four-way valve 35 converts the flow of the gas refrigerant compressed by the high temperature and high pressure in the compressor 30 according to (cooling or heating), and the gas refrigerant compressed by the high temperature and high pressure in the compressor 30 during the cooling operation. An outdoor heat exchanger (90) for heat condensing with air blown by an outdoor fan that is not cooled and cooling and condensing with a liquid refrigerant having a low temperature and high pressure, and a low temperature for easily evaporating the low temperature and high pressure liquid refrigerant cooled and condensed in the outdoor heat exchanger (90). A capillary tube 50, a heating capillary tube 51, and a one-way valve 55, which are expanded under reduced pressure by a low-pressure free refrigerant, are provided.

상기 실외열교환기(90)는 상기 사방밸브(35)를 통해 상기 압축기(30)로부터 토출된 냉매가 동시에 유입되어 하나의 라인을 이루는 제1 및 제2냉매패스라인(91)(92)과, 상기 제1 및 제2냉매패스라인(91)(92)을 통과한 냉매가 유입되어 하나의 라인을 이루는 제3냉매패스라인(93)으로 구성되어 있으며, 상기 제1 내지 제3냉매패스라인(91)(92)(93)은 제4도에 도시한 바와 같이, 기존의 2열 패스에서 1열로 변환된 구조로 보조응축기가 삭제되어 있다.The outdoor heat exchanger (90) includes first and second refrigerant pass lines (91) and (92) which form a line by simultaneously introducing refrigerant discharged from the compressor (30) through the four-way valve (35); The refrigerant passing through the first and second refrigerant path lines 91 and 92 is introduced into a third refrigerant path line 93 forming one line, and the first to third refrigerant path lines ( 91, 92, and 93, as shown in FIG. 4, the auxiliary condenser is deleted in the structure converted from the existing two-column path into one column.

상기 제1, 제2 및 제3냉매패스라인(91)(92)(93)에는 그 입구측에 각각 냉매가 유입되는 냉매입구(91a)(92a)(93a)와, 그 출구측에 냉매출구(91b)(92b)(93b)가 형성되어 있다.Refrigerant inlets 91a, 92a and 93a into which the refrigerant flows into the inlet side, respectively, and the refrigerant outlet on the outlet side of the first, second and third refrigerant path lines 91, 92 and 93. 91b, 92b and 93b are formed.

또한, 상기 실내기(10)에는 냉방운전시 상기 모세관(50)을 통과한 저온저압의 무상냉매를 도시되지 않는 실내팬에 의해 송풍되는 공기로 열교환하여 증발시키면서 저온저압의 완전 기체상태의 냉매가스로 변환시키는 실내열교환기(60)가 설치되어 있고, 상기 실내열교환기(60)에는 그 일측에 상기 모세관(50)으로부터 유입된 냉매을 분배하는 입구측 분배기(70)와, 그 타측에 각각의 출구를 통해 상기 실내열교환기(60)를 통과한 냉매가 하나의 연결배관(81)으로 흐르도록 하는 출구측 분배기(80)가 설치되어 있고, 상기 실내열교환기(60)에는 상기 입구측 분배기(70)로부터 3개의 입구측 분기관(71)(72)(73)으로 분배되는 냉매가 하나의 라인을 이루도록 제1, 제2 및 제3냉매패스라인(61)(62)(63)이 구성되어 있다.In the indoor unit 10, the low-temperature low-pressure free refrigerant passing through the capillary tube 50 during the cooling operation is exchanged with air blown by an indoor fan (not shown) to evaporate as a low-temperature low-pressure completely gaseous refrigerant gas. An indoor heat exchanger (60) for converting is provided. The indoor heat exchanger (60) has an inlet distributor (70) for distributing refrigerant introduced from the capillary tube (50) on one side thereof, and respective outlets on the other side thereof. An outlet distributor 80 is installed to allow the refrigerant passing through the indoor heat exchanger 60 to flow through one connection pipe 81, and the inlet distributor 70 is provided at the indoor heat exchanger 60. The first, second, and third refrigerant pass lines 61, 62, 63 are configured so that the refrigerant distributed from the inlet side branch pipes 71, 72, 73 to one line is formed. .

상기 제1, 제2 및 제3냉매패스라인(61)(62)(63)에는 그 입구측에 각각 상기 입구측 분기관(71)(72)(73)으로부터 냉매가 유입되는 냉매입구(61a)(62a)(63a)와, 그 출구측에 냉매출구(61b)(62b)(63b)가 형성되어 있으며, 상기 냉매출구(61b)(62b)(63b)에는 출구측 분기관(74)(75)(76)이 연결되어 있고, 상기 출구측 분기관(74)(75)(76)에 각각 흐르는 냉매는 상기 출구측 분배기(80)에서 하나의 연결 배관(81)으로 흐르면서 상기 압축기(30)로 유입되는 냉매싸이클을 형성한다.Refrigerant inlets 61a into which the refrigerant flows into the first, second, and third refrigerant path lines 61, 62, 63 from the inlet side branch pipes 71, 72, 73 at their inlet sides, respectively. 62a and 63a, and refrigerant outlets 61b, 62b and 63b are formed at the outlet side thereof, and outlet branch branches 74 at the refrigerant outlets 61b, 62b and 63b. 75 and 76 are connected, and the refrigerant flowing through the outlet branch pipes 74 and 75 and 76 respectively flows from the outlet distributor 80 to one connection pipe 81 to the compressor 30. To form a refrigerant cycle.

이하, 상기와 같이 구성된 공기조화기의 열교환기 패스라인구조의 작용효과를 설명한다.Hereinafter, the effect of the heat exchanger pass line structure of the air conditioner configured as described above will be described.

냉방운전시에는 사방밸브(35)가 오프되어 제3도의 실선화살표 방향으로 냉매싸이클이 이루어진다.During the cooling operation, the four-way valve 35 is turned off to form a refrigerant cycle in the direction of the solid arrow in FIG. 3.

먼저, 실외기(20)의 압축기(30)로부터 토출된 고온고압의 기체냉매가 사방밸브(35)를 통해 실외열교환기(90)의 제1 및 제2냉매패스라인(91)(92)의 냉매입구(91a)(92a)로 동시에 흐르면서 냉매출구(91b)(92b)로 유출되고, 상기 제1 및 제2냉매패스라인(91)(92)을 통과한 냉매는 제3냉매패스라인(93)의 냉매입구(93a)로 흐르면서 냉매출구(93b)로 유출된다.First, the high temperature and high pressure gas refrigerant discharged from the compressor 30 of the outdoor unit 20 passes through the four-way valve 35 and the refrigerant of the first and second refrigerant pass lines 91 and 92 of the outdoor heat exchanger 90. The refrigerant flowing through the inlets 91a and 92a and flowing out to the refrigerant outlets 91b and 92b and passing through the first and second refrigerant path lines 91 and 92 is the third refrigerant path line 93. Flows to the refrigerant inlet 93a of the gas and flows out to the refrigerant outlet 93b.

이러한, 일련의 과정에 의해 실외열교환기(90)에서는 고온고압으로 압축된 기체냉매를 실외팬에 의해 송풍되는 공기로 열교환하여 강제냉각시켜 응축시키고, 상기 실외열교환기(90)에서 응축된 저온고압의 액상냉매는 한방향밸브(55)를 통해 모세관(50)으로 유입된다.By such a series of processes, in the outdoor heat exchanger (90), the gas refrigerant compressed to high temperature and high pressure is condensed by forced cooling by heat exchange with air blown by the outdoor fan, and the low temperature and high pressure condensed in the outdoor heat exchanger (90). Liquid refrigerant is introduced into the capillary tube 50 through the one-way valve (55).

상기 모세관(50)으로 유입된 저온고압의 액상냉매는 증발하기 쉬운 저온저압의 무상냉매로 팽팡되어 실내기(10)내에 설치된 입구측 분배기(70)에서 분배되는 3개의 입구측 분기관(71)(72)(73)을 통해 각각 제1 내지 제3냉매패스라인(61)(62)(63)을 거쳐 출구측 분기관(74)(75)(76)으로 유출되면서 증발하기 기화할 때 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨다음, 그 냉각된 공기(냉풍)을 실내로 토출해서 냉방운전을 행하고, 상기 실내열교환기(60)에서 냉각된 저온저압의 기체냉매는 사방밸브(35)를 통해 다시 압축기(30)로 유입되어 압축기(30)의 단열압축작용에 의해 고온고압의 냉매가스로 변환되어 위에서 설명한 냉매싸이클을 반복한다.The low-temperature and high-pressure liquid refrigerant introduced into the capillary tube 50 is expanded into free refrigerant of low-temperature and low-pressure, which is easy to evaporate, and is divided into three inlet-side branch pipes 71 distributed through the inlet-side distributor 70 installed in the indoor unit 10 ( Indoor fan when evaporating and evaporating while exiting the outlet branch pipes 74, 75 and 76 through the first to third refrigerant pass lines 61, 62 and 63, respectively, through 72 and 73, respectively. After the heat is removed from the air blown by the air, the indoor air is cooled, and the cooled air (cold air) is discharged to the room to perform a cooling operation. The low-temperature low-pressure gas refrigerant cooled in the indoor heat exchanger 60 is everywhere. Through the valve 35 again to the compressor 30 is converted into a refrigerant gas of a high temperature and high pressure by the adiabatic compression action of the compressor 30 to repeat the refrigerant cycle described above.

반면, 난방운전시에는 사방밸브(35)가 온되어 냉매가 제3도의 점선화살표 방향으로 냉매싸이클이 이루어진다.On the other hand, in the heating operation, the four-way valve 35 is turned on, and the refrigerant cycles in the dotted arrow direction of FIG. 3.

먼저, 실외기(20)의 압축기(30)로부터 토출된 고온고압의 기체냉매가 사방밸브(35)를 거쳐 실내기(10)내에 설치된 출구측 분배기(80)에서 분배되는 3개의 출구측 분기관(74)(75)(76)을 통해 실내열교환기(60)의 제1 내지 제3냉매패스라인(61)(62)(63)을 각각 거쳐 입구측 분기관(71)(72)(73)으로 유출되면서 응축될 때 실내팬에 의해 송풍되는 공기를 상온의 냉각수 또는 공기에 의해 열교환하여 상온고압의 냉매로 냉각시킴에 따라 따뜻해진 공기(온풍)를 실내로 토출해서 난방운전을 행한다.First, the three high temperature and high pressure gas refrigerant discharged from the compressor 30 of the outdoor unit 20 are distributed in the outlet distributor 80 installed in the indoor unit 10 via the four-way valve 35. Through (75) (76) through the first to third refrigerant pass lines (61), (62), (63) of the indoor heat exchanger (60) to the inlet side branch pipes (71) (72) (73), respectively. When it is condensed while being discharged, the air blown by the indoor fan is heat-exchanged with cooling water or air at room temperature to cool it with a refrigerant at room temperature and high pressure, thereby discharging warm air (hot air) to the room to perform a heating operation.

상기 실내열교환기(60)에서 액화된 냉매는 모세관(50) 및 난방용 모세관(51)를 통해 증발하기 쉬운 저온저압의 무상냉매로 감압팽창되어 실외열교환기(90)의 제3냉매패스라인(93)에 유입되고, 상기 제3냉매패스라인(93)을 통과한 냉매는 다시 실외열교환기(90)의 제1 및 제2냉매패스라인(91)(92)을 각각 거쳐 유출된다.The refrigerant liquefied in the indoor heat exchanger (60) is expanded under reduced pressure to a low-temperature, low-pressure free refrigerant which is easy to evaporate through the capillary tube (50) and the heating capillary tube (51), and thus the third refrigerant pass line (93) of the outdoor heat exchanger (90). ), And the refrigerant passing through the third refrigerant path line 93 flows out again through the first and second refrigerant path lines 91 and 92 of the outdoor heat exchanger 90, respectively.

이러한, 일련의 과정에 의해 실외열교환기(90)에서는 저온저압의 무상냉매를 실내팬에 의해 송풍되는 공기로 열교환하여 냉각하고, 상기 실외열교환기(90)에서 냉각된 저온저압의 기체냉매는 사방밸브(35)를 통해 다시 압축기(30)로 유입되어 압축기(30)의 단열압축작용에 의해 고온고압의 냉매가스로 변환되어 위에서 설명한 냉매싸이클을 반복한다.By the above-described process, the outdoor heat exchanger 90 exchanges and cools the low-temperature low-pressure free refrigerant with air blown by an indoor fan, and the low-temperature low-pressure gas refrigerant cooled in the outdoor heat exchanger 90 is everywhere. Through the valve 35 again to the compressor 30 is converted into a refrigerant gas of a high temperature and high pressure by the adiabatic compression action of the compressor 30 to repeat the refrigerant cycle described above.

상기의 냉매싸이클에 의해 냉난방기능을 하는 실외열교환기(90)는 제4도에 도시한 바와 같이, 제1 내지 제3냉매패스라인(91)(92)(93)이 보조응축기가 삭제된 1열로 구성되어 있으면서도 기존의 2열 실외열교환기(40) 대비 냉방능력은 제5도에 도시한 바와 같이, 거의 차이가 없으나 재료비 절감, 작업시간 단축 및 신뢰성 확보에 효과가 있다.As shown in FIG. 4, the outdoor heat exchanger 90 having the cooling and cooling function by the refrigerant cycle has the first to third refrigerant pass lines 91, 92, 93 removed from the auxiliary condenser. The cooling capacity of the heat exchanger as compared to the conventional two-row outdoor heat exchanger 40 is almost the same as shown in FIG. 5, but it is effective in reducing material costs, reducing work time, and securing reliability.

상기의 설명에서와 같이 본 발명에 의한 공기조화기의 열교환기 패스라인구조에 의하면, 실외열교환기를 2열 패스에서 1열로 변환하여 보조응축기를 삭제하므로 재료비를 절감함과 동시에 조립시간을 단축하고, 제상시간이 단축되어 신뢰성을 향상시킨다는 효과가 있다.According to the heat exchanger pass line structure of the air conditioner according to the present invention as described above, by converting the outdoor heat exchanger from the two-row pass to the first row to eliminate the auxiliary condenser to reduce the material cost and at the same time the assembly time, Defrosting time is shortened to improve the reliability.

Claims (1)

냉매를 압축시키는 압축기와, 상기 압축기에서 압축된 고온고압의 기체냉매를 냉각시켜 응축시키는 실외열교환기와, 상기 실외열교환기에서 응축된 저온고압의 액상냉매를 팽창시키는 모세관과, 상기 모세관에서 팽창된 저온저압의 무상냉매를 증발시키는 실내열교환기의 순으로 냉매를 순환시켜 냉방싸이클을 형성하는 공기조화기에 있어서,A compressor for compressing the refrigerant, an outdoor heat exchanger for cooling and condensing the high temperature and high pressure gas refrigerant compressed by the compressor, a capillary tube for expanding the low temperature and high pressure liquid refrigerant condensed in the outdoor heat exchanger, and a low temperature expanded in the capillary tube In the air conditioner for forming a cooling cycle by circulating the refrigerant in the order of the indoor heat exchanger evaporating the low-pressure free refrigerant, 상기 실외열교환기는 제1, 제2 및 제3냉매패스라인을 구비하고, 상기 제1, 제2 및 제3냉매패스라인은 동일면상에 1열로 배열된 것을 특징으로 하는 공기조화기의 열교환기 패스라인구조.The outdoor heat exchanger includes first, second, and third refrigerant path lines, and the first, second, and third refrigerant path lines are arranged in one row on the same surface. Line structure.
KR1019970054955A 1997-10-24 1997-10-24 Heat exchanger pass line structure of air conditioner KR100252655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970054955A KR100252655B1 (en) 1997-10-24 1997-10-24 Heat exchanger pass line structure of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970054955A KR100252655B1 (en) 1997-10-24 1997-10-24 Heat exchanger pass line structure of air conditioner

Publications (2)

Publication Number Publication Date
KR19990033570A KR19990033570A (en) 1999-05-15
KR100252655B1 true KR100252655B1 (en) 2000-04-15

Family

ID=19523405

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970054955A KR100252655B1 (en) 1997-10-24 1997-10-24 Heat exchanger pass line structure of air conditioner

Country Status (1)

Country Link
KR (1) KR100252655B1 (en)

Also Published As

Publication number Publication date
KR19990033570A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
KR20200053269A (en) Air conditioner
US5660056A (en) Air conditioner
KR19980084034A (en) Air conditioner
KR100252655B1 (en) Heat exchanger pass line structure of air conditioner
CN100541053C (en) cooling/heating system and control method thereof
JPH07294047A (en) Air conditioner
KR100220726B1 (en) Multi-airconditioner
KR100225634B1 (en) Coolant flow control apparatus for air conditioner
KR100863639B1 (en) Air conditioner
CN112944709A (en) Air source heat pump system and method for slowing down frosting rate
KR100631352B1 (en) A complex cooling and heating apparatus
KR19980066167A (en) Refrigerant Distribution Structure of Multi-type Air Conditioner
KR100210089B1 (en) Heat pump heating type airconditioner
KR100215038B1 (en) Indoor device connection structure of multi-airconditioner
KR19990079625A (en) Dehumidifier of Air Conditioner
KR100252654B1 (en) Structure of out-door heat exchanger for air conditioner
KR100239560B1 (en) Capacity compensating apparatus of airconditioner
KR100202008B1 (en) Heat exchanger for refrigerating machine
KR100248762B1 (en) heat exchanger of air conditioner
KR100244333B1 (en) Dehumidifying device of airconditioner
CN101178211A (en) Air conditioner
KR0184207B1 (en) Refrigeration cycle apparatus of airconditioner
KR100470103B1 (en) Method and device for dropping condensing temperature of a cooling system
KR100187253B1 (en) Airconditioner of the multi indoor unit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee