KR100248943B1 - Process of preparing active human n-acetyl glucosamin transferase iii - Google Patents

Process of preparing active human n-acetyl glucosamin transferase iii Download PDF

Info

Publication number
KR100248943B1
KR100248943B1 KR1019970048855A KR19970048855A KR100248943B1 KR 100248943 B1 KR100248943 B1 KR 100248943B1 KR 1019970048855 A KR1019970048855 A KR 1019970048855A KR 19970048855 A KR19970048855 A KR 19970048855A KR 100248943 B1 KR100248943 B1 KR 100248943B1
Authority
KR
South Korea
Prior art keywords
acetylglucosamine
iii
human
transcriptase
gene
Prior art date
Application number
KR1019970048855A
Other languages
Korean (ko)
Other versions
KR19990026646A (en
Inventor
장지은
김연정
정태화
송은영
김철호
이태균
이영춘
Original Assignee
김철호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김철호 filed Critical 김철호
Priority to KR1019970048855A priority Critical patent/KR100248943B1/en
Publication of KR19990026646A publication Critical patent/KR19990026646A/en
Application granted granted Critical
Publication of KR100248943B1 publication Critical patent/KR100248943B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 활성형의 인간 N-아세틸글루코사민전이효소Ⅲ의 제조방법에 관한 것으로서, 간질환의 임상적 진단을 위한 항체생산 및 N-아세틸글루코사민전이효소Ⅲ에 특이적인 활성저해제의 개발·탐색에 유용하다.The present invention relates to a method for preparing an active human N-acetylglucosamine transcriptase III, which is useful for the production of antibodies for the clinical diagnosis of liver disease and for the development and detection of specific inhibitors of N-acetylglucosamine transcriptase III. Do.

Description

활성형의 인간 N-아세틸글루코사민전이효소Ⅲ의 제조방법Method for preparing an active human N-acetylglucosamine transcriptase III

본 발명은 활성형의 인간 UDP-N-아세틸글루코사민 : β-D-만노사이드 β-1,4-N-아세틸글루코사미닐 트랜스퍼레이즈[UDP-N-acetylglucosamine : β-D-mannoside β-1,4-N-acetylglucosaminyl transferase Ⅲ; 이하 "N-아세틸글루코사민전이효소Ⅲ"로 약칭함](EC 2. 4. 1. 144)의 제조방법에 관한 것이다.The present invention provides an active human UDP-N-acetylglucosamine: β-D-mannoside β-1,4-N-acetylglucosaminyl transferase [UDP-N-acetylglucosamine: β-D-mannoside β-1, 4-N-acetylglucosaminyl transferase III; Hereinafter, abbreviated as "N-acetylglucosamine transferase III" (EC 2. 4. 1. 144).

보다 상세하게는, 본 발명은 정상인에서는 거의 발현되지 않으나 간암, 간염등의 간질환 등에서 강하게 발현되는 N-아세틸글루코사민전이효소Ⅲ(N-acetylglucosaminyltransferase Ⅲ)의 유전자를 인간 간암세포주 Hep3B로부터 얻어 재조합 발현 플라스미드를 합성하여 대장균에서 대량으로 발현시킨 후 봉합체(inclusion body)의 형태로 발현된 불활성형의 N-아세틸글루코사민전이효소Ⅲ를 활성화시켜 활성형의 인간 N-아세틸글루코사민전이효소Ⅲ를 제조하는 방법에 관한 것으로서, 본 발명에 의해 생산된 N-아세틸글루코사민전이효소Ⅲ는 항원으로서 간질환의 임상적 진단을 위한 항체를 생산하거나 N-아세틸글루코사민전이효소Ⅲ 활성을 선택적으로 저해하는 천연화합물을 탐색, 인공저해제를 고안하는 등에 유용하다.More specifically, the present invention is a recombinant expression plasmid obtained from the human hepatocellular carcinoma cell line Hep3B, which is rarely expressed in normal humans but strongly expressed in hepatic diseases such as liver cancer and hepatitis. To synthesize a large amount in E. coli and then activate the inactive N-acetylglucosamine transcriptase III expressed in the form of an inclusion body to prepare an active human N-acetylglucosamine transcriptase III. The present invention relates to N-acetylglucosamine transcriptase III produced by the present invention as an antigen for the production of antibodies for the clinical diagnosis of liver disease or to search for natural compounds that selectively inhibit N-acetylglucosamine transcriptase III activity. Useful for devising inhibitors.

세포 표면의 당쇄는 포유동물의 세포 외막을 이루는 당단백질과 당지질의 구성요소중 하나로서 세포의 유형에 따라 매우 독특한 구조를 가지고 있다 (Kornfeld, R., Kornfeld, S. Annu. Rev. Biochem.45,217-237, 1976; Rademacher, T. W. 등, Annu. Rev. Biochem.57, 785-838, 1988). 당쇄의 구조는 동물세포가 수정, 발생, 분화 그리고 종양화 되는 과정에서 특이적으로 변화되며(Feizi, T. Nature314, 53-57, 1985), 세포분화의 각 단계에 따라서 특정구조의 당쇄가 존재한다. 당쇄는 세포 분화의 과정에서 항원으로 작용하여 특정한 항체에 의하여 인식되며(Fukuda, M. Biochem. Biophys. Acta.780, 119-123, 1985), 렉틴과 당전이효소와 같은 당쇄결합단백질의 인식에 의하여 세포간 상호작용에 관여된다.The sugar chain on the cell surface is one of the components of glycoproteins and glycolipids that make up the outer membrane of mammals and has a very unique structure depending on the type of cell (Kornfeld, R., Kornfeld, S. Annu. Rev. Biochem. 45 , 217-237, 1976; Rademacher, TW et al., Annu. Rev. Biochem. 57 , 785-838, 1988). The structure of sugar chains is specifically changed in the process of animal cell fertilization, development, differentiation and tumorigenization (Feizi, T. Nature 314 , 53-57, 1985). exist. Sugar chains act as antigens in the process of cell differentiation and are recognized by specific antibodies (Fukuda, M. Biochem. Biophys. Acta. 780 , 119-123, 1985), and are recognized for the recognition of sugar chain binding proteins such as lectins and sugar transferases. Is involved in intercellular interaction.

당단백질에서의 당쇄구조는 N-결합형 당쇄와 O-결합형 당쇄로 분류된다. O-결합형 당쇄는 세린(serine)의 히드록시기(-OH기)에 결합되며, N-결합형 당쇄는 N-아세틸글루코사민(N-acetylglucosamine)의 환원성 말단이 Asp-X-Ser/Thr의 아미노산 배열 중에서 아스파라긴의 아미드기에 결합된다.The sugar chain structure in glycoproteins is classified into N-linked sugar chains and O-linked sugar chains. The O-linked sugar chain is bound to the hydroxy group (-OH group) of serine, and the N-linked sugar chain has the amino acid sequence of Asp-X-Ser / Thr at the reducing end of N-acetylglucosamine. Is bound to the amide group of asparagine.

N-결합형 당쇄는 고만노스형, 복합형 그리고 혼성형으로 대별되며 이들은 Man α1→6 (Man α1→3) Man β1→4 GlcNAc β1→4 GlcNAc→Asn의 트리만노실 중심(trimannosyl core)이라 불리는 공통적인 구조를 가진다. 특히 세포의 종양화에 수반되는 복합형의 N-결합형 당쇄의 변화는 트리만노실 중심에서의 분지(branching)가 증가되고(Yamashita, K. 등, J. Biol. Chem.259, 10834-10840, 1984), 폴리락토스아미노글리칸 사슬(polylactosaminoglycan chain)이 형성되며 (Pierce and Arango, J. Biol. Chem.261, 10772-10777, 1986; Hubbard, S. C. J. Biol. Chem.262, 16403-16411, 1987) 시알산첨가가 증가된다(Warren 등, Proc. Natl. Acad. Sci. USA69, 1838-1842, 1972). 이러한 당쇄구조의 변화는 특정한 당전이효소와 당분해효소의 순차적인 작용에 의하여 분지정도와 측쇄의 말단구조가 조절된다(Paulson, Colley, J. Biol. Chem.264, 17615-17618, 1989).N-linked sugar chains are roughly divided into high mannose, complex and hybrid forms, which are called trimannosyl cores of Man α1 → 6 (Man α1 → 3) Man β1 → 4 GlcNAc β1 → 4 GlcNAc → Asn. It has a common structure called. In particular, changes in complex N-linked sugar chains involved in tumorigenization of cells result in increased branching in the trimannosil center (Yamashita, K. et al., J. Biol. Chem. 259 , 10834-10840). , 1984), and a polylactosaminoglycan chain is formed (Pierce and Arango, J. Biol. Chem. 261 , 10772-10777, 1986; Hubbard, SCJ Biol. Chem. 262 , 16403-16411, 1987 Sialic acid addition (Warren et al., Proc. Natl. Acad. Sci. USA 69 , 1838-1842, 1972). These changes in the sugar chain structure are regulated by the sequential action of specific glycotransferases and glycolyses to control the degree of branching and the side chain end structures (Paulson, Colley, J. Biol. Chem. 264 , 17615-17618, 1989).

당전이효소(Glycosyltransferase)는 소포체(endoplasmic reticulum)와 골지체(Golgi apparatus)에 존재하는 막단백질로서 당핵산유도체인 활성형 공여기질(donor substrate)로부터 당분자를 수용체 기질(acceptor substrate)에 전이하여 당쇄의 합성을 조절하는 효소이다. 현재 포유동물 세포의 당쇄구조 합성에 필요한 당전이효소의 수는 당공여 기질과 수용체 기질, 결합상태 등을 고려하여 볼때, 100-150 여종으로 추정되고 있으며 당공여기질의 유형에 따라 전형적인 패밀리(family)를 이룬다. 동일 패밀리를 이루는 당전이효소들은 유사한 수용체 기질과 공여체 기질을 가지므로 공통적인 아미노산 배열이 있을 것으로 기대되지만 놀랍게도 현재까지 클로닝된 당전이효소의 cDNA의 염기서열을 바탕으로 아미노산 배열을 비교하여 보면 시알산전이효소(sialyltranferase)를 제외하고 촉매영역(catalytic domain)에 상동성을 가진 영역이 거의 없는 것으로 알려져 있다. 그러나 당전이효소의 도메인구조는 세포질 꼬리(cytoplasmic tail)영역, 막통과(trans-membrane)영역, 줄기(stem)영역과 촉매영역(catalytic domain)의 4 가지 영역으로 구성되는 공통점이 있다.Glycosyltransferase is a membrane protein present in the endoplasmic reticulum and Golgi apparatus, which transfers sugar molecules from the donor substrate, the glyconucleotide derivative, to the acceptor substrate, It is an enzyme that regulates synthesis. Currently, the number of glycotransferases required for the synthesis of sugar chain structures in mammalian cells is estimated to be about 100-150 species in consideration of glycodonating substrates, receptor substrates, and binding states. ). Glycotransferases in the same family have similar receptor substrates and donor substrates, so it is expected that there will be a common amino acid sequence, but surprisingly compared to the amino acid sequence based on the base sequence of the cloned glycotransferases It is known that there are almost no regions homologous to the catalytic domain except for the sylyltranferase. However, the domain structure of glycotransferases has a common structure consisting of four regions: cytoplasmic tail region, trans-membrane region, stem region, and catalytic region.

당전이효소는 의약용제제로 기대를 모으고 있는 당질의 합성 및 기능성올리고당의 합성에 직접 응용될 수 있기 때문에, 현재 활성형 당전이효소의 대량생산에 관심이 모아지고 있다. 이러한 방법으로서는 복합형의 N-결합형 당쇄에 작용하는 당전이효소들 중 생쥐와 흰쥐유래의 GnT-Ⅰ cDNA를 대장균에서 발현시켰을 때, 활성형의 가용단백질이 생산된 것이 보고되었으며(Kumar 등, Glycobiology.2, 383-393, 1992), 또한 베큘로바이러스(vaculovirus) 발현벡터를 이용한 곤충세포에서의 활성형 당전이효소의 대량생산이 보고된 바 있다(Williams 등, Glycoconjugate J.12, 755-761, 1995).Since glycotransferases can be directly applied to the synthesis of saccharides and functional oligosaccharides, which are expected as pharmaceutical preparations, there is a growing interest in mass production of active glycotransferases. As such a method, it was reported that when the GnT-I cDNA derived from mice and rats of the glycotransferases acting on the complex N-linked sugar chain was expressed in E. coli, an active soluble protein was produced (Kumar et al. Glycobiology. 2 , 383-393, 1992), and also mass production of active glycotransferases in insect cells using baculovirus expression vectors (Williams et al., Glycoconjugate J. 12 , 755-). 761, 1995).

당전이효소 중 N-아세틸글루코사민전이효소Ⅲ는 N-결합형 당쇄의 트리만노실 중심에 β-결합된 만노스에 N-아세틸글루코사민을 β-1,4- 결합으로 부가시켜서 이분지(bisecting)의 글루코사민 잔기를 형성하는 효소이다.N-acetylglucosamine transcriptase III is a bisecting group by adding N-acetylglucosamine as β-1,4- bond to β-linked mannose at the center of trimannosyl of an N-linked sugar chain. It is an enzyme that forms glucosamine residues.

N-아세틸글루코사민전이효소Ⅲ의 활성은 처음으로 암닭의 난관에서 검출되었다(Narasimhan, J. Biol. Chem.257, 10235-10242, 1982). 그밖에 간암흰쥐의 간조직 과 세포주(Narasimhan 등, J. Biol. Chem.263, 1273-1281, 1988; Nishikawa 등, Biochem. Biophys. Res. Commun.152, 107-112, 1988; Pascale 등, Carcinogenesis10, 961-964, 1989), 흰쥐신장(Nishikawa et al., Biochim. Biophys. Acta1035, 313-318, 1990), 사람 B 임파구 (Narasimhan 등, Biochem. Cell Biol.66, 889-900, 1988), HL60세포 (Koenderman 등, FEBS Lett.222, 42-46, 1987), 노비코프(Novikoff)복수암 (Koenderman 등, Eur. J. Biochem.181, 651-655, 1989), CaCO-2세포 (Brockhausen 등, Cancer Res.51, 3136-3142, 1991), HuH-6 세포 (Ohno 등, Int. J. Cancer51, 315-317, 1992), 간암세포주 Hep3B와 HepG2 (김철호등, Kor. J. Chitin. Chitosan, 2(3), 27-39, 1997) 등에서 높은 활성이 보고되고 있으며, 특히 간질환환자의 혈청으로부터 N-아세틸글루코사민전이효소Ⅲ의 효소 활성이 특이적으로 증가함이 보고되고 있다 (Ishibashi 등, Clin. Chim. Acta185, 325-332, 1991).The activity of N-acetylglucosamine transcriptase III was first detected in the fallopian tubes of hens (Narasimhan, J. Biol. Chem. 257 , 10235-10242, 1982). In addition, liver tissues and cell lines of liver cancer rats (Narasimhan et al., J. Biol. Chem. 263 , 1273-1281, 1988; Nishikawa et al., Biochem. Biophys. Res. Commun. 152 , 107-112, 1988; Pascale et al., Carcinogenesis 10 , 961-964, 1989), rat kidney (Nishikawa et al., Biochim. Biophys. Acta 1035 , 313-318, 1990), human B lymphocytes (Narasimhan et al., Biochem. Cell Biol. 66 , 889-900, 1988) , HL60 cells (Koenderman et al., FEBS Lett. 222 , 42-46, 1987), Novikoff multiple cancer (Koenderman et al., Eur. J. Biochem. 181 , 651-655, 1989), CaCO-2 cells ( Brockhausen et al., Cancer Res. 51 , 3136-3142, 1991), HuH-6 cells (Ohno et al., Int. J. Cancer 51 , 315-317, 1992), liver cancer cell lines Hep3B and HepG2 (Kim Cheol-ho et al., Kor. J. Chitin, Chitosan, 2 (3), 27-39, 1997), and high activity has been reported, and especially the enzyme activity of N-acetylglucosamine transcriptase III has been reported to increase specifically from serum of liver disease patients. (Ishibashi et al., Clin. Chim. Acta 185 , 325-332, 1991).

최근 흰쥐의 신장으로부터 N-아세틸글루코사민전이효소Ⅲ가 정제되었고(Nishikawa 등, J. Biol. Chem.267, 18199-18204, 1992), 흰쥐 신장 cDNA 라이브러리와 인간 태아 간 cDNA 라이브러리에서 N-아세틸글루코사민전이효소Ⅲ를 암호화하는 유전자가 클로닝되었다(Nishikawa 등, J. Biol. Chem.267, 18199-18204, 1992; Ihara 등, J. Biochem.113,692-698, 1993). 인간 N-아세틸글루코사민전이효소Ⅲ 유전자는 염색체 22q.13.1에 하나 존재하며 531개의 아미노산을 암호화한다.Recently, N-acetylglucosamine transcriptase III was purified from the kidneys of rats (Nishikawa et al., J. Biol. Chem. 267 , 18199-18204, 1992), and N-acetylglucosamine metastases in rat kidney cDNA libraries and human fetal liver cDNA libraries. Genes encoding enzyme III were cloned (Nishikawa et al., J. Biol. Chem. 267 , 18199-18204, 1992; Ihara et al., J. Biochem. 113, 692-698, 1993). One human N-acetylglucosamine transferase III gene is present on chromosome 22q.13.1 and encodes 531 amino acids.

N-아세틸글루코사민전이효소Ⅲ의 활성에 의한 N-결합형 당쇄구조의 변화가 세포에 어떠한 영향을 미치는 가에 대해서는 아직 명백하게 이해되고 있지는 않지만 세포의 악성화와 암의 전이에 따라 N-아세틸글루코사민전이효소Ⅲ의 활성이 크게 증가된다고 보고되고 있다(김철호 등, 대한민국 특허출원 95-37788호; Kim 등, Gene 170, 281-283. 1996,).It is not yet clear how the change of N-linked sugar chain structure due to the activity of N-acetylglucosamine transferase III affects the cells, but N-acetylglucosamine transcriptase depends on the cell malignancy and cancer metastasis. It is reported that the activity of III is greatly increased (Kim Chul-ho et al., Korean Patent Application No. 95-37788; Kim et al., Gene 170, 281-283. 1996,).

따라서 간질환에 특이적으로 발현되며 간암 등에서 증가하는 N-아세틸글루코사민전이효소Ⅲ의 발현을 검출하는 방법을 개발하면 임상적으로 간단하게 간질환을 진단할 수 있게 되고, N-아세틸글루코사민전이효소Ⅲ 효소활성을 억제하는 저해제를 탐색, 개발하면 N-아세틸글루코사민전이효소Ⅲ의 발현을 조절하여 간질환을 치료할 수 있게 된다.Therefore, developing a method for detecting the expression of N-acetylglucosamine transcriptase III, which is specifically expressed in liver disease and is increased in liver cancer, enables the diagnosis of liver disease in a clinically simple manner, and N-acetylglucosamine transcriptase III. The search and development of inhibitors that inhibit enzymatic activity can control liver disease by regulating the expression of N-acetylglucosamine transcriptase III.

그러나 상기의 진단방법과 치료방법이 개발되기 위해서는 N-아세틸글루코사민전이효소Ⅲ의 대량생산이 선행되어야 한다.However, the mass production of N-acetylglucosamine transcriptase III must be preceded in order to develop the above diagnostic and therapeutic methods.

현재까지 N-아세틸글루코사민전이효소Ⅲ 유전자는 분리되어 있으나 대량생산 체계가 확립되지 못하였다. 그 이유는 상기 효소는 막통과 도메인을 가지고 있어 재조합 대장균에서 대량 생산하고자 할때 대장균이 사멸하는 특성이 있어 발현이 어려웠고 또한 발현이 되어도 봉합체(inclusion body)로 생산되어 활성이 없었기 때문이다.To date, the N-acetylglucosamine transferase III gene has been isolated, but no mass production system has been established. The reason is that the enzyme has a transmembrane domain, so when E. coli is killed in mass production in recombinant E. coli, it is difficult to express and is inactivated because it is produced as an inclusion body even when expressed.

이에 본 발명자들은 막통과 도메인을 제거한 결손형(truncated form) N-아세틸글루코사민전이효소Ⅲ가 리폴딩(refolding)되면 활성화되는 것을 발견하고, 막통과 도메인을 제거한 결손형 N-아세틸글루코사민전이효소Ⅲ를 대장균내에서 대량으로 생산·정제한 다음 활성화시키는 단계를 거쳐 활성형의 인간 N-아세틸글루코사민전이효소Ⅲ를 제조함으로써 본 발명을 완성하였다.Accordingly, the present inventors found that the truncated form N-acetylglucosamine transcriptase III which removed the transmembrane domain was activated when refolding, and the deletion-type N-acetylglucosamine transcriptase III which removed the transmembrane domain was activated. The present invention was completed by preparing an active human N-acetylglucosamine transferase III through a step of producing and purifying a large amount in E. coli and activating it.

본 발명은 활성형의 인간 N-아세틸글루코사민전이효소Ⅲ를 대량생산하는 방법을 제공함에 그 목적이 있다.It is an object of the present invention to provide a method for mass production of an active human N-acetylglucosamine transcriptase III.

도 1은 인간 간암세포주 Hep3B의 cDNA를 주형으로 하여 중합효소 연쇄반응(Polymerase Chain Reaction, PCR)방법을 이용한 N-아세틸글루코사민전이효소Ⅲ 전체유전자 분리를 위한 시발체(primer) 고안을 나타낸 것이고, Figure 1 shows the design of primers for the isolation of the N-acetylglucosamine transcriptase III whole gene using the polymerase chain reaction (PCR) method using cDNA of the human liver cancer cell line Hep3B as a template,

검은 박스 : N-아세틸글루코사민전이효소Ⅲ cDNA의 암호영역Black box: coding region of N-acetylglucosamine transcriptase III cDNA

도 2는 인간 간암세포주 Hep3B의 cDNA 로부터 중합효소 연쇄반응을 실행하여 그 생성물의 아가로스 겔 전기영동을 나타낸 것이고, Figure 2 shows agarose gel electrophoresis of the product by performing a polymerase chain reaction from the cDNA of the human liver cancer cell line Hep3B,

레인 M : 1 Kb ladder ;Lane M: 1 Kb ladder;

레인 1 : P1, P2의 PCR 생성물 ;Lane 1: PCR products of P1 and P2;

레인 2 : P3, P4의 PCR생성물Lane 2: PCR product of P3, P4

도 3은 결손형(truncated form) N-아세틸글루코사민전이효소Ⅲ 유전자의 발현 플라스미드(plasmid) pET-GnTⅢ 제작과정을 나타낸 것이고, Figure 3 shows the production process of the expression plasmid pET-GnTIII of the truncated form N-acetylglucosamine transcriptase III gene,

도 4a는 대장균 E. coli BL21(DE3)에서 발현된 N-아세틸글루코사민전이효소Ⅲ의 SDS-PAGE 분석 결과를 나타낸 것이고, 4a shows the results of SDS-PAGE analysis of N-acetylglucosamine transcriptase III expressed in E. coli BL21 (DE3),

레인 1-3 : 세포질분획 (가용성분획); 레인 4-6 : 불용성분획Lanes 1-3: cytosolic fraction (soluble fraction); Lane 4-6: Insoluble Ingredient Capture

레인 1, 4 : 유도발현전 시료 ; 레인 2, 5 : 벡터 대조군 ;Lanes 1 and 4: samples before induction; Lanes 2 and 5: vector controls;

레인 3, 6 : PTG유도후 3시간뒤의 세포전체분획 ;Lanes 3 and 6: whole cell fractions 3 hours after PTG induction;

레인 M : 분자량표준물질Lane M: molecular weight standard

화살표 : N-아세틸글루코사민전이효소Ⅲ의 위치Arrow: Location of N-acetylglucosamine transcriptase III

도 4b는 대장균 E. coli BL21(DE3)에서 발현된 N-아세틸글루코사민전이효소Ⅲ의 웨스턴 블럿팅을 나타낸 것이고, Figure 4b shows Western blotting of N-acetylglucosamine transcriptase III expressed in E. coli BL21 (DE3),

도 5는 봉합체(inclusion body)로 존재하는 N-아세틸글루코사민전이효소Ⅲ의 정제도를 확인하기 위하여 SDS-PAGE를 실시한 결과를 나타낸 것이다. Figure 5 shows the results of the SDS-PAGE to confirm the degree of purification of N-acetylglucosamine transferase III present in the inclusion (inclusion body).

레인 1 : 정제 봉합체(inclusion body); 레인 2 : 초음파후 불용성단백질;Lane 1: tablet inclusion body; Lane 2: insoluble protein after ultrasound;

레인 3 : 초음파후의 수용성단백질; 레인 4 : 유도뒤 전체세포용균체;Lane 3: water-soluble protein after ultrasound; Lane 4: whole cell culture after induction;

레인 5 : 비유도 대조군; 레인 M : 단백질 분자량 마커 표준물질Lane 5: non-induced control; Lane M: protein molecular weight marker standard

상기 목적을 달성하기 위하여, 본 발명은 인간 N-아세틸글루코사민전이효소Ⅲ 유전자 전체 또는 그의 일부를 포함하는 발현 플라스미드 및 이를 대장균에 형질전환시킨 형질전환체를 제공한다.In order to achieve the above object, the present invention provides an expression plasmid containing all or part of the human N-acetylglucosamine transcriptase III gene and transformants transformed into E. coli.

구체적으로 본 발명은 인간 N-아세틸글루코사민전이효소Ⅲ 유전자 전체를 포함하는 발현 플라스미드 pKNC 1.7을 제공하고, 인간 N-아세틸글루코사민전이효소Ⅲ의 N-말단의 23개 아미노산을 결손시킨 N-아세틸글루코사민전이효소Ⅲ 유전자를 포함하는 발현 플라스미드 pET-GnTⅢ 및 그의 대장균(E. coli BL 21) 형질전환체(수탁번호:KCTC 8829P)를 제공한다.Specifically, the present invention provides an expression plasmid pKNC 1.7 including the entire human N-acetylglucosamine transcriptase III gene, and N-acetylglucosamine metastasis in which the N-terminal 23 amino acids of human N-acetylglucosamine transcriptase III are deleted. An expression plasmid pET-GnTIII and an E. coli BL 21 transformant (Accession No .: KCTC 8829P) containing the enzyme III gene are provided.

또한 본 발명은 상기 형질전환체를 이용하여 활성형의 인간 N-아세틸글루코사민전이효소Ⅲ를 제조하는 방법을 제공한다.The present invention also provides a method for producing an active human N-acetylglucosamine transcriptase III using the transformant.

구체적으로 상기 형질전환체를 배양하여 인간 N-아세틸글루코사민전이효소Ⅲ를 봉합체(inclusion body) 형태로 얻고 이를 정제하여 리폴딩(refolding)시킴으로써 활성화된 인간 N-아세틸글루코사민전이효소Ⅲ를 제조하는 방법을 제공한다.Specifically, the method for producing activated human N-acetylglucosamine transcriptase III by culturing the transformant to obtain human N-acetylglucosamine transcriptase III in the form of an inclusion body, purifying and refolding the transformant. To provide.

또한 본 발명은 상기 방법에 의하여 제조된 활성형 인간 N-아세틸글루코사민전이효소Ⅲ를 간질환의 임상적 진단을 위한 항체 생산과 N-아세틸글루코사민전이효소Ⅲ에 특이적인 활성저해제 개발에 이용하는 용도를 제공한다.The present invention also provides the use of the active human N-acetylglucosamine transcriptase III prepared by the above method for the production of antibodies for the clinical diagnosis of liver disease and the development of inhibitors specific for N-acetylglucosamine transcriptase III. do.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

인간 간암세포주 Hep3B의 cDNA를 주형으로 하여 중합효소연쇄반응(Polymerase Chain Reaction, PCR)을 실행하여 N-아세틸글루코사민전이효소Ⅲ을 암호화하는 구조유전자 전체를 분리한다.As a template, cDNA of the human liver cancer cell line Hep3B is subjected to a polymerase chain reaction (PCR) to isolate the entire structural gene encoding N-acetylglucosamine transcriptase III.

인간 간암세포주의 N-아세틸글루코사민전이효소Ⅲ의 cDNA는 1,593bp의 암호영역(coding region)으로 구성되었으며 기존의 태아의 N-아세틸글루코사민전이효소Ⅲ 암호유전자와 동일하다(Ihara 등, J. Biochem.113,692-698, 1993).The cDNA of N-acetylglucosamine transcriptase III of human hepatocellular carcinoma cell line is composed of 1,593 bp coding region and is identical to the existing fetal N-acetylglucosamine transcriptase III coding gene (Ihara et al., J. Biochem. 113, 692-698, 1993).

상기 구조유전자 전체를 포함하는 발현 플라스미드를 pKNC 1.7 이라 명명하였다.The expression plasmid containing the entire structural gene was named pKNC 1.7.

그러나 N-아세틸글루코사민전이효소Ⅲ 구조유전자 전체는 N-말단쪽에 도메인(domain) 구조중 소수성 아미노산으로 구성된 막통과(transmembrane)영역이 존재하는 단백질을 암호하여, 대장균에서 발현은 되지만 발현된 단백질이 대장균에 대한 독성효과(toxic effect)를 발생하여 재조합 대장균을 사멸시키게 되므로 N-아세틸글루코사민전이효소Ⅲ의 대량생산이 불가능하다.However, the entire N-acetylglucosamine transferase III structural gene encodes a protein having a transmembrane region composed of hydrophobic amino acids in the domain structure at the N-terminus, and is expressed in E. coli but expressed in E. coli. It is impossible to mass-produce N-acetylglucosamine transcriptase III because it causes a toxic effect on and kills recombinant E. coli.

따라서 본 발명에서는 N-아세틸글루코사민전이효소Ⅲ의 암호화영역중에서 개시암호(start codon)로부터 69 bp의 하류(downstream)에서 시작되는 순방향 시발체 E1: CACGGATCCAAGACCCTGTCCTATGTC 을 합성하고, 종료암호로부터 33 bp 하류에서 시작되는 역방향 시발체 E2: AACTCGAGCTGTCACAAACCCTATCATCA 를 합성하여, 기질로서 pKNC 1.7을 사용하여 중합효소 연쇄반응을 수행하여 결손형(truncated form)의 N-아세틸글루코사민전이효소Ⅲ 유전자를 증폭시켰다.Therefore, in the present invention, the forward primer E1: CACGGATCCAAGACCCTGTCCTATGTC, which starts at 69 bp downstream from the start codon in the coding region of N-acetylglucosamine transferase III, is synthesized, and starts at 33 bp downstream from the end code. Reverse primer E2: AACTCGAGCTGTCACAAACCCTATCATCA was synthesized and subjected to polymerase chain reaction using pKNC 1.7 as a substrate to amplify the truncated form N-acetylglucosamine transferase III gene.

상기의 중합효소 연쇄반응 생성물을 pET-22b(+)의 BamHⅠ/XhoⅠ sites에 클로닝하여 pET-GnTⅢ로 명명하고, 이를 대장균 BL21(DE3) 균주에 형질전환시켜 그 형질전환체를 한국과학기술연구원 생명공학연구소 부설 유전자은행에 기탁하였다(수탁번호:KCTC 8829P).The polymerase chain reaction product was cloned into the BamHI / XhoI sites of pET-22b (+) and named as pET-GnTIII, which was transformed into E. coli BL21 (DE3) strain to transform the transformant into the life of the Korea Institute of Science and Technology. It was deposited in the Gene Bank of Engineering Research Institute (Accession Number: KCTC 8829P).

상기 형질전환체를 배양하여 IPTG(isopropyl thio-β-D-galactosidase)로 발현을 유도하면 N-아세틸글루코사민전이효소Ⅲ는 RNA와 결합된 봉합체(inclusion body)로 발현되므로 이를 정제한 다음 환원 및 투석과정을 거쳐 리폴딩(refolding)시킴으로써 활성형으로 제조한다.When the transformant is cultured to induce expression with isotpropyl thio-β-D-galactosidase (IPTG), N-acetylglucosamine transferase III is expressed as an inclusion body combined with RNA, and then purified and reduced. It is prepared in active form by refolding through dialysis.

이하 실시예에 의하여 본 발명을 상세하게 설명한다. 하기 실시예는 본 발명을 구체적으로 예시하는 것이며 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.The present invention will be described in detail by the following examples. The following examples illustrate the invention in detail and are not intended to limit the scope of the invention.

<실시예 1> 인간 간암세포주 Hep3B의 N-아세틸글루코사민전이효소Ⅲ를 암호화하 는 구조유전자 분리<Example 1> Isolation of a structural gene encoding N-acetylglucosamine transcriptase III of human liver cancer cell line Hep3B

인간 간암세포주 Hep3B의 N-아세틸글루코사민전이효소Ⅲ를 암호화하는 구조유전자 분리를 위해, 인간 간암세포주 hep3B의 cDNA 라이브러리를 합성하여 중합효소 연쇄반응의 주형으로 사용하였다.For the isolation of structural genes encoding N-acetylglucosamine transcriptase III of the human liver cancer cell line Hep3B, a cDNA library of the human liver cancer cell line hep3B was synthesized and used as a template for polymerase chain reaction.

인간 간암세포주 hep3B로부터 cDNA 라이브러리 합성과 파아지 용균액(lysate)의 제조는 마니아티스 등의 방법(Maniatis 등, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982)에 의하였고 합성킷트(Promega Co., USA)를 사용하였다.Synthesis of cDNA library and preparation of phage lysate from human liver cancer cell line hep3B were performed by Maniatis et al. (Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982). Synthesis kit (Promega Co., USA) was used.

Hep3B로부터 정제한 N-아세틸글루코사민전이효소Ⅲ의 N-말단 아미노산 서열분석결과 기존에 보고된 인간 태아의 N-아세틸글루코사민전이효소Ⅲ의 것과 동일함을 확인하고, 염기서열 유전자은행 데이타베이스[GenBank Nucleotide Sequence Database(accession No. D13789)]에 의거하여 시발체(primer)를 디자인하였다.N-terminal amino acid sequencing of N-acetylglucosamine transcriptase III purified from Hep3B confirmed the same as that of N-acetylglucosamine transcriptase III of human fetuses reported previously, and the nucleotide sequence gene bank database [GenBank Nucleotide A primer was designed according to the Sequence Database (accession No. D13789).

시발체는 DNA합성기(Applied Biosystem 391 DNA Synthesizer, USA)를 이용하였으며, 순방향 시발체 P1: GGATGAAGATGAGACGCTACAAG과 역방향시발체 P2: GGAACTTGAGCGGCCGCGGCT의 한개 조와 순방향 시발체 P3: AGCCGCGGCCGCTCAAGTTCC, 역방향 시발체 P4: CCTATCAGAGCATGCAGCTCTAGAC 등 2개 조를 합성하였다.The primers were composed of a DNA synthesizer (Applied Biosystem 391 DNA Synthesizer, USA), and a forward primer P1: GGATGAAGATGAGACGCTACAAG and a reverse primer P2: GGAACTTGAGCGGCCGCGGCT and a pair of forward primers P3: AGCCGCGGCCGCTCAAGAGTCCC, reverse primers, CTA CAGTCAGTCCC, CGGAGTCTC, etc.

중합효소 연쇄반응(Saiki 등, Science239, 487-491, 1988)은 간암세포주 Hep3B cDNA 라이브러리로부터 분리한 DNA 20ng을 주형으로 사용하였고, 여기에 10X 반응 완충액 [500mM KCl, 100mM Tris-HCl (pH 8.3), 15mM MgCl2, 0.1% 젤라틴] 5㎕, dNTP 200μM, 합성 올리고뉴클레오타이드(oligonucleotide) 시발체 각각 0.2μM, Taq 중합효소(polymerase) 2.5U 를 넣고 멸균된 증류수를 넣어 총 부피가 50 ㎕가 되도록 하고, 미네랄 오일을 한두방울 넣은 다음, 94℃에서 40초, 52℃에서 40초, 72℃에서 1분씩 30 회 실행하였다.Polymerase chain reaction (Saiki et al., Science 239 , 487-491, 1988) used 20 ng of DNA isolated from hep3B cDNA library of liver cancer cell line as a template, and included 10X reaction buffer [500 mM KCl, 100 mM Tris-HCl (pH 8.3). ), 15 mM MgCl 2 , 0.1% gelatin] 5 μl, dNTP 200 μM, 0.2 μM of synthetic oligonucleotide primer, 2.5 U of Taq polymerase, and sterilized distilled water to make a total volume of 50 μl. After putting one or two drops of mineral oil, it was performed 40 times at 94 ℃, 40 seconds at 52 ℃, 30 times 1 minute at 72 ℃.

상기의 반응에 의하여 N-아세틸글루코사민전이효소Ⅲ cDNA 5'-영역의 762bp(시발체 P1과 P2)와 3'-영역의 882bp(시발체 P3와 P4)의 단편을 증폭시켰다.The above reaction amplified fragments of 762 bp (primers P1 and P2) of the N-acetylglucosamine transferase III cDNA 5 ′ region and 882 bp (primers P3 and P4) of the 3 ′ region.

중합효소 연쇄반응산물을 1% 아가로스 겔에서 전기영동 한 후, Geneclean 키트(Bio 101, USA)를 사용하여 사용법에 따라 겔로부터 분리하였다.The polymerase chain reaction product was electrophoresed on a 1% agarose gel, and then separated from the gel using the Geneclean kit (Bio 101, USA).

pBluescript SK(+) 10 ㎍을 제한효소 EcoRⅤ로 절단한 후, 증폭된 N-아세틸글루코사민전이효소Ⅲ cDNA의 5' 영역의 762 bp와 3'영역의 882bp의 단편을 클로닝하여 각각 pKN 0.8과 pKC 0.8을 구축하였다. 플라스미드의 분리는 알칼리용균방법 (Feliciello, Chinali, Anal. Biochem.212, 394-401, 1993)를 사용하였다. 클로닝된 플라스미드를 50 ㎕의 물에 녹여 2 ㎕를 취하여 제한효소 EcoRⅠ과 HindⅢ로 절단한 다음, 1% 아가로스겔에 전기영동하여 클론을 확인하였다.After digesting 10 μg of pBluescript SK (+) with restriction enzyme EcoRV, fragments of 762 bp in the 5 'region and 882 bp in the 3' region of the amplified N-acetylglucosamine transferase III cDNA were cloned and pKN 0.8 and pKC 0.8, respectively. Was built. Separation of the plasmid was performed by alkaline lysis method (Feliciello, Chinali, Anal. Biochem. 212 , 394-401, 1993). The cloned plasmid was dissolved in 50 μl of water, 2 μl of the cloned plasmid was digested with restriction enzymes EcoR I and Hind III, and electrophoresed on 1% agarose gel to identify the clones.

확인된 클론은 Sequencase ver. 2.0 시퀀싱 키트 (USB, USA)를 사용하여 생거-디데옥시(Sanger-dideoxy)방법 (Sanger, F. 등, Proc. Natl. Acad. Sci. USA74, 5463-5467, 1977)에 따라 염기서열을 결정하였다.The clones identified were Sequencase ver. Sequences were followed according to the Sanger-dideoxy method (Sanger, F. et al., Proc. Natl. Acad. Sci. USA 74 , 5463-5467, 1977) using a 2.0 sequencing kit (USB, USA). Decided.

그 결과, 기존에 발표된 N-아세틸글루코사민전이효소Ⅲ cDNA 염기배열과 일치하여 제조된 벡터에 삽입된 DNA단편이 N-아세틸글루코사민전이효소Ⅲ 유전자임이 확인되었다.As a result, it was confirmed that the DNA fragment inserted into the vector prepared in accordance with the previously published N-acetylglucosamine transcriptase III cDNA nucleotide sequence was N-acetylglucosamine transcriptase III gene.

<실시예 2> N-아세틸글루코사민전이효소Ⅲ의 발현플라스미드의 구축<Example 2> Construction of the expression plasmid of N-acetylglucosamine transcriptase III

완전한 길이(full length)의 N-아세틸글루코사민전이효소Ⅲ 유전자를 구축하기 위하여 N-아세틸글루코사민전이효소Ⅲ의 3'영역이 클로닝된 pKC 0.8의 NotⅠ/HindⅢ 단편을 pKN 0.8의 NotⅠ/EcoRⅠ 위치에 재클로닝하여 이를 pKNC 1.7이라 하였다(도 3참조).To construct a full-length N-acetylglucosamine transcriptase III gene, a NotI / HindIII fragment of pKC 0.8 was cloned into the NotI / EcoRⅠ position of pKN 0.8, where the 3 'region of N-acetylglucosamine transcriptase III was cloned. Cloning was referred to as pKNC 1.7 (see FIG. 3 ).

발현 플라스미드의 구축여부는 E. coli DH5α에 형질전환한 후 플라스미드를 분리하여 확인하였으며, 확인된 클론은 부분적으로 염기서열을 결정하여 해독틀(reading frame)을 정확히 확인하였다.Expression of the plasmid was confirmed by transforming E. coli DH5α and then separating the plasmid. The identified clone was partially determined by sequencing to accurately identify the reading frame.

그러나 pKNC 1.7로부터 생산된 재조합 N-아세틸글루코사민전이효소Ⅲ는 N-말단쪽에 도메인(domain) 구조중 소수성 아미노산으로 구성된 막통과(transmembrane)영역이 존재하여 대장균에서 발현은 되지만 대장균에 대한 독성효과(toxic effect)가 발생하여 재조합대장균이 사멸됨으로 인하여 N-아세틸글루코사민전이효소Ⅲ의 생산이 불가능하였다.However, the recombinant N-acetylglucosamine transferase III produced from pKNC 1.7 has a transmembrane region composed of hydrophobic amino acids in the domain structure at the N-terminus, which is expressed in E. coli but toxic to E. coli. production of N-acetylglucosamine transcriptase III was impossible due to the death of recombinant E. coli.

따라서, 본 발명자들은 N-아세틸글루코사민전이효소Ⅲ의 암호화영역중에서 줄기(stem)영역, 즉 개시암호(start codon)로부터 69 bp의 하류(downstream)에서 시작되는 코돈과 일치하는(in-frame) BamHⅠ site를 함유한 순방향 시발체 E1: CACGGATCCAAGACCCTGTCCTATGTC 을 합성하고, 종료암호(stop codon)와 겹쳐있는 XhoⅠ site를 포함하고 종료암호로부터 33 bp 하류에서 시작되는 역방향 시발체 E2: AACTCGAGCTGTCACAAACCCTATCATCA 를 합성하여, 기질로서 pKNC 1.7을 사용하여 중합효소 연쇄반응을 수행하여 결손형(truncated form)의 N-아세틸글루코사민전이효소Ⅲ 유전자를 증폭시켰다.Accordingly, the present inventors have found that the BamHI in-frame of the N-acetylglucosamine transcriptase III is co-initiated in the stem region, i.e., 69 bp downstream from the start codon. Forward primer E1 containing site: Synthesis of CACGGATCCAAGACCCTGTCCTATGTC, and reverse primer E2: AACTCGAGCTGTCACAAACCCTATCATCA containing XhoI site overlapping with stop codon and starting 33 bp downstream from stop code, were synthesized as pKNC 1.7 as substrate The polymerase chain reaction was performed to amplify the truncated form N-acetylglucosamine transcriptase III gene.

상기의 중합효소 연쇄반응 생성물은 pET-22b(+)의 BamHⅠ/XhoⅠ sites에 클로닝하였다. 이렇게하여 N-아세틸글루코사민전이효소Ⅲ 유전자중 N-말단아미노산 23개 영역을 결손시킨 결손형 N-아세틸글루코사민전이효소Ⅲ를 암호화하는 플라스미드를 구축하여 pET-GnTⅢ로 명명하였다.The polymerase chain reaction product was cloned into BamHI / XhoI sites of pET-22b (+). Thus, a plasmid encoding the defective N-acetylglucosamine transcriptase III, in which 23 regions of N-terminal amino acids in the N-acetylglucosamine transcriptase III gene were deleted, was constructed and named pET-GnTIII.

구축된 발현 플라스미드는 벡터에 존재하는 pelB 리더(leader)유전자의 하류영역에 GnT-Ⅲ 활성영역(catalytic domain)의 유전자가 연결되어 있어 대장균 BL21(DE3) 균주에서 발현되면 540개의 아미노산으로 구성된 pelB 리더-GnTⅢ 융합단백질이 생산된다.The constructed expression plasmid is a pelB leader consisting of 540 amino acids when expressed in E. coli BL21 (DE3) strains because the gene of the GnT-III active domain is linked to the downstream region of the pelB leader gene in the vector. -GnTIII fusion protein is produced.

<실시예 3> N-아세틸글루코사민전이효소Ⅲ의 대장균에서 유도발현<Example 3> Induction of E. coli of N-acetylglucosamine transcriptase III

상기 발현 플라스미드 pET-GnTⅢ를 E. coli BL21(DE3)에 형질전환하였다. 발현벡터 pET-GnTⅢ는 T7 프로모터(promoter)에 의하여 pelB 리더 시그날 펩타이드(leader signal peptide)에 융합된 형태로 N-아세틸글루코사민전이효소Ⅲ 유전자를 발현시키며, E. coli BL21(DE3)는 lac UV5 프로모터의 조절을 받는 T7 RNA 중합효소(polymerase) 유전자가 염색체에 존재함으로 IPTG(isopropyl thio-β-D-galactosidase)에 의해 발현을 유도시킬 수 있다.The expression plasmid pET-GnTIII was transformed into E. coli BL21 (DE3). The expression vector pET-GnTIII expresses the N-acetylglucosamine transferase III gene in a fused form to the pelB leader signal peptide by a T7 promoter, and the E. coli BL21 (DE3) expresses the lac UV5 promoter. Since the T7 RNA polymerase gene under the control is present on the chromosome, expression can be induced by IPTG (isopropyl thio-β-D-galactosidase).

하룻밤 배양한 형질전환된 E. coli BL21(DE3)를 암피실린(ampicillin)이 100 ㎍/ml의 농도로 함유된 LB배지 100 ml에 1/100로 희석하여, A600이 0.6이 될때까지 37 ℃에서 300 rpm으로 진탕배양하고 IPTG를 0.4 mM 농도로 첨가하여 발현을 유도하였다.Overnight incubated transformed E. coli BL21 (DE3) was diluted 1/100 in 100 ml of LB medium containing ampicillin at a concentration of 100 μg / ml, at 37 ° C. until A 600 became 0.6. Shaking was incubated at 300 rpm and IPTG was added at a concentration of 0.4 mM to induce expression.

IPTG 첨가 후 37 ℃에서 3시간 배양하고 원심분리하여 균체를 회수한 다음 10 mM Tris-HCl용액(pH 7.5) 5 ml에 현탁하여 -70 ℃에서 동결한 뒤 얼음물에서 해동하는 과정을 2회 반복하고 초음파기(Ultrasonic Homogenizer 사용, Cole-Parmer Instrument Co., U.S.A.)로 1 분씩 3 회 초음파후, 10,000g에서 20 분간 원심분리하여 세포질분획과 불용성 단백질을 분리하였다.After addition of IPTG, the cells were incubated for 3 hours at 37 ℃, centrifuged to recover the cells, suspended in 5 ml of 10 mM Tris-HCl solution (pH 7.5), frozen at -70 ℃ and thawed in ice water twice. After ultrasonication three times for 1 minute with an ultrasonic wave (Ultrasonic Homogenizer, Cole-Parmer Instrument Co., USA), the cytoplasmic fraction and insoluble protein were separated by centrifugation at 10,000g for 20 minutes.

SDS-PAGE전기영동은 불용성 단백질을 5ml의 10mM Tris-HCl(pH 7.5)용액에 현탁하여 이중 5㎕를 2X SDS-PAGE 시료완충액[125mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.2% bromophenol blue] 5㎕와 섞고, 세포질분획 5㎕도 2X SDS-PAGE 시료완충액 5㎕와 섞어서 3 분간 끓인 후, 10%의 겔농도에서 20mA로 실행하였다.SDS-PAGE electrophoresis was performed by suspending insoluble protein in 5 ml of 10 mM Tris-HCl (pH 7.5) solution. 5 μl of 2X SDS-PAGE sample buffer [125 mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 10 μl 2-mercaptoethanol, 0.2% bromophenol blue] and 5 μl of the cytosol fraction were mixed with 5 μl of 2X SDS-PAGE sample buffer and boiled for 3 min, and then run at 20 mA at 10% gel concentration.

전기영동 후 염색용액(0.025% Coomassie Brilliant blue R 250, 40% 메탄올, 7% 초산)으로 하룻밤 염색한 다음 탈색용액(10% 메탄올, 10% 초산)으로 탈색하였다.After electrophoresis, the cells were dyed overnight with a dye solution (0.025% Coomassie Brilliant blue R 250, 40% methanol, 7% acetic acid) and then decolorized with a decolorizing solution (10% methanol, 10% acetic acid).

SDS-PAGE전기영동은 램리(Laemmli)방법으로 실시하였으며, 사용한 분자량표지는 Bio-Rad사 제품으로 (USA), 미오신 (200 kDa), 포스포릴라제 b (94 kDa), 소 혈청알부민(67 kDa), 오브알부민(45 kDa), 카로보닉 안히드로라제(30 kDa), 시토크롬 C (12.5 kDa)를 사용하였다. 단백질 정량은 Lowry 등의 방법을 소 혈청알부민을 표준물질로서 실시하였다.SDS-PAGE electrophoresis was carried out by Laemmli method, and the molecular weight label used was made by Bio-Rad (USA), myosin (200 kDa), phosphorylase b (94 kDa), and bovine serum albumin (67). kDa), ovalbumin (45 kDa), carbonic anhydrolase (30 kDa), cytochrome C (12.5 kDa) were used. Protein quantitation was carried out by Lowry et al. Method using bovine serum albumin as a reference material.

최종농도 0.4 mM IPTG용액으로 유도시켰을 때의 단백질 발현 양상을 도 4a에 나타내었다. pET-22b(+)만을 형질전환한 대장균체의 용균체와 발현을 유도하기전의 대장균체의 용균체를 대조구로 이용하여 단백질 발현 양상을 비교하였다.Protein expression patterns when induced with a final concentration of 0.4 mM IPTG solution are shown in Figure 4a. Protein expression patterns were compared using the lysates of E. coli transformed with only pET-22b (+) and the lysates of E. coli before inducing expression.

토끼로부터 얻은 다클론항체를 사용하여 웨스턴 블럿을 실행한 결과 IPTG용액으로 유도한 불용성 분획이 N-아세틸글루코사민전이효소Ⅲ를 포함하고 있음을 확인하였다(도 4b참조)Western blot using polyclonal antibodies obtained from rabbits confirmed that the insoluble fraction induced by IPTG solution contained N-acetylglucosamine transcriptase III (see FIG. 4B ).

N-아세틸글루코사민전이효소Ⅲ는 불활성의 분자량 약 54,000 Da의 봉합체(inclusion body) 형태로 발현되었다. 도 4a의 결과는 2% 트리톤(Triton) X-100으로 대장균 유래의 단백질을 가용화하고 봉합체만을 회수하여 실행한 것이다. 대장균 400 ml 배양액으로 부터 약 40 mg의 봉합체를 회수하였다.N-acetylglucosamine transferase III was expressed in the form of an inclusion body with an inert molecular weight of about 54,000 Da. The result of FIG. 4A is that 2% Triton X-100 was solubilized from E. coli-derived protein and only sutures were recovered. About 40 mg of sutures were recovered from an E. coli 400 ml culture.

봉합체의 형성은 명백히 이해되지는 않으나, 외래 단백질의 발현 수준이 급격히 높아짐으로 인해 단백질이 올바르게 폴딩(folding)하지 못하고 RNA와 복합체를 이루어 세포질내에 결정을 형성하는 것으로 생각되어지고 있다(Studier et al., Meth. Enzymol.185, 60-89, 1990).The formation of the suture is not clearly understood, but due to the rapid increase in the level of foreign protein expression, the protein is not properly folded and complexed with RNA to form crystals in the cytoplasm (Studier et al. , Meth.Enzymol. 185 , 60-89, 1990).

<실시예 4> N-아세틸글루코사민전이효소Ⅲ 봉합체의 정제<Example 4> Purification of N-acetylglucosamine transcriptase III suture

봉합체의 정제에는 마슨 등의 방법(Marston 등, Bio/Technology2, 800-802, 1984)의 변형을 사용하였다.For purification of the sutures, a modification of the method of Marson et al. (Marston et al., Bio / Technology 2 , 800-802, 1984) was used.

전배양한 대장균을 암피실린이 100 ㎍/ml로 함유된 LB 배지 400 ml에 1%로 접종하여 37℃, 300 rpm으로 진탕배양하고 A600이 0.6이 되었을 때 IPTG를 1mM 되도록 넣어서 다시 3시간 배양하였다. 배양 후 2,000g로 10분간 원심분리하여 균체를 회수하였다. 회수한 균체는 습식중량(wet weight) 1g당 100ml의 10mM Tris-HCl용액(pH 7.5)에 2 회 세척하고 다시 원심분리하여 균체를 회수한 다음 40 ml의 50mM Tris-HCl용액(pH 7.5)에 현탁시켜서 초음파처리 하여 15,000g 에서 20 분간 원심분리하여 침전물을 회수하였다.Pre-cultured E. coli was inoculated at 1% in 400 ml of LB medium containing 100 μg / ml of ampicillin and shaken at 37 ° C. and 300 rpm. When A 600 reached 0.6, IPTG was added to 1 mM to incubate for another 3 hours. . After incubation, the cells were recovered by centrifugation at 2,000 g for 10 minutes. The recovered cells were washed twice in 100 ml of 10 mM Tris-HCl solution (pH 7.5) per 1 g of wet weight and centrifuged to recover the cells, and then in 40 ml of 50 mM Tris-HCl solution (pH 7.5). The suspension was sonicated and centrifuged at 15,000 g for 20 minutes to recover the precipitate.

상기 침전물을 30ml의 50mM Tris-HCl(pH 7.5)에 현탁시키고, 10 % Triton X-100용액과 0.5 M EDTA용액을 각각 2 %와 10 mM이 되도록 넣은 다음, 실온에서 가금씩 흔들어 주어 대장균 유래의 불용성 단백질을 제거한 후, 15,000g, 4℃에서 20분간 원심분리하여 침전물을 회수하였다. 침전물은 50 mM Tris-HCl용액(pH 7.5) 30 ml로 2 회 세정한 후 4 ml의 50 mM Tris-HCl용액(pH 7.5)에 현탁하였으며 이중 10 ㎕을 전기영동하여 밴드를 확인하였다.(도 5참조)The precipitate was suspended in 30 ml of 50 mM Tris-HCl (pH 7.5), 10% Triton X-100 solution and 0.5 M EDTA solution were added to 2% and 10 mM, respectively, and shaken by poultry at room temperature to derive E. coli. After removing the insoluble protein, the precipitate was recovered by centrifugation at 15,000 g at 4 ° C. for 20 minutes. The precipitate was washed twice with 30 ml of 50 mM Tris-HCl solution (pH 7.5) and then suspended in 4 ml of 50 mM Tris-HCl solution (pH 7.5), of which 10 μl was electrophoresed to identify the band . 5 )

<실시예 5> N-아세틸글루코사민전이효소Ⅲ의 활성화<Example 5> Activation of N-acetylglucosamine transcriptase III

정제된 봉합체 형태의 N-아세틸글루코사민전이효소Ⅲ를 습식중량(wet weight) 10mg당 2ml의 200mM Tris-HCl용액 (pH 8.6), 8M Urea 용액에서 녹인 뒤 β-메르캅토에탄올 (β-mercaptoethanol) 50μl를 첨가하여 환원시켰다. 그 뒤, 4℃에서 하룻밤 동안 50 mM Tris-HCl용액(pH 8.0) 5리터로 3회 투석하여 재산화시킨후 다시 1리터의 50 mM MES완충액 (pH 7.0)으로 하룻밤 투석하여 활성검정을 실시한 결과, 활성형의 N-아세틸글루코사민전이효소Ⅲ가 얻어짐을 확인하였다.N-acetylglucosamine transferase III in purified suture form was dissolved in 2 ml of 200 mM Tris-HCl solution (pH 8.6), 8 M Urea solution per 10 mg of wet weight, and then β-mercaptoethanol (β-mercaptoethanol) 50 μl was added for reduction. Thereafter, the resultant was dialyzed three times with 5 liters of 50 mM Tris-HCl solution (pH 8.0) at 4 ° C. overnight, followed by redialysis with 1 liter of 50 mM MES buffer (pH 7.0) overnight to carry out the activity assay. It was confirmed that the active type N-acetylglucosamine transcriptase III was obtained.

N-아세틸글루코사민전이효소Ⅲ 활성검정은 기존의 방법을 이용하여 (김 등, Kor. J. Chitin & Chitosan, 2(3), 27-39, 1997) 기질로서 UDP-GlcNAc (Sigma Co., USA)와 Pyridylamino(PA)형광표식 biantennary 올리고당인 GlcN,GlcN-biant-PA과 GlcN(GlcN)GlcN-biant-PA를 사용하였다. 반응은 120 mM Mes 버퍼 (pH7.0), 300 mM GlcNAc, 15 mM MnCl2, 0.5% 트리톤 X-100, 50 mM 올리고당 GlcN,GlcN-biant-PA, 200 mM UDP-GlcNAc 그리고 정제효소 (0.5 -1.5 μg 단백질) 100 μl에서 18시간동안 37℃에서 실시하였다. 반응은 100℃에서 5분간 끓여 정지시키고 반응생성물은 시마쯔(Shimadzu) HPLC에 장착된 Lichrosorb-NH2칼럼(4 x 220 mm) (Merck사 제품, Darmstadt)에 찌른 후, 0.2% n-부탄올(butanol) 함유-0.1 M 아세테이트(acetate) 완충액 (pH 4.0)에서 유속 1.0 ml/분 조건에서 분석하였다. 검출은 PA-N-아세틸글루코사민(PA-N-acetylglucosamine)을 검출하는 형광검출기를 이용하였으며 활성은 전이된 N-아세틸글루코사민 pmol/h/mg로 하였다.N-acetylglucosamine transferase III activity assay was performed using conventional methods (Kim et al., Kor. J. Chitin & Chitosan, 2 (3), 27-39, 1997) as a substrate UDP-GlcNAc (Sigma Co., USA). ) And Pyridylamino (PA) fluorescence-labeled biantennary oligosaccharides GlcN, GlcN-biant-PA and GlcN (GlcN) GlcN-biant-PA. The reaction was performed with 120 mM Mes buffer (pH 7.0), 300 mM GlcNAc, 15 mM MnCl 2 , 0.5% Triton X-100, 50 mM oligosaccharide GlcN, GlcN-biant-PA, 200 mM UDP-GlcNAc and purified enzyme (0.5- 1.5 μg protein) was performed at 37 ° C. for 18 hours at 100 μl. The reaction was stopped by boiling at 100 ° C. for 5 minutes and the reaction product was stabbed in a Lichrosorb-NH 2 column (4 × 220 mm) (Darmstadt, Merck) equipped with Shimadzu HPLC, followed by 0.2% n-butanol ( butanol) -containing 0.1 M acetate buffer (pH 4.0) at a flow rate of 1.0 ml / min. Detection was performed using a fluorescence detector that detects PA-N-acetylglucosamine (PA-N-acetylglucosamine) and the activity was transferred to N-acetylglucosamine pmol / h / mg.

활성화된 인간 N-아세틸글루코사민전이효소Ⅲ의 활성검정Activity Assay of Activated Human N-acetylglucosamine Transferase III 기원origin 활성화 진행Activation progress 활성(pmol/h/mg)Activity (pmol / h / mg) 봉합체Suture N.D (O)N.D (O) 처음 50 mM Tris-HCl (pH8.0)완충액Initial 50 mM Tris-HCl (pH 8.0) Buffer 투석 1시간째1 hour of dialysis 16.416.4 투석 2시간째2 hours of dialysis 54.354.3 투석 8시간째8 hours of dialysis 123.1123.1 투석 24시간째24 hours of dialysis 465.5465.5 2번째 50 mM MES (pH 7.0) 완충액Second 50 mM MES (pH 7.0) Buffer 투석 1시간째1 hour dialysis 645.7645.7 투석 2시간째2 hours of dialysis 1204.51204.5 투석 8시간째8 hours of dialysis 1568.21568.2 투석 24시간째(최종)Dialysis 24 hours (final) 2343.92343.9

표 1에 나타난 바와 같이 활성화단계를 거치면서 N-아세틸글루코사민의 활성이 증가하고 최종적으로는 높은 활성을 보이게 되었다.As shown in Table 1, the N-acetylglucosamine activity increased and finally showed high activity through the activation step.

이상에서 살펴본 바와 같이, 본 발명의 대장균 발현 플라스미드를 사용하면 인간 N-아세틸글루코사민전이효소Ⅲ를 대장균에서 대량으로 발현시키는 것이 가능하고 또한 간단히 리폴딩(refolding)시킴으로써 본래의 활성을 가지게 되므로 인간 N-아세틸글루코사민전이효소Ⅲ의 생산에 있어서 본 발명의 제조방법은 매우 유용하다.As described above, using the E. coli expression plasmid of the present invention, it is possible to express human N-acetylglucosamine transcriptase III in E. coli in a large amount and to have the original activity by simply refolding the human N- The production method of the present invention is very useful for the production of acetylglucosamine transferase III.

또한 본 발명에 의해 대량으로 생산된 인간 N-아세틸글루코사민전이효소Ⅲ는 인간 간암, 간경변등 간질환의 임상적 진단을 위한 항체생산 및 N-아세틸글루코사민전이효소Ⅲ에 특이적인 활성저해제의 개발·탐색에 유용하다.In addition, human N-acetylglucosamine transcriptase III produced in large quantities by the present invention is an antibody for the clinical diagnosis of liver diseases such as human liver cancer and cirrhosis, and development and detection of N-acetylglucosamine transcriptase III-specific inhibitors. Useful for

Claims (7)

인간 N-아세틸글루코사민전이효소Ⅲ 유전자의 아미노 말단 23개 아미노산을 코딩하는 영역이 제거된 결손형 유전자를 포함하는 발현 플라스미드.An expression plasmid comprising a defective gene in which a region encoding the amino terminal 23 amino acids of the human N-acetylglucosamine transcriptase III gene has been removed. 제 1항에 있어서, 인간 N-아세틸글루코사민전이효소Ⅲ 유전자의 처음 23개 아미노산을 코우드하는 영역이 제거된 결손형 유전자를 포함하는 발현 플라스미드 pET-GnTⅢThe expression plasmid pET-GnTIII according to claim 1, wherein the expression plasmid pET-GnTIII comprises a deletion-type gene from which a region coding for the first 23 amino acids of the human N-acetylglucosamine transcriptase III gene has been removed. 제 2항의 플라스미드 pET-GnTⅢ 로 대장균 BL21(DE3) 균주를 형질전환시킨 형질전환체 E. coli BL21(DE3)/pET-GnTⅢ (수탁번호:KCTC 8829P)Transformant E. coli BL21 (DE3) / pET-GnTIII transformed with E. coli BL21 (DE3) strain with plasmid pET-GnTIII of claim 2 (Accession No .: KCTC 8829P) 시발체 E1: 코돈과 일치하는(in-frame) BamHⅠ절단위치를 함유한 CACGGATCCAAGACCCTGTCCTATGTC 과 시발체 E2: 종료코돈과 겹치는 XhoⅠ절단위치를 함유한 AACTCGAGCTGTCACAAACCCTATCATCA 를 이용하여 인간 N-아세틸글루코사민전이효소Ⅲ 유전자의 처음 23개 아미노산을 코우드하는 영역이 제거된 결손형 유전자를 제조하는 방법Promoter E1: CACGGATCCAAGACCCTGTCCTATGTC containing in-frame BamHI section units and primer E2: First 23 human N-acetylglucosamine transferase III genes using AACTCGAGCTGTCACAAACCCTATCATCA containing XhoI section units overlapping with end codons Method for producing a missing gene with an amino acid-coding region removed 제 3항의 형질전환체를 배양하여 인간 N-아세틸글루코사민전이효소Ⅲ를 얻는 제조하는 방법A method for producing human N-acetylglucosamine transcriptase III by culturing the transformant of claim 3 제 5항에 있어서, 형질전환체로부터 생산되는 결손형 인간 N-아세틸글루코사민전이효소Ⅲ 봉합체(inclusion body)를 정제하고 활성화하는 단계를 포함하는 것을 특징으로 하는 인간 N-아세틸글루코사민전이효소Ⅲ의 제조방법6. The method according to claim 5, comprising purifying and activating a defective human N-acetylglucosamine transcriptase III inclusion body produced from the transformant. Manufacturing method 제 6항에 있어서, 활성화과정으로 β-메르캅토에탄올로 환원시킨 다음 투석하여 재산화시킴으로써 효소를 리폴당하는 것을 특징으로 하는 인간 N-아세틸글루코사민전이효소Ⅲ의 제조방법7. The method for preparing human N-acetylglucosamine transferase III according to claim 6, characterized in that the enzyme is repolated by reducing with β-mercaptoethanol as an activation process and dialysis and reoxidation.
KR1019970048855A 1997-09-25 1997-09-25 Process of preparing active human n-acetyl glucosamin transferase iii KR100248943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970048855A KR100248943B1 (en) 1997-09-25 1997-09-25 Process of preparing active human n-acetyl glucosamin transferase iii

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970048855A KR100248943B1 (en) 1997-09-25 1997-09-25 Process of preparing active human n-acetyl glucosamin transferase iii

Publications (2)

Publication Number Publication Date
KR19990026646A KR19990026646A (en) 1999-04-15
KR100248943B1 true KR100248943B1 (en) 2000-03-15

Family

ID=19521703

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970048855A KR100248943B1 (en) 1997-09-25 1997-09-25 Process of preparing active human n-acetyl glucosamin transferase iii

Country Status (1)

Country Link
KR (1) KR100248943B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J Biochem (Tokyo) 1993 Jun, 113(6) *

Also Published As

Publication number Publication date
KR19990026646A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
Wong et al. The 17-residue transmembrane domain of beta-galactoside alpha 2, 6-sialyltransferase is sufficient for Golgi retention
EP0799318B1 (en) Methods of modifying carbohydrate moieties
KR100325552B1 (en) Novel β1 → 4N-acetylglucosaminyltransferases and genes encoding them
JP2005533525A (en) Synthesis of oligosaccharides, glycolipids, and glycoproteins using bacterial glycosyltransferases
JP2000507095A (en) Murine α (1,3) fucosyltransferase Fuc-TVII, DNA encoding the same, method for producing the same, antibody recognizing it, immunoassay for detecting the same, plasmid containing such DNA, and such plasmid Cells containing
Tessier et al. Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme
JP2003523715A (en) Fusion proteins for use in enzymatic synthesis of oligosaccharides
Boeggeman et al. Expression of deletion constructs of bovine β-1, 4-galactosyltransferase in Escherichia coli: importance of Cysl34 for its activity
Besset et al. Nuclear localization of PAPS synthetase 1: a sulfate activation pathway in the nucleus of eukaryotic cells
JPH08503373A (en) Protein with glycosyltransferase activity
JPH05504480A (en) Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids or as free molecules and for the isolation of cloned genetic sequences determining these structures
US5854042A (en) Sugar-chain synthetase and process for producing the same
JP4476360B2 (en) Modified protein and method for producing the same
Petersen et al. Assay and heterologous expression in Pichia pastoris of plant cell wall type-II membrane anchored glycosyltransferases
Oh‐eda et al. Overexpression of the Golgi‐localized enzyme α‐mannosidase IIx in Chinese hamster ovary cells results in the conversion of hexamannosyl‐N‐acetylchitobiose to tetramannosyl‐N‐acetylchitobiose in the N‐glycan‐processing pathway
Wang et al. Alg mannosyltransferases: From functional and structural analyses to the lipid-linked oligosaccharide pathway reconstitution
Janesch et al. Comparison of α2, 6-sialyltransferases for sialylation of therapeutic proteins
KR100248943B1 (en) Process of preparing active human n-acetyl glucosamin transferase iii
US20070105192A1 (en) Cyclodextrin affinity purification
KR100263313B1 (en) New human N-acetylglucosamine transcriptase V gene and method for preparing active enzyme using same
US6168937B1 (en) Purified β1,2-xylosyltransferase and uses thereof
Yang et al. Soluble human core 2 β6-N-acetylglucosaminyltransferase C2GnT1 requires its conserved cysteine residues for full activity
SOUSA et al. Localization, purification and specificity of the full-length membrane-bound form of human recombinant α1, 3/4-fucosyltransferase from BHK-21B cells
RU2557306C1 (en) RECOMBINANT PLASMID DNA pET40CmAP/CGL ENCODING HYBRID BIFUNCTIONAL POLYPEPTIDE CmAP/CGL WITH PROPERTIES OF HIGHLY ACTIVE ALKALINE PHOSPHATASE CmAP AND GALACTOSE SPECIFIC LECTIN CGL, RECOMBINANT STRAIN OF E coli Rosetta (DE3)/pET40CmAP/CGL - PRODUCER OF HYBRID BIFUNCTIONAL POLYPEPTIDE CmAP/CGL AND METHOD OF ITS PREPARATION
KR100481910B1 (en) Fusion protein producing galactose α-1,3-galactose-β-1,4-N-acetyl glucosamine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071221

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee