KR100248437B1 - Catalyst for olefin polymerization and method of olefin polymerization - Google Patents

Catalyst for olefin polymerization and method of olefin polymerization Download PDF

Info

Publication number
KR100248437B1
KR100248437B1 KR1019980010330A KR19980010330A KR100248437B1 KR 100248437 B1 KR100248437 B1 KR 100248437B1 KR 1019980010330 A KR1019980010330 A KR 1019980010330A KR 19980010330 A KR19980010330 A KR 19980010330A KR 100248437 B1 KR100248437 B1 KR 100248437B1
Authority
KR
South Korea
Prior art keywords
zirconium
indenyl
bis
methyl chloride
methyl
Prior art date
Application number
KR1019980010330A
Other languages
Korean (ko)
Other versions
KR19990075860A (en
Inventor
윤근병
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to KR1019980010330A priority Critical patent/KR100248437B1/en
Publication of KR19990075860A publication Critical patent/KR19990075860A/en
Application granted granted Critical
Publication of KR100248437B1 publication Critical patent/KR100248437B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명의 올레핀 중합용 촉매계는 촉매로서의 메탈로센 촉매와 공촉매로서의 담지 공촉매로 이루어지며, 담지 공촉매는 알킬알루미녹산을 가교제로서 가교반응시키고, 가교된 알킬알루미녹산을 담지체에 담지시켜 제조되는 것을 특징으로 한다. 본 발명에서 촉매로 사용되는 메탈로센 촉매는 주기율표 4족의 전이금속(예: 티탄, 지르코늄, 하프늄,)이 η5결합을 생성하는 시클로펜타디에닐기(cyclopentadienyls), 치환된시클로펜타디에닐기(substituted cyclopentadienyls), 인데닐기(indenyls), 치환된 인데닐기(substituted indenyls), 플로오레닐기(fluorenyls), 치환된 플로오레닐기(substituted fluorenyls) 중 두 개가 결합된 구조를 갖는다. 본 발명에서 담지 공촉매를 제조하기 위하여 사용되는 알킬알루미녹산(alkylaluminoxane)은 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산(ethylaluminoxane), n-부틸알루미녹산(n-butylaluminoxane), n-헥실알루미녹산(n-hexylaluminoxane) 및 개량된 알킬알루미녹산(modified alkylaluminoxane)이며, 가교제는 디아민 또는 트리아민과 같은 반응성기를 갖는 화합물이며, 담지체는 실리카, 알루미나, 마그네슘 화합물, 제올라이트, 크레이, 인산알루미늄, 지르코니아 및 폴리머가 있다.The catalyst system for olefin polymerization of the present invention comprises a metallocene catalyst as a catalyst and a supported cocatalyst as a cocatalyst, and the supported cocatalyst is crosslinked with an alkylaluminoxane as a crosslinking agent, and the crosslinked alkylaluminoxane is supported on the carrier. It is characterized by being manufactured. The metallocene catalyst used as a catalyst in the present invention is a cyclopentadienyls or substituted cyclopentadienyl groups in which transition metals (eg, titanium, zirconium, hafnium, etc.) of the Group 4 of the periodic table generate η 5 bonds. Substituted cyclopentadienyls, indenyls (indenyls), substituted indenyls (substituted indenyls), fluorenyls (fluorenyls), a substituted fluorenyl group (substituted fluorenyls) has a structure that is bonded. The alkylaluminoxanes used to prepare the supported cocatalysts in the present invention are methylaluminoxane, methylaluminoxane, n-butylaluminoxane, n-hexyl aluminoxane ( n-hexylaluminoxane and modified alkylaluminoxane, the crosslinking agent is a compound having a reactive group such as diamine or triamine, and the carrier is silica, alumina, magnesium compound, zeolite, cray, aluminum phosphate, zirconia and polymer There is.

Description

올레핀 중합용 촉매계 및 이를 이용한 올레핀의 중합방법Catalyst system for olefin polymerization and polymerization method of olefin using the same

발명의 분야Field of invention

본 발명은 올레핀 중합체 또는 공중합체를 제조하기 위한 촉매계에 관한 것이다. 보다 구체적으로 본 발명은 적은 양의 공촉매를 사용하고도 높은 활성과 입자모양이 우수하고, 분자량 분포가 양호한 폴리올레핀의 제조가 가능한 신규 담지 공촉매 및 그의 제조방법과 이를 이용한 올레핀의 중합 및 공중합에 관한 것이다.The present invention relates to a catalyst system for producing olefin polymers or copolymers. More specifically, the present invention provides a novel supported co-catalyst capable of producing polyolefin having high activity and particle shape and good molecular weight distribution even using a small amount of cocatalyst, and a method for preparing the same and polymerization and copolymerization of olefin using the same. It is about.

발명의 배경 및 종래기술Background of the Invention and Prior Art

일반적으로 에틸렌을 포함하는 1-올레핀의 중합 및 공중합은 티타늄화합물과 알킬알루미늄 화합물로 이루어진 불균일계 촉매계에 의하여 제조되었다. 최근에 촉매활성이 극히 높은 균일계 촉매인 메탈로센 촉매가 개발되어 폴리올레핀을 제조하게 되었다. 메탈로센계 촉매는 주기율표 4족의 전이금속 (예: 티탄(titanium), 지르코늄(zirconium), 하프늄(hafnium))의 화합물로서 이 금속화합물과 적어도 1개 이상의 시클로알칸디에닐기(cycloalkanedienyl groups)(예: 시클로펜타디에닐기(cyclopentadienyls), 인데닐기(indenyls), 플로오레닐기(fluorenyls))로 이루어진 리간드와 결합된 구조를 갖는다. 이러한 형태의 메탈로센계 촉매는 공촉매와 함께 사용하여 중합에 이용된다. 사용되는 공촉매는 종래의 불균일계 촉매인 지글러-나타 촉매(Ziegler-Natta Catalysts)에서 사용되는 것과는 달리 물과 알킬알루미늄 화합물과의 반응 생성물인 알킬알루미녹산(예: 메틸알루미녹산(methylaluminoxane))이 있다. 이러한 메탈로센 촉매를 이용하여 올레핀을 중합할 경우에는 메탈로센 촉매가 반응기 내벽에 도포되고, 생성된 폴리올레핀의 입자가 너무 작으며, 고상밀도(bulk density)가 낮기 때문에 상업적 생산에 문제점이 많다. 폴리올레핀의 입자크기와 고상밀도는 촉매성분자체(예: 담지체)의 형성에 의하여 결정된다.In general, polymerization and copolymerization of 1-olefins including ethylene have been prepared by heterogeneous catalyst systems composed of titanium compounds and alkylaluminum compounds. Recently, metallocene catalysts, which are homogeneous catalysts with extremely high catalytic activity, have been developed to prepare polyolefins. Metallocene catalysts are compounds of transition metals of Group 4 of the periodic table (e.g., titanium, zirconium, hafnium) and the metal compound and at least one cycloalkanedienyl groups (e.g. : It has a structure combined with a ligand consisting of cyclopentadienyl groups, indenyls, and fluorenyls. This type of metallocene catalyst is used for polymerization in combination with a cocatalyst. The cocatalyst used is an alkylaluminoxane (e.g. methylaluminoxane), which is a reaction product of water and an alkylaluminum compound, unlike that used in conventional heterogeneous catalysts, Ziegler-Natta Catalysts. have. When the olefin is polymerized using such a metallocene catalyst, the metallocene catalyst is applied to the inner wall of the reactor, the resulting polyolefin particles are too small, and the bulk density is low, so there are many problems in commercial production. . The particle size and the solid phase density of the polyolefin are determined by the formation of the catalyst component itself (eg, the carrier).

유럽특허번호 EP 367503과 미합중국 특허번호 US 제5240894호 및 제5633419호에는 이러한 문제를 해결하고 균일한 입자모양, 좁은 입자크기 분포, 높은 고상밀도 등을 높이기 위하여 담지 메탈로센촉매가 사용된다는 것이 알려져 있다. 그러나 이러한 담지 메탈로센 촉매는 제조가 복잡하고 충분한 활성을 갖지 못한다는 단점과 또한 공촉매로 쓰이는 알킬알루미녹산(예: 메틸알루미녹산)이 비싸고 많은 양이 쓰이기 때문에 상업화에 불리한 점이 많다.European Patent Nos. EP 367503 and US Pat. Nos. 5240894 and 5633419 disclose that supported metallocene catalysts are used to solve this problem and to improve uniform particle shape, narrow particle size distribution, high solid phase density, and the like. have. However, these supported metallocene catalysts are disadvantageous in commercialization because they are complicated to manufacture and do not have sufficient activity, and also because alkylaluminoxane (eg, methylaluminoxane) used as a co-catalyst is expensive and used in large amounts.

본 발명의 공촉매 제조방법은 실리카와 알킬알루미녹산과 비스페놀 A (bisphenol A)를 동시에 반응시켜 제조한 경우와는 제조방법에서 다른 특징을 가진다(예: 유럽특허 787746 A1).The method of preparing the cocatalyst of the present invention has a different feature from the method of preparing the silica, alkylaluminoxane and bisphenol A at the same time (for example, European Patent 787746 A1).

따라서 기존의 메탈로센을 사용하고 공촉매를 담지화하는 새로운 촉매계의 개발이 필요한 실정이다.Therefore, it is necessary to develop a new catalyst system using existing metallocenes and carrying a cocatalyst.

상기와 같은 문제점을 해결하기 위하여 본 발명자는 폴리올레핀 중합체 및 공중합체를 보다 효율적으로 제조하기 위하여 담지 공촉매 개발에 많은 연구를 하였다. 그 결과 적은 양의 공촉매를 사용하고도 높은 촉매활성을 유지하고, 입자모양이 둥글며, 입자크기의 분포가 균일하고 분자량분포가 좁은 폴리올레핀 중합체 및 공중합체를 제조하기 위한 공촉매를 개발하게 되었다.In order to solve the above problems, the present inventors have conducted a lot of research on the development of the supported cocatalyst to more efficiently prepare the polyolefin polymer and copolymer. As a result, co-catalysts have been developed for the production of polyolefin polymers and copolymers which maintain high catalytic activity even with a small amount of cocatalyst, have rounded particle shapes, uniform particle size distribution and narrow molecular weight distribution.

본 발명의 목적은 에틸렌을 포함하는 1-올레핀의 중합체 또는 공중합체를 제조하기 위한 메탈로센 촉매와 공촉매로 이루어진 신규의 촉매계를 제공하기 위한 것이다.It is an object of the present invention to provide a novel catalyst system consisting of a metallocene catalyst and a cocatalyst for producing a polymer or copolymer of 1-olefin comprising ethylene.

본 발명의 다른 목적은 올레핀을 중합 또는 공중합하기 위하여 사용되는 신규의 공촉매 및 그 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a novel cocatalyst used for polymerizing or copolymerizing olefins and a method for producing the same.

본 발명의 또 다른 목적은 적은 양의 공촉매를 사용하고도 높은 활성과 입자모양이 우수하고, 분자량 분포가 양호한 폴리올레핀의 제조가 가능한 신규의 공촉매 및 그 제조방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a novel cocatalyst capable of producing a polyolefin having excellent activity and particle shape and good molecular weight distribution even using a small amount of a cocatalyst and a method for producing the same.

본 발명의 또 다른 목적은 적은 양의 공촉매를 사용하고도 높은 활성과 입자모양이 우수하고, 분자량 분포가 양호한 폴리올레핀의 제조가 가능한 올레핀의 중합 또는 공중합 방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a polymerization or copolymerization method of olefins capable of producing polyolefins having high activity and particle shape and good molecular weight distribution even with a small amount of cocatalyst.

본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

본 발명의 올레핀 중합용 촉매계는 촉매로서의 메탈로센 촉매와 공촉매로서 담지 공촉매로 이루어지며, 담지 공촉매는 알킬알루미녹산을 가교제로서 가교반응시키고, 가교된 알킬알루미녹산을 담지체에 담지시켜 제조되는 것을 특징으로 한다.The catalyst system for olefin polymerization of the present invention is composed of a metallocene catalyst as a catalyst and a supported cocatalyst as a cocatalyst, and the supported cocatalyst is crosslinked with an alkylaluminoxane as a crosslinking agent, and the crosslinked alkylaluminoxane is supported on the carrier. It is characterized by being manufactured.

본 발명에서 촉매로 사용되는 메탈로센 촉매는 주기율표 4족의 전이금속(예: 티탄, 지르코늄, 하프늄)이 η5결합을 생성하는 시클로펜타디에닐기, 치환된 시클로펜타디에닐기, 인데닐기, 치환된 인데닐기, 플로오레닐기, 치환된 플로오레닐기 중 두 개가 결합된 구조를 갖는다. 메탈로센 촉매의 예로는 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 메틸클로라이드, 비스(시클로펜타디에닐)지르코늄 디메틸, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디메틸, 비스(에틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 디메틸, 비스(펜타메틸시클로라이드)지르코늄 디클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(펜타메틸시클로펜타디에틸)지르코늄 디메틸, 비스(n-부틸-시클로펜타디에닐)지르코늄 디클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 디메틸, 비스(인데닐)지르코늄 디클로라이드, 비스(인데닐)지르코늄 메틸 클로라이드, 비스(인데닐)지르코늄 디메틸, 비스(2-메틸-인데닐)지르코늄 디클로라이드, 비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 비스(2-메틸-인데닐)지르코늄 디메틸, 비스(2-페닐-인데닐)지르코늄 디클로라이드, 비스(2-페닐-인데닐)지르코늄 메틸 클로라이드, 비스(2-페닐-인데닐)지르코늄 디메틸, 디메틸실릴비스(시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실리비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(시클로라이펜타디에닐)지르코늄 디메틸, 디메틸실릴비스(인데닐)지르코늄 디클로라이드, 디메틸실리비스(인데닐)지르코늄 메틸 클로라이드, 디메틸실리비스(인데닐)지르코늄 디메틸, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디메틸, 디메틸실리비스(인데닐시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실릴(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴(인데닐시클로펜카디에닐)지르코늄 디메틸, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 디메틸, 에틸렌비스(시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄 디메틸, 에틸렌비스(인데닐)지르코늄 디클로라이드, 에틸렌비스(인데닐)지르코늄 메틸 클로라이드, 에틸렌비스(인데닐)지르코늄 디메틸, 에틸렌비스(2-메틸-인데닐)지르코늄 디클로라이드, 에틸렌비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 에틸렌비스(2-메틸-인데닐)지르코늄 디메틸, 에틸렌(인데닐시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에닐렌(인데닐시클로펜타디에닐)지르코늄 디메틸, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌(클루오레닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필비스(시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(인데닐)지르코늄 디클로라이드, 이소프로필비스(인데닐)지르코늄 메틸 클로라이드, 이소프로필비스(인데닐)지르코늄 디메틸, 이소프로필비스(2-메틸-인데닐)지르코늄 디클로라이드, 이소프로필비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 이소프로필(2-메틸-인데닐)지르코늄 디메틸, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디클로라이트, 이소프로필(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 디메틸이 있다.The metallocene catalyst used as a catalyst in the present invention includes a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, and a transition metal (eg, titanium, zirconium, and hafnium) of Group 4 of the periodic table, which generate η 5 bonds. Indenyl group, fluorenyl group, substituted fluorenyl group has a structure in which two bonded. Examples of metallocene catalysts include bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) zirconium methylchloride, bis (cyclopentadienyl) zirconium dimethyl, bis (methylcyclopentadienyl) zirconium dichloride , Bis (methylcyclopentadienyl) zirconium methyl chloride, bis (methylcyclopentadienyl) zirconium dimethyl, bis (ethylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium methyl chloride, bis ( Ethylcyclopentadienyl) zirconium dimethyl, bis (pentamethylcychloride) zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium methyl chloride, bis (pentamethylcyclopentadiethyl) zirconium dimethyl, bis (n-butyl -Cyclopentadienyl) zirconium dichloride, bis (n-butyl-cyclopentadienyl) zirconium methyl chlor Id, bis (n-butyl-cyclopentadienyl) zirconium dimethyl, bis (indenyl) zirconium dichloride, bis (indenyl) zirconium methyl chloride, bis (indenyl) zirconium dimethyl, bis (2-methyl-indenyl Zirconium dichloride, bis (2-methyl-indenyl) zirconium methyl chloride, bis (2-methyl-indenyl) zirconium dimethyl, bis (2-phenyl-indenyl) zirconium dichloride, bis (2-phenyl-inde Nil) zirconium methyl chloride, bis (2-phenyl-indenyl) zirconium dimethyl, dimethylsilylbis (cyclopentadienyl) zirconium dichloride, dimethylsilbis (cyclopentadienyl) zirconium methyl chloride, dimethylsilylbis (cyclolyi) Pentadienyl) zirconium dimethyl, dimethylsilylbis (indenyl) zirconium dichloride, dimethylsilbis (indenyl) zirconium methyl chloride, dimethylsilbis (indenyl) zirconium dimethyl, di Tylsilylbis (2-methyl-indenyl) zirconium dichloride, dimethylsilylbis (2-methyl-indenyl) zirconium methyl chloride, dimethylsilylbis (2-methyl-indenyl) zirconium dimethyl, dimethylsilbis (indenyl Cyclopentadienyl) zirconium dichloride, dimethylsilyl (indenylcyclopentadienyl) zirconium methyl chloride, dimethylsilyl (indenylcyclophenkadienyl) zirconium dimethyl, dimethylsilyl (fluorenylcyclopentadienyl) zirconium di Chloride, dimethylsilyl (fluorenylcyclopentadienyl) zirconium methyl chloride, dimethylsilyl (fluorenylcyclopentadienyl) zirconium dimethyl, ethylenebis (cyclopentadienyl) zirconium dichloride, ethylenebis (cyclopentadienyl Zirconium methyl chloride, ethylenebis (cyclopentadienyl) zirconium dimethyl, ethylenebis (indenyl) zirconium dichloride, Ethylenebis (indenyl) zirconium methyl chloride, ethylenebis (indenyl) zirconium dimethyl, ethylenebis (2-methyl-indenyl) zirconium dichloride, ethylenebis (2-methyl-indenyl) zirconium methyl chloride, ethylenebis ( 2-methyl-indenyl) zirconium dimethyl, ethylene (indenylcyclopentadienyl) zirconium dichloride, ethylene (indenylcyclopentadienyl) zirconium methyl chloride, enylene (indenylcyclopentadienyl) zirconium dimethyl, ethylene (Fluorenylcyclopentadienyl) zirconium dichloride, ethylene (fluorenylcyclopentadienyl) zirconium methyl chloride, ethylene (gluorenylcyclopentadienyl) zirconium dimethyl, isopropylbis (cyclopentadienyl) zirconium Dichloride, Isopropylbis (cyclopentadienyl) zirconium methyl chloride, Isopropylbis (cyclopentadienyl) zir Dimethyl dimethyl, isopropylbis (indenyl) zirconium dichloride, isopropylbis (indenyl) zirconium methyl chloride, isopropylbis (indenyl) zirconium dimethyl, isopropylbis (2-methyl-indenyl) zirconium dichloride, Isopropylbis (2-methyl-indenyl) zirconium methyl chloride, isopropyl (2-methyl-indenyl) zirconium dimethyl, isopropyl (indenylcyclopentadienyl) zirconium dichlorite, isopropyl (indenylcyclopenta Dienyl) zirconium methyl chloride, isopropyl (indenylcyclopentadienyl) zirconium dimethyl, isopropyl (fluorenylcyclopentadienyl) zirconium dichloride, isopropyl (fluorenylcyclopentadienyl) zirconium methyl chloride, Isopropyl (fluorenylcyclopentadienyl) zirconium dimethyl.

본 발명에서 담지 공촉매를 제조하기 위하여 사용되는 알킬알루미녹산(alkylaluminoxane)은 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산(ethylaluminoxane), n-부틸알루미녹산(n-butylaluminoxane), n-헥실알루미녹산(n-hexylaluminoxane) 및 개량된 알킬알루미녹산(moddified alkylaluminoxane)이며, 가교제는 디아민 또는 트리아민과 같은 반응성기를 갖는 화합물이며, 담지체는 실리카, 알루미나, 마그네슘 화합물, 제올라이트, 크레이, 인산알루미늄, 지르코니아 및 폴리머가 있다. 상기 담지체중의 폴리머로는 스티렌계 단독중합체 및 공중합체가 있다.The alkylaluminoxanes used to prepare the supported cocatalysts in the present invention are methylaluminoxane, methylaluminoxane, n-butylaluminoxane, n-hexyl aluminoxane ( n-hexylaluminoxane and modified alkylaluminoxane, the crosslinking agent is a compound having a reactive group such as diamine or triamine, and the carrier is silica, alumina, magnesium compound, zeolite, cray, aluminum phosphate, zirconia and polymer There is. Polymers in the carrier include styrene homopolymers and copolymers.

본 발명에서의 가교제(cross-linked agent)중의 디아민 화합물은 하기 구조를 갖는다.The diamine compound in the cross-linked agent in the present invention has the following structure.

H2N-R-NH2, H2N-R1-O-R2-NH2, H2N-R1-CO-R2-NH2, H2N-R1-COO-R2-NH2, H2-R1-C(CH3)2-R2-NH2, 및 H2N-R1-C(CH3)2-R2-C(CH3)2-R3-NH2 H 2 NR-NH 2 , H 2 NR 1 -OR 2 -NH 2 , H 2 NR 1 -CO-R 2 -NH 2 , H 2 NR 1 -COO-R 2 -NH 2 , H 2 -R 1- C (CH 3 ) 2 -R 2 -NH 2 , and H 2 NR 1 -C (CH 3 ) 2 -R 2 -C (CH 3 ) 2 -R 3 -NH 2

상기 구조식에서 R1, R2, R3는 각각 독립적으로 탄소수 1 내지 12의 알리파틱알킬기(aliphatic alkyl group), 아로마틱알킬기(aromatic alkyl group)이다.In the structural formula, R 1 , R 2 , R 3 are each independently an aliphatic alkyl group having 1 to 12 carbon atoms (aliphatic alkyl group), an aromatic alkyl group (aromatic alkyl group).

본 발명에서의 가교제중의 트리아민 화합물은 하기 구조를 갖는다.The triamine compound in the crosslinking agent in the present invention has the following structure.

구조식 1Structural Formula 1

상기 구조식 1에서 R1, R2, R3는 각각 독립적으로 탄소수 1 내지 12의 알리파틱알킬기(aliphatic alkyl group)), 아로마틱알킬기(aromatic alkyl group)이다.In Formula 1, R 1 , R 2 , and R 3 are each independently an aliphatic alkyl group having 1 to 12 carbon atoms, and an aromatic alkyl group.

본 발명에 따른 담지 공촉매를 제조하는 방법은 다음과 같다.The method for producing a supported cocatalyst according to the present invention is as follows.

가교제로서의 디아민 또는 트리아민을 톨루엔에 용해시키고, 이 용액에 알킬알루미녹산을 서서히 가하여 10∼100℃에서 5∼20분간 가교반응시킨다. 상기 가교반응된 알킬알루미녹산을 담지체가 분산된 톨루엔 용액에 서서히 가하여 5∼100℃에서 5∼20시간 동안 반응시킨다.Diamine or triamine as a crosslinking agent is dissolved in toluene, and alkylaluminoxane is gradually added to the solution and crosslinked for 5 to 20 minutes at 10 to 100 ° C. The crosslinked alkylaluminoxane is slowly added to the toluene solution in which the carrier is dispersed and reacted at 5 to 100 ° C. for 5 to 20 hours.

알킬알루미녹산과 가교제로서의 디아민 또는 트리아민은 그 농도비([Al]/[아민])가 5∼100의 범위인 것이 바람직하며, 알킬알루미녹산과 담지체의 히드록시기 또는 수분은 그 농도비{[Al]/([OH] 또는 [H2O])}가 3∼50의 범위인 것이 바람직하다. 반응 종료후, 미반응물을 제거하기 위하여 톨루엔으로 세척하고 80∼100℃에서 톨루엔으로 5시간 추출하고 건조하여 담지 공촉매를 제조한다.The diamine or triamine as the alkylaluminoxane and the crosslinking agent preferably has a concentration ratio ([Al] / [amine]) in the range of 5 to 100, and the hydroxyl group or water of the alkylaluminoxane and the carrier is in the concentration ratio {[Al]. / ([OH] or [H 2 O])} is preferably in the range of 3 to 50. After the completion of the reaction, to remove the unreacted product, it was washed with toluene, extracted with toluene for 5 hours at 80-100 ° C, and dried to prepare a supported cocatalyst.

본 발명의 촉매계를 이용하여 올레핀을 중합한다. 본 발명의 방법에서 중합하는 모노머는 올레핀 또는 시클로올레핀이며, 올레핀은 탄소수가 2∼20사이의 α-올레핀이며, 시클로올레핀은 시클로부텐, 시클로펜텐, 시클로헥센, 시클로옥텐, 노르보넨, 비닐노르보넨 등을 들 수 있다. 본 발명에서의 중합방법은 올레핀의 중합기술분야에서 실시되고 있는 통상의 중합방법에 의하여 행해질 수 있다. 올레핀 중합 및 공중합체를 중합하기 위한 중합온도는 0∼150℃이고 바람직하게는 30∼120℃이다. 상기의 신규 담지 공촉매와 메탈로센(metallocene)촉매를 사용하여, 올레핀 중합 및 공중합을 실시한 결과 적은 양의 담지 공촉매를 사용하여도 높은 활성을 나타내며, 분자량 분포가 양호한 폴리올레핀 중합체 및 공중합체의 제조가 가능하였다.The olefin is polymerized using the catalyst system of the present invention. The monomers to be polymerized in the process of the present invention are olefins or cycloolefins, olefins are α-olefins having 2 to 20 carbon atoms, and cycloolefins are cyclobutene, cyclopentene, cyclohexene, cyclooctene, norbornene, vinylnorbornene Etc. can be mentioned. The polymerization method in the present invention may be carried out by a conventional polymerization method carried out in the polymerization technology of olefins. The polymerization temperature for polymerizing olefin polymerization and copolymer is 0-150 degreeC, Preferably it is 30-120 degreeC. As a result of olefin polymerization and copolymerization using the new supported co-catalyst and the metallocene catalyst, even when a small amount of the supported co-catalyst was used, it showed high activity and had good molecular weight distribution. Preparation was possible.

본 발명의 신규의 담지 공촉매는 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The novel supported cocatalyst of the present invention can be more clearly understood by the following examples and the following examples are merely for illustrative purposes of the present invention and are not intended to limit the scope of the invention.

실시예Example

본 발명에 따른 신규 담지 공촉매 중 대표적인 몇 가지를 예를 들어, 그 제조방법 및 중합에 대하여 하기와 같이 설명하고자 한다.Some representative examples of the novel supported cocatalysts according to the present invention will be described as follows, for example, the preparation method and the polymerization thereof.

실시예 1Example 1

페닐렌디아민(phenylenediamine)을 이용한 담지 공촉매(A) 제조Preparation of Supported Cocatalyst (A) Using Phenylenediamine

600℃에서 8시간 건조한 실리카(SiO2, 4 mmol-OH, Grace Davison 948) 3g을 플라스크에 넣고 톨루엔 40ml를 가하여 분산시켰다. 이후 반응용기를 50℃로 맞추었다. 다른 플라스크에 페닐렌디아민 1.2 mmol(0.065g)을 넣고 톨루엔 40ml를 가하여 완전히 용해시키고, 50℃에서 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosoh Akzo) 24 mmol(12ml)을 서서히 가하여 5분간 반응시켰다. 이를 실리카가 분산된 플라스크에서 서서히 가하여 50℃에서 5시간 교반하면서 반응을 시켰다. 반응 종료후 60℃에서 톨루엔으로 추출하고 건조하여 담지 공촉매를 제조하였다.3 g of silica (SiO 2 , 4 mmol-OH, Grace Davison 948) dried at 600 ° C. for 8 hours was added to a flask, and 40 ml of toluene was added and dispersed. The reaction vessel was then adjusted to 50 ° C. 1.2 mmol (0.065 g) of phenylenediamine was added to another flask, and 40 ml of toluene was added to completely dissolve. Then, 24 mmol (12 ml) of methylaluminoxane (6.4 wt% -Al, Tosoh Akzo) was slowly added at 50 ° C for 5 minutes. Reacted. This was slowly added to the flask in which silica was dispersed, and reacted with stirring at 50 ° C. for 5 hours. After completion of the reaction was extracted with toluene at 60 ℃ and dried to prepare a supported cocatalyst.

담지 공촉매(A)를 사용한 에틸렌 중합Ethylene Polymerization Using Supported Cocatalyst (A)

2ℓ 고압반응기에 헵탄을 1ℓ 채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1시간 중합하였다. 메탈로센 촉매는 비스(부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol(5mg)을 사용하였으며, 공촉매로는 담지 공촉매(A)를 0.05g을 사용하여 에틸렌 압력 115psi에서 중합을 하여 폴리에틸렌 75g을 얻었다. 생성된 폴리에틸렌의 분자량(melt index, MI)은 0.25이었고, 분자량 분포(melt flow rate, MFR)는 16으로 좁은 분자량 분포를 나타내었다. 폴리에틸렌의 입자크기 분포는 좁았으며 대부분의 입자크기가 400∼700 ㎛이었다.1 L of heptane was charged into a 2 L high-pressure reactor, 1 mmol of triethylaluminum was added, and the mixture was polymerized at 80 ° C for 1 hour. As a metallocene catalyst, 0.012 mmol (5 mg) of bis (butylcyclopentadienyl) zirconium dichloride was used, and as a cocatalyst, polymerization was carried out at 115 ethylene pressure of 75 g of polyethylene using 0.05 g of a supported cocatalyst (A). Got. The molecular weight (melt index, MI) of the produced polyethylene was 0.25, and the molecular weight distribution (melt flow rate, MFR) was 16, showing a narrow molecular weight distribution. The particle size distribution of polyethylene was narrow and most of the particle size was 400-700 μm.

실시예 2Example 2

디아미노나프탈렌(diaminonaphthalene)을 이용한 담지 공촉매(B) 제조Preparation of Supported Cocatalyst (B) Using Diaminonaphthalene

600℃에서 8시간 건조한 실리카(SiO2, 4 mmol-OH, Grace Davison) 3 g을 플라스크에 넣고 톨루엔 40ml를 가하여 분산시켰다. 이후 반응용기를 50℃로 맞추었다. 다른 플라스크에 디아미노나프탈렌 1.2 mmol(0.1g)을 넣고 톨루엔 40ml를 가하여 완전히 용해시키고, 50℃에서 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosoh Akzo) 24 mmol(12ml)을 서서히 가하여 5분간 반응시켰다. 이를 실리카가 분산된 플라스크에 서서히 가하여 50℃에서 5시간 교반하면서 반응을 시켰다. 반응 종료후 60℃에서 톨루엔으로 추출하고 건조하여 담지 공촉매(B)를 제조하였다.3 g of silica (SiO 2 , 4 mmol-OH, Grace Davison) dried at 600 ° C. for 8 hours was added to a flask, and 40 ml of toluene was added and dispersed. The reaction vessel was then adjusted to 50 ° C. To another flask, 1.2 mmol (0.1 g) of diaminonaphthalene was added and 40 ml of toluene was completely dissolved. Then, 24 mmol (12 ml) of methylaluminoxane (6.4 wt% -Al, Tosoh Akzo) was slowly added at 50 ° C for 5 minutes. Reacted. This was slowly added to a flask in which silica was dispersed and reacted at 50 ° C. for 5 hours with stirring. After completion of the reaction was extracted with toluene at 60 ℃ and dried to prepare a supported cocatalyst (B).

담지 공촉매(B)를 사용한 에틸렌 중합Ethylene Polymerization Using Supported Cocatalyst (B)

2ℓ 고압반응기에 헵탄을 1ℓ 채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1 시간 중합하였다. 메탈로센 촉매는 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol(5mg)을 사용하였으며, 공촉매로는 담지 공촉매(B)를 0.05g을 사용하여 에틸렌 압력 115psi에서 중합을 하여 폴리에틸렌 90g을 얻었다. 생성된 폴리에틸렌의 분자량(melt index, MI)은 0.15이었고, 분자량 분포(melt flow rate, MFR)는 16으로 좁은 분자량 분포를 나타내었다. 폴리에틸렌의 입자크기 분포는 좁았으며 대부분의 입자크기가 500∼700 ㎛이었다.1 L of heptane was charged into a 2 L high-pressure reactor, 1 mmol of triethylaluminum was added, and the mixture was polymerized at 80 ° C for 1 hour. As a metallocene catalyst, 0.012 mmol (5 mg) of bis (n-butylcyclopentadienyl) zirconium dichloride was used. The cocatalyst was polymerized at 115 ethylene pressure using 0.05 g of a supported cocatalyst (B). 90 g of polyethylene was obtained. The molecular weight (melt index, MI) of the resulting polyethylene was 0.15, and the molecular weight distribution (melt flow rate, MFR) was 16, showing a narrow molecular weight distribution. The particle size distribution of polyethylene was narrow and most of the particle size was 500-700 μm.

실시예 3Example 3

4,4'-디아미노디페닐에테르(4,4'-diaminodiphenyl ether)을 이용한 담지 공촉매(C)제조Preparation of supported cocatalyst (C) using 4,4'-diaminodiphenyl ether

600℃에서 8시간 건조한 실리카(SiO2, 4 mmol-OH, Grace Davison)3g을 플라스크에 넣고 톨루엔 40ml를 가하여 분산시켰다. 이후 반응용기를 50℃로 맞추었다. 다른 플라스크에서 4,4'-디아미노디페닐에테르 1.2 mmol (0.12g)을 넣고 톨루엔 40ml를 가하여 완전히 용해시키고, 50℃에서 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosoh Akzo) 24 mmol(12ml)을 서서히 가하여 5분간 반응시켰다. 이를 실리카가 분산된 플라스크에 서서히 가하여 50℃에서 5시간 교반하면서 반응을 시켰다. 반응 종료 후 60℃에서 톨루엔으로 추출하고 건조하여 담지 공촉매(C)를 제조하였다.3 g of silica (SiO 2 , 4 mmol-OH, Grace Davison) dried at 600 ° C. for 8 hours was added to the flask, and 40 ml of toluene was added and dispersed. The reaction vessel was then adjusted to 50 ° C. In another flask, 1.2 mmol (0.12 g) of 4,4'-diaminodiphenyl ether was added, and 40 ml of toluene was added thereto to completely dissolve. 24 mmol of methylaluminoxane (methylaluminoxane, 6.4 wt% -Al, Tosoh Akzo) was added at 50 ° C. 12 ml) was added slowly and reacted for 5 minutes. This was slowly added to a flask in which silica was dispersed and reacted at 50 ° C. for 5 hours with stirring. After completion of the reaction was extracted with toluene at 60 ℃ and dried to prepare a supported cocatalyst (C).

담지 공촉매(C)를 사용한 에틸렌 중합Ethylene Polymerization Using Supported Cocatalyst (C)

2ℓ 고압반응기에 헵탄을 1ℓ 채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1시간 중합하였다. 메탈로센 촉매는 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol(5mg)을 사용하였으며, 공촉매로는 담지 공촉매(C)를 0.05g을 사용하여 에틸렌 압력 115psi에서 중합을 하여 폴리에틸렌 49g을 얻었다. 생성된 폴리에틸렌의 분자량(melt index, MI)은 0.30이었고, 분자량 분포(melt flow rate, MFR)는 16으로 좁은 분자량 분포를 나타내었다. 폴리에틸렌의 입자크기 분포는 좁았으며 대부분의 입자크기가 300∼600㎛ 이었다.1 L of heptane was charged into a 2 L high-pressure reactor, 1 mmol of triethylaluminum was added, and the mixture was polymerized at 80 ° C for 1 hour. As a metallocene catalyst, 0.012 mmol (5 mg) of bis (n-butylcyclopentadienyl) zirconium dichloride was used, and as a cocatalyst, polymerization was performed at 115 ethylene pressure using 0.05 g of a supported cocatalyst (C). 49 g of polyethylene was obtained. The molecular weight (melt index, MI) of the produced polyethylene was 0.30, and the molecular weight distribution (melt flow rate, MFR) was 16, showing a narrow molecular weight distribution. The particle size distribution of polyethylene was narrow and most of the particle size was 300 ~ 600㎛.

실시예 4Example 4

α,α1-비스(4-아미노페닐)-1,4-디이소프로필벤젠(α,α1-비스(4-aminophenyl)- 1,4-diisopropylbenzene)을 이용한 담지 공촉매(D) 제조α, α 1 - bis (4-aminophenyl) -1,4-diisopropylbenzene (α, α 1 - bis (4-aminophenyl) - 1,4- diisopropylbenzene) supported cocatalyst (D) using a prepared

600℃에서 8시간 건조한 실리카(SiO2, 4 mmol-OH, Grace Davison) 3g을 플라스크에 넣고 톨루엔 40ml를 가하여 분산시켰다. 이후 반응용기를 50℃로 맞추었다. 다른 플라스크에 α,α'-비스(4-아미노페닐)-1,4-디이소프로필벤젠 1.2 mmol(0.20g)을 넣고 톨루엔 40ml를 가하여 완전히 용해시키고, 50℃에서 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosoh Akzo) 24 mmol(12ml)을 서서히 가하여 5분간 반응시켰다. 이를 실리카가 분산된 플라스크에 서서히 가하여 50℃에서 5시간 교반하면서 반응을 시켰다. 반응 종료 후 80℃에서 톨루엔으로 추출하고 건조하여 담지 공촉매(D)를 제조하였다.3 g of silica (SiO 2 , 4 mmol-OH, Grace Davison) dried at 600 ° C. for 8 hours was added to a flask, and 40 ml of toluene was added and dispersed. The reaction vessel was then adjusted to 50 ° C. To another flask, 1.2 mmol (0.20 g) of α, α'-bis (4-aminophenyl) -1,4-diisopropylbenzene was added, and 40 ml of toluene was added thereto to completely dissolve. Methylaluminoxane (6.4) wt% -Al, Tosoh Akzo) 24 mmol (12 ml) was slowly added to react for 5 minutes. This was slowly added to a flask in which silica was dispersed and reacted at 50 ° C. for 5 hours with stirring. After completion of the reaction was extracted with toluene at 80 ℃ and dried to prepare a supported cocatalyst (D).

담지 공촉매(D)를 사용한 에틸렌 중합Ethylene Polymerization Using Supported Cocatalyst (D)

2ℓ 고압반응기에 헵탄을 1ℓ 채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1시간 중합하였다. 메탈로센 촉매는 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol(5mg)을 사용하였으며, 공촉매로는 담지 공촉매(D)를 0.05g을 사용하여 에틸렌 압력 115psi에서 중합을 하여 폴리에틸렌 120g을 얻었다. 생성된 폴리에틸렌의 분자량(melt index, MI)은 0.14이었고, 분자량 분포(melt flow rate, MFR)는 16으로 좁은 분자량 분포를 나타내었다. 폴리에틸렌의 입자크기 분포는 좁았으며 대부분의 입자 크기가 400∼800㎛이었다.1 L of heptane was charged into a 2 L high-pressure reactor, 1 mmol of triethylaluminum was added, and the mixture was polymerized at 80 ° C for 1 hour. As a metallocene catalyst, 0.012 mmol (5 mg) of bis (n-butylcyclopentadienyl) zirconium dichloride was used, and the cocatalyst was polymerized at 115 ethylene pressure using 0.05 g of a supported cocatalyst (D). 120 g of polyethylene was obtained. The molecular weight (melt index, MI) of the resulting polyethylene was 0.14, and the molecular weight distribution (melt flow rate, MFR) was 16, showing a narrow molecular weight distribution. The particle size distribution of polyethylene was narrow and most of the particle size was 400-800 μm.

실시예 5Example 5

2,2'-비스(4-(4-아미노페녹시)페닐)프로판(2,2'-bis(4-(4-aminophenoxy)phenyl)propane)을 이용한 담지 공촉매(E) 제조Preparation of Supported Cocatalyst (E) Using 2,2'-bis (4- (4-aminophenoxy) phenyl) propane (2,2'-bis (4- (4-aminophenoxy) phenyl) propane)

600℃에서 8시간 건조한 실리카(SiO2, 4 mmol-OH, Grace Davison) 3g을 플라스크에 넣고 톨루엔 40ml를 가하여 분산시켰다. 이후 반응용기를 50℃로 맞추었다. 다른 플라스크에 2,21-비스(4-(4-아미노페녹시)페닐)프로판 1,2 mmol(0.25g)을 넣고 톨루엔 40ml를 가하여 완전히 용해시키고, 50℃에서 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosho Akzo) 24 mmol(12 ml)을 서서히 가하여 5분간 반응시켰다. 이를 실리카가 분산된 플라스크에 서서히 가하여 50℃에서 5시간 교반하면서 반응을 시켰다. 반응종료 후 80℃에서 톨루엔으로 추출하고 건조하여 담지 공촉매(D)를 제조하였다.3 g of silica (SiO 2 , 4 mmol-OH, Grace Davison) dried at 600 ° C. for 8 hours was added to a flask, and 40 ml of toluene was added and dispersed. The reaction vessel was then adjusted to 50 ° C. In another flask, 1,2 mmol (0.25 g) of 2,2 1 -bis (4- (4-aminophenoxy) phenyl) propane was added, and 40 ml of toluene was added thereto to completely dissolve. Methylaluminoxane (6.4) was added at 50 ° C. wt% -Al, Tosho Akzo) 24 mmol (12 ml) was slowly added to react for 5 minutes. This was slowly added to a flask in which silica was dispersed and reacted at 50 ° C. for 5 hours with stirring. After completion of the reaction was extracted with toluene at 80 ℃ and dried to prepare a supported cocatalyst (D).

담지 공촉매(E)를 사용한 에틸렌 중합Ethylene Polymerization Using Supported Cocatalyst (E)

2ℓ 고압반응기에 헵탄을 1ℓ채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1시간 중합하였다. 메탈로센 촉매는 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol(5mg)을 사용하였으며, 공촉매로는 담지 공촉매(E)를 0.05g을 사용하여 에틸렌 압력 115psi에서 중합을 하여 폴리에틸렌 55g을 얻었다. 생성된 폴리에틸렌의 분자량(melt index, MI)은 0.25이었고, 분자량 분포(melt flow rate, MFR)는 16으로 좁은 분자량 분포를 나타내었다. 폴리에틸렌의 입자크기 분포는 좁았으며 대부분의 입자크기가 300∼800㎛이었다.1 L of heptane was charged into the 2 L high-pressure reactor, and 1 mmol of triethylaluminum was added thereto, followed by polymerization at 80 ° C for 1 hour. As a metallocene catalyst, 0.012 mmol (5 mg) of bis (n-butylcyclopentadienyl) zirconium dichloride was used, and the cocatalyst was polymerized at 115 ethylene pressure using 0.05 g of a supported cocatalyst (E). 55 g of polyethylene was obtained. The molecular weight (melt index, MI) of the produced polyethylene was 0.25, and the molecular weight distribution (melt flow rate, MFR) was 16, showing a narrow molecular weight distribution. The particle size distribution of polyethylene was narrow and most of the particle size was 300-800 μm.

비교실시예Comparative Example

본 발명의 신규 담지 공촉매의 특성을 비교하기 위하여 기존의 방법으로 제조한 공촉매(예: 유럽특허 787746 A1)를 사용하여 에틸렌 중합을 하였다. 그리고 담지 공촉매 외에도 균일계 공촉매인 메틸알루미녹산을 사용하여서도 중합을 하여 디아민의 가교제 효과를 조사하여 나타내었다.In order to compare the properties of the novel supported cocatalyst of the present invention, ethylene polymerization was carried out using a cocatalyst prepared by a conventional method (eg, European Patent 787746 A1). In addition to the supported cocatalyst, polymerization was also carried out using methylaluminoxane, which is a homogeneous cocatalyst, to investigate the crosslinking agent effect of diamine.

비교실시예 1Comparative Example 1

디아민을 가교제로 사용한 균일계 중합Homogeneous polymerization using diamine as a crosslinking agent

2ℓ 고압반응기에 헵탄을 1ℓ 채우고 트리에틸알루미늄 1 mmol을 가하고 80℃에서 1시간 중합하였다. 촉매는 비스(n-부틸시클로펜타디에닐)지르코늄 디클로라이드 0.012 mmol을 사용하였으며, 공촉매로는 메틸알루미녹산(methylaluminoxane, 6.4 wt%-Al, Tosoh Akzo) 6 mmol과 α, α1-비스(4-아미노페닐)-1,4-디이소프로필벤젠 1.2 mmol(0.20g)을 50℃에서 반응시켜 사용하였다.1 L of heptane was charged into a 2 L high-pressure reactor, 1 mmol of triethylaluminum was added, and the mixture was polymerized at 80 ° C for 1 hour. The catalyst used was 0.012 mmol of bis (n-butylcyclopentadienyl) zirconium dichloride, and 6 mmol of methylaluminoxane (6.4 wt% -Al, Tosoh Akzo) and α, α 1 -bis (co) as co-catalysts. 1.2 mmol (0.20 g) of 4-aminophenyl) -1,4-diisopropylbenzene was used by reacting at 50 ° C.

이때 170 g의 폴리에틸렌이 생성되었으며, 분자량(melt index, MI)은 0.5g/10min이었다. 하지만 공촉매로 메틸알루미녹산을 단독으로 사용하였을때는 110g의 폴리에틸렌이 생성되었으며, 분자량(MI)은 2.5g/10min으로 낮은 분자량을 나타내었다. 이 결과 디아민을 가교제로 사용함으로써 촉매의 활성 증가 및 분자량 증가에 효과가 있었다.In this case, 170 g of polyethylene was produced, and the molecular weight (melt index, MI) was 0.5 g / 10 min. However, when methylaluminoxane alone was used as the cocatalyst, 110 g of polyethylene was produced, and the molecular weight (MI) was 2.5 g / 10 min. As a result, the use of diamine as a crosslinking agent was effective in increasing the activity and molecular weight of the catalyst.

비교실시예 2Comparative Example 2

담지 공촉매 제조에서 실시예 1에서의 조건과 동일하나 디아민을 사용하지 않고 제조하여 에틸렌 중합을 실시하였다.In the preparation of the supported cocatalyst, the same conditions as in Example 1 were prepared without using diamine to carry out ethylene polymerization.

실시예 1과 동일한 조건에서 중합을 하였으나, 디아민을 사용하지 않고 제조한 담지 공촉매를 사용한 결과 폴리에틸렌의 생성량이 5g에 불과하였고, 입자크기도 150∼500㎛로 비교적 작은 입자의 생성이 많았다.The polymerization was carried out under the same conditions as in Example 1, but as a result of using a supported cocatalyst prepared without using diamine, the amount of polyethylene produced was only 5 g, and the particle size was 150-500 µm.

비교실시예 3Comparative Example 3

실시예 4의 제조방법과 달리 유럽특허 787746 A1에 나타낸 방법과 같이 실리카에 메틸알루미녹산과 α,α'-비스(4-아미노페닐)-1,4-디이소프로필벤젠 1.2 mmol을 먼저 전반응시키지 않고 동시에 반응시켜 담지 공촉매를 제조하였다.In contrast to the preparation method of Example 4, 1.2 mmol of methylaluminoxane and α, α'-bis (4-aminophenyl) -1,4-diisopropylbenzene were first pre-reacted on silica as in the method shown in European Patent 787746 A1. The supported cocatalyst was prepared by reacting at the same time without making.

이렇게 제조한 담지 공촉매를 사용하여 실시예 4와 같이 동일하게 에틸렌 중합을 하였다. 그 결과 42g의 폴리에틸렌이 생성되었으며, 분자량(MI)도 0.35g/10min으로 낮게 나타났다.Using the supported cocatalyst thus prepared, ethylene polymerization was carried out in the same manner as in Example 4. As a result, 42 g of polyethylene was produced, and the molecular weight (MI) was also low as 0.35 g / 10 min.

비교실시예 4Comparative Example 4

실시예 1∼4의 제조방법과 동일하게 유럽특허 787746 A1에 나타낸 방법과 같이 α,α'-비스(4-아미노페닐)1,4-디이소프로필벤젠을 가교제로 사용하지 않고 비스페놀 A(bisphenol A)를 사용하여 담지 공촉매를 제조하여 에틸렌 중합을 하였다.Bisphenol A (bisphenol) was used in the same manner as in Examples 1 to 4 without using α, α'-bis (4-aminophenyl) 1,4-diisopropylbenzene as a crosslinking agent, as described in European Patent No. 787746 A1. The supported cocatalyst was prepared using A) and subjected to ethylene polymerization.

중합결과 55g의 폴리에틸렌이 생성되어 실시예 1∼4의 경우보다 촉매활성이 낮았다. 또한 분자량(MI)도 0.30g/10min으로 낮았다.As a result of the polymerization, 55 g of polyethylene was produced, resulting in lower catalytic activity than in Examples 1-4. Moreover, molecular weight (MI) was also low as 0.30g / 10min.

본 발명은 에틸렌을 포함하는 1-올레핀의 중합체 또는 공중합체를 제조하기 위한 메탈로센 촉매와 공촉매로 이루어진 신규의 촉매계를 제공하고, 올레핀을 중합 또는 공중합하기 위하여 사용되는 신규의 공촉매 및 그 제조방법을 제공하며, 적은 양의 공촉매를 사용하고도 높은 활성과 입자모양이 우수하고, 분자량 분포가 양호한 폴리올레핀의 제조가 가능한 신규의 공촉매 및 그 제조방법을 제공할 수 있는 발명의 효과를 갖는다.The present invention provides a novel catalyst system consisting of a metallocene catalyst and a cocatalyst for preparing a polymer or copolymer of 1-olefin comprising ethylene, and a novel cocatalyst used for polymerizing or copolymerizing olefins and The present invention provides a process for producing a new polycatalyst capable of producing a polyolefin having high activity and particle shape and good molecular weight distribution even with a small amount of cocatalyst. Have

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (9)

알킬알루미녹산을 가교제로서의 디아민 또는 트리아민과 10∼100℃에서 5∼20분간 가교반응시키고; 그리고Alkylaluminoxane is crosslinked with diamine or triamine as a crosslinking agent at 10 to 100 DEG C for 5 to 20 minutes; And 상기 가교된 알킬알루미녹산을 담지체내에서 5∼100℃에서 5∼20시간동안 담지시키는;Supporting the crosslinked alkylaluminoxane for 5 to 20 hours at 5 to 100 ° C. in the carrier; 단계로 이루어지고, 상기 용액에서의 [Al]/[아민]의 농도비가 5∼100이고, [Al]/([OH] 또는 [H2O])의 농도비는 3∼50인 것을 특징으로 하는 올레핀 중합용 담지 공촉매의 제조방법.And a concentration ratio of [Al] / [amine] in the solution is 5 to 100, and a concentration ratio of [Al] / ([OH] or [H 2 O]) is 3 to 50. Method for producing a supported cocatalyst for olefin polymerization. 제1항에 있어서, 상기 알킬알루미녹산(alkylaluminoxane)은 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산(ethylaluminoxane), n-부틸알루미녹산(n-butylaluminoxane), n-헥실알루미녹산(n-hexylaluminoxane) 및 개량된 알킬알루미녹산(modified alkylaluminoxane)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 담지 공촉매의 제조방법.According to claim 1, wherein the alkylaluminoxane (methylaluminoxane), methylaluminoxane (methylaluminoxane), ethylaluminoxane (ethylaluminoxane), n-butylaluminoxane (n-butylaluminoxane), n-hexylaluminoxane (n-hexylaluminoxane) Method for producing a supported co-catalyst for olefin polymerization, characterized in that it is selected from the group consisting of an improved alkylaluminoxane (modified alkylaluminoxane). 제1항에 있어서, 상기 디아민은 H2N-R-NH2, H2N-R1-O-R2-NH2, H2N-R1-CO-R2-NH2, H2N-R1-COO-R2-NH2, H2-R1-C(CH3)2-R2-NH2, H2N-R1-C(CH3)2-R2-C(CH3)2-R3-NH2로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 담지 공촉매의 제조방법.The method of claim 1, wherein the diamine is H 2 NR-NH 2 , H 2 NR 1 -OR 2 -NH 2 , H 2 NR 1 -CO-R 2 -NH 2 , H 2 NR 1 -COO-R 2- NH 2 , H 2 -R 1 -C (CH 3 ) 2 -R 2 -NH 2 , H 2 NR 1 -C (CH 3 ) 2 -R 2 -C (CH 3 ) 2 -R 3 -NH 2 Method for producing a supported co-catalyst for olefin polymerization, characterized in that it is selected from the group consisting of. 제1항에 있어서, 상기 트리아민은 하기 구조식(1)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 담지 공촉매의 제조방법.The method according to claim 1, wherein the triamine is selected from the group consisting of the following structural formulas (1). 구조식 1Structural Formula 1 제1항에 있어서, 상기 담지체는 실리카, 알루미나, 마그네슘 화합물, 제올라이트, 크레이, 인산알루미늄, 지르코니아 및 폴리머로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 담지 공촉매의 제조방법.The method of claim 1, wherein the carrier is selected from the group consisting of silica, alumina, magnesium compounds, zeolite, cray, aluminum phosphate, zirconia, and polymers. 제1항 내지 제5항의 어느 한항에 따라 제조된 담지 공촉매와 메탈로센 촉매로 이루어진 촉매계하에서 올레핀을 접촉시키는 것으로 이루어지는 것을 특징으로 하는 올레핀 중합 방법.An olefin polymerization method comprising contacting an olefin under a catalyst system comprising a supported cocatalyst prepared according to any one of claims 1 to 5 and a metallocene catalyst. 제6항에 있어서, 상기 올레핀은 탄소수 2내지 12의 α-올레핀 또는 시클로올레핀인 것을 특징으로 하는 올레핀 중합방법.The method for olefin polymerization according to claim 6, wherein the olefin is C2-C12 alpha-olefin or cycloolefin. 제6항에 있어서, 상기 메탈로센 촉매는 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜타디에닐)지르코늄 메틸클로라이드, 비스(시클로펜타디에닐)지르코늄 디메틸, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디메틸, 비스(에틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(에틸시클로펜타디에닐)지르코늄 디메틸, 비스(펜타메틸시클로라이드)지르코늄 디클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(펜타메틸시클로펜타디에틸)지르코늄 디메틸, 비스(n-부틸-시클로펜타디에닐)지르코늄 디클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 메틸 클로라이드, 비스(n-부틸-시클로펜타디에닐)지르코늄 디메틸, 비스(인데닐)지르코늄 디클로라이드, 비스(인데닐)지르코늄 메틸 클로라이드, 비스(인데닐)지르코늄 디메틸, 비스(2-메틸-인데닐)지르코늄 디클로라이드, 비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 비스(2-메틸-인데닐)지르코늄 디메틸, 비스(2-페닐-인데닐)지르코늄 디클로라이드, 비스(2-페닐-인데닐)지르코늄 메틸 클로라이드, 비스(2-페닐-인데닐)지르코늄 디메틸, 디메틸실릴비스(시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실리비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(시클로라이펜타디에닐)지르코늄 디메틸, 디메틸실릴비스(인데닐)지르코늄 디클로라이드, 디메틸실리비스(인데닐)지르코늄 메틸 클로라이드, 디메틸실리비스(인데닐)지르코늄 디메틸, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 디메틸실릴비스(2-메틸-인데닐)지르코늄 디메틸, 디메틸실리비스(인데닐시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실릴(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴(인데닐시클로펜카디에닐)지르코늄 디메틸, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 디메틸실릴(플루오레닐시클로펜타디에닐)지르코늄 디메틸, 에틸렌비스(시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌비스(시클로펜타디에닐)지르코늄 디메틸, 에틸렌비스(인데닐)지르코늄 디클로라이드, 에틸렌비스(인데닐)지르코늄 메틸 클로라이드, 에틸렌비스(인데닐)지르코늄 디메틸, 에틸렌비스(2-메틸-인데닐)지르코늄 디콜로라이드, 에틸렌비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 에틸렌비스(2-메틸-인데닐)지르코늄 디메틸, 에틸렌(인데닐시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에닐렌(인데닐시클로펜타디에닐)지르코늄 디메틸, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 에틸렌(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 에틸렌(클루오레닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필비스(시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필비스(시클로펜타디에닐)지르코늄 디메틸, 이소프로필비스(인데닐)지르코늄 디클로라이드, 이소프로필비스(인데닐)지르코늄 메틸 클로라이드, 이소프로필비스(인데닐)지르코늄 디메틸, 이소프로필비스(2-메틸-인데닐)지르코늄 디클로라이드, 이소프로필비스(2-메틸-인데닐)지르코늄 메틸 클로라이드, 이소프로필(2-메틸-인데닐)지르코늄 디메틸, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디클로라이트, 이소프로필(인데닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 이소프로필(인데닐시클로펜타디에닐)지르코늄 디메틸, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 디클로라이드, 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 메틸 클로라이드, 및 이소프로필(플루오레닐시클로펜타디에닐)지르코늄 디메틸로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합방법.The metallocene catalyst of claim 6, wherein the metallocene catalyst is bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) zirconium methyl chloride, bis (cyclopentadienyl) zirconium dimethyl, bis (methylcyclopentadiene Nil) zirconium dichloride, bis (methylcyclopentadienyl) zirconium methyl chloride, bis (methylcyclopentadienyl) zirconium dimethyl, bis (ethylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium Methyl chloride, bis (ethylcyclopentadienyl) zirconium dimethyl, bis (pentamethylcichloride) zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium methyl chloride, bis (pentamethylcyclopentadiethyl) zirconium dimethyl, Bis (n-butyl-cyclopentadienyl) zirconium dichloride, bis (n-butyl-cyclopentadienyl) zir Methyl chloride, bis (n-butyl-cyclopentadienyl) zirconium dimethyl, bis (indenyl) zirconium dichloride, bis (indenyl) zirconium methyl chloride, bis (indenyl) zirconium dimethyl, bis (2-methyl- Indenyl) zirconium dichloride, bis (2-methyl-indenyl) zirconium methyl chloride, bis (2-methyl-indenyl) zirconium dimethyl, bis (2-phenyl-indenyl) zirconium dichloride, bis (2-phenyl Indenyl) zirconium methyl chloride, bis (2-phenyl-indenyl) zirconium dimethyl, dimethylsilylbis (cyclopentadienyl) zirconium dichloride, dimethylsilbis (cyclopentadienyl) zirconium methyl chloride, dimethylsilylbis ( Cyclolaipentadienyl) zirconium dimethyl, dimethylsilylbis (indenyl) zirconium dichloride, dimethylsilbis (indenyl) zirconium methyl chloride, dimethyldimethylbis (indenyl) zirco Dimethyl, dimethylsilylbis (2-methyl-indenyl) zirconium dichloride, dimethylsilylbis (2-methyl-indenyl) zirconium methyl chloride, dimethylsilylbis (2-methyl-indenyl) zirconium dimethyl, dimethylsilbis ( Indenylcyclopentadienyl) zirconium dichloride, dimethylsilyl (indenylcyclopentadienyl) zirconium methyl chloride, dimethylsilyl (indenylcyclopentadienyl) zirconium dimethyl, dimethylsilyl (fluorenylcyclopentadienyl) Zirconium Dichloride, Dimethylsilyl (Fluorenylcyclopentadienyl) Zirconium Methyl Chloride, Dimethylsilyl (Fluorenylcyclopentadienyl) zirconium Dimethyl, Ethylenebis (cyclopentadienyl) zirconium Dichloride, Ethylenebis (cyclopenta Dienyl) zirconium methyl chloride, ethylenebis (cyclopentadienyl) zirconium dimethyl, ethylenebis (indenyl) zirconium Chloride, ethylenebis (indenyl) zirconium methyl chloride, ethylenebis (indenyl) zirconium dimethyl, ethylenebis (2-methyl-indenyl) zirconium dicollide, ethylenebis (2-methyl-indenyl) zirconium methyl chloride, Ethylenebis (2-methyl-indenyl) zirconium dimethyl, ethylene (indenylcyclopentadienyl) zirconium dichloride, ethylene (indenylcyclopentadienyl) zirconium methyl chloride, enylene (indenylcyclopentadienyl) zirconium Dimethyl, Ethylene (Fluorenylcyclopentadienyl) zirconium dichloride, Ethylene (Fluorenylcyclopentadienyl) zirconium methyl chloride, Ethylene (Cluorenylcyclopentadienyl) zirconium dimethyl, Isopropylbis (cyclopentadiene Nyl) zirconium dichloride, isopropylbis (cyclopentadienyl) zirconium methyl chloride, isopropylbis (cyclophene Dienyl) zirconium dimethyl, isopropylbis (indenyl) zirconium dichloride, isopropylbis (indenyl) zirconium methyl chloride, isopropylbis (indenyl) zirconium dimethyl, isopropylbis (2-methyl-indenyl) zirconium Dichloride, isopropylbis (2-methyl-indenyl) zirconium methyl chloride, isopropyl (2-methyl-indenyl) zirconium dimethyl, isopropyl (indenylcyclopentadienyl) zirconium dichlorite, isopropyl Nylcyclopentadienyl) zirconium methyl chloride, isopropyl (indenylcyclopentadienyl) zirconium dimethyl, isopropyl (fluorenylcyclopentadienyl) zirconium dichloride, isopropyl (fluorenylcyclopentadienyl) zirconium Methyl chloride, and isopropyl (fluorenylcyclopentadienyl) zirconium dimethyl The olefin polymerization method of the gong. 제1항 내지 제5항의 어느 한 항에 따라 제조된 올레핀 중합용 담지 공촉매.A supported cocatalyst for olefin polymerization prepared according to any one of claims 1 to 5.
KR1019980010330A 1998-03-25 1998-03-25 Catalyst for olefin polymerization and method of olefin polymerization KR100248437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980010330A KR100248437B1 (en) 1998-03-25 1998-03-25 Catalyst for olefin polymerization and method of olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980010330A KR100248437B1 (en) 1998-03-25 1998-03-25 Catalyst for olefin polymerization and method of olefin polymerization

Publications (2)

Publication Number Publication Date
KR19990075860A KR19990075860A (en) 1999-10-15
KR100248437B1 true KR100248437B1 (en) 2000-03-15

Family

ID=19535362

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980010330A KR100248437B1 (en) 1998-03-25 1998-03-25 Catalyst for olefin polymerization and method of olefin polymerization

Country Status (1)

Country Link
KR (1) KR100248437B1 (en)

Also Published As

Publication number Publication date
KR19990075860A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US6992035B2 (en) Metallocenes, polymerization catalyst systems, their preparation, and use
EP0767184B1 (en) Carrier for olefin polymerization catalyst, olefin polymerization catalyst and process for producing olefin polymer
EP0841349B1 (en) Catalyst for alpha-olefin polymerization and production of poly-alpha-olefin therewith
US6239059B1 (en) Activator solid support for metallocene catalysts in the polymerization of olefins, a process for preparing such a support, and the corresponding catalytic system and polymerization process
KR920001319B1 (en) Solid catalyst for olefin polymerization
EP0849286B1 (en) Improved polymer yield from supported metallocene catalysts
US6787616B2 (en) Catalyst for olefin polymerization and process for polymerizing olefin by means thereof
EP0570982A1 (en) Catalysts and process for producing olefin polymers
KR100473441B1 (en) Aluminum compound-containing solid catalyst component, catalyst for olefin polymerization and method for proucing olefin polymer
JP2825910B2 (en) Solid catalyst for olefin polymerization and olefin polymerization method
US7345119B2 (en) Olefin polymerization catalyst and olefin polymerization method using the same
US5610115A (en) Organic carrier supported metallocene catalyst for olefin polymerization
US6214953B1 (en) Process for the preparation of olefinic polymers using supported metallocene catalyst
WO1998052686A1 (en) Method for making and using a prepolymerized olefin polymerization catalyst
JPH08217816A (en) Production of stereospecific polypropylene
US6291382B1 (en) Metallocenes, polymerization catalyst systems, their preparation, and use
KR20120007033A (en) Activating supports with controlled distribution of oh groups
KR100248437B1 (en) Catalyst for olefin polymerization and method of olefin polymerization
US6218330B1 (en) Process for preparing and using a supported metallocene-alumoxane catalyst
JP3496955B2 (en) Method for producing solid catalyst component for olefin polymerization
JPH08113604A (en) New carrier, its production and polymerization catalyst
JPH06345808A (en) Production of solid catalyst component for polymerizing olefin and production of olefin using the same
KR101203772B1 (en) Activating supports for metallocene catalysis
JP4051156B2 (en) Process for producing olefin polymerization catalyst
US6329312B1 (en) Metallocycle metallocenes and their use

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080919

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee