KR100246079B1 - Reactor and process for preparing synthetic gas - Google Patents

Reactor and process for preparing synthetic gas Download PDF

Info

Publication number
KR100246079B1
KR100246079B1 KR1019970068685A KR19970068685A KR100246079B1 KR 100246079 B1 KR100246079 B1 KR 100246079B1 KR 1019970068685 A KR1019970068685 A KR 1019970068685A KR 19970068685 A KR19970068685 A KR 19970068685A KR 100246079 B1 KR100246079 B1 KR 100246079B1
Authority
KR
South Korea
Prior art keywords
catalyst layer
methane
reactor
reaction
combustion
Prior art date
Application number
KR1019970068685A
Other languages
Korean (ko)
Other versions
KR19990049702A (en
Inventor
오영삼
백영순
목영일
이재의
방효선
Original Assignee
한갑수
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한갑수, 한국가스공사 filed Critical 한갑수
Priority to KR1019970068685A priority Critical patent/KR100246079B1/en
Publication of KR19990049702A publication Critical patent/KR19990049702A/en
Application granted granted Critical
Publication of KR100246079B1 publication Critical patent/KR100246079B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 수소와 일산화탄소(이하, “합성가스”로 칭함) 제조용 반응기 및 이를 이용한 합성가스의 제조방법에 관한 것으로, 본 발명의 반응기는 연료를 공급하기 위한 연료공급구(1)와 공기유입구(2), 연료와 공기를 혼합하기 위한 혼합부(4), 유입된 혼합기체의 발화를 유도하기 위한 전기히터(5), 연소를 촉진하기 위한 연소촉매층(6), 수증기 및 이산화탄소의 개질을 촉진하기 위한 개질촉매층(7) 및 수소가스 배출구(3)를 구비한 것을 특징으로 하며, 본 발명의 제조방법은 메탄으로 부터 수소와 일산화탄소를 생성시키는 반응에 있어서, 열원으로 사용된 메탄의 배가스인 이산화탄소와 수증기를 반응기로 회수하고 과잉의 메탄을 가하여 원료로 재사용하는 것을 특징으로 한다.The present invention relates to a reactor for producing hydrogen and carbon monoxide (hereinafter referred to as "synthetic gas") and a method for producing a synthesis gas using the same. The reactor of the present invention includes a fuel supply port 1 for supplying fuel and an air inlet ( 2), a mixing section 4 for mixing fuel and air, an electric heater 5 for inducing ignition of the introduced mixed gas, a combustion catalyst layer 6 for promoting combustion, and promoting reforming of water vapor and carbon dioxide It is characterized in that it comprises a reforming catalyst layer (7) and a hydrogen gas outlet (3), the production method of the present invention in the reaction for generating hydrogen and carbon monoxide from methane, carbon dioxide which is the exhaust gas of methane used as a heat source And steam is recovered to the reactor, and excess methane is added and reused as raw materials.

본 발명에 의하여 메탄으로부터 수소와 일산화탄소를 얻는 공정에 있어서, 현재 세계적으로 문제가 되고 있는 이산화탄소의 방출을 억제할 수 있으며, 또한 그 동안 대기 중으로 방출되었던 폐열을 재사용할 수 있다.In the process of obtaining hydrogen and carbon monoxide from methane according to the present invention, it is possible to suppress the emission of carbon dioxide, which is currently a problem worldwide, and to reuse the waste heat that has been released into the atmosphere.

Description

합성가스 제조용 반응기 및 이를 이용한 합성가스의 제조방법Reactor for syngas production and method for producing syngas using the same

본 발명은 수소와 일산화탄소(이하, “합성가스”로 칭함) 제조용 반응기 및 이를 이용한 합성가스의 제조방법에 관한 것이다.The present invention relates to a reactor for producing hydrogen and carbon monoxide (hereinafter referred to as "synthetic gas") and a method for producing a syngas using the same.

탄화수소의 개질공정은 탄화수소, 특히 메탄과 수증기를 약 800~900℃에서 촉매반응시켜서 수소와 일산화탄소로 변화시키는 공정을 말한다. 수소와 일산화탄소의 생성은 고온에서 니켈촉매상에서 다음 반응식 1과 같은 반응과정을 통하여 진행된다.Hydrocarbon reforming refers to a process of converting hydrocarbons, especially methane and steam, to hydrogen and carbon monoxide by catalytic reaction at about 800 to 900 ° C. The production of hydrogen and carbon monoxide is carried out through a reaction process as shown in Scheme 1 below on a nickel catalyst at high temperature.

CH4+H2O ↔ CO+3H2 CH 4 + H 2 O ↔ CO + 3H 2

이러한 반응을 이용한 공정은 1926년 독일 BASF 사에서 처음 온전되어 이미 세계적인 공정이 되었고 열역학적 연구과 촉매, 반응조건 등에서 공업적 기틀이 확보된 상태이다. 개질반응시 역반응 방지 및 촉매의 coke 형성 등을 억제하기 위하여 수증기를 원료에 비해 3배 정도 과량으로 공급하며 반응온도는 600~900℃ 정도로 유지시키고 있다.The process using this reaction was first intact at BASF in Germany in 1926 and has already become a global process, with industrial frameworks for thermodynamic studies, catalysts and reaction conditions. In the reforming reaction, water vapor is supplied three times more than raw materials to prevent reverse reaction and coke formation of the catalyst. The reaction temperature is maintained at 600 ~ 900 ℃.

이러한 반응을 통하여 얻어지는 합성가스인 수소와 일산화탄소는 용도가 다양하여 비료 제조의 중요한 원료인 암모니아 합성원료로 사용될 수 있으며 메탄올의 합성용 반응가스로도 사용될 수 있을 뿐만 아니라, 수소와 산소를 스택에서 전기화학적으로 반응시켜 전기를 생산하는 인산형 연료전지의 원료로서 사용될 수 있다.Hydrogen and carbon monoxide, synthesis gases obtained through this reaction, can be used as a raw material for ammonia synthesis, which is an important raw material for fertilizer production, and can be used as a reaction gas for the synthesis of methanol. It can be used as a raw material of the phosphate fuel cell to produce electricity by reacting with.

수증기 개질반응은 강한 흡열반응(△H > 206 KJ/hr)이므로 외부로부터 열공급이 필요하게 된다. 이를 위하여 버너를 설치하는 데 이 버너의 연료로서 또한 천연가스(혹은 탄화수소)를 이용하게 된다. 종래의 공정은 제1도와 같이 화염버너를 이용하며 이러한 버너의 연료로서 또한 천연가스(혹은 탄화수소)를 이용하게 된다. 또한 연소된 배가스 중에는 이산화탄소와 수증기가 포함되어 있는데, 종래의 방법에서는 단지 개질반응에 필요한 열만 이용하고 나머지 연소 후의 이산화탄소와 수증기가 포함된 고온의 배가스(500~800℃)는 연도를 통하여 대기중으로 방출되어 왔다. 별도의 스팀을 만들기 위하여 사용되는 스팀보일러에서도 배가스 중의 수증기와 이산화탄소 그리고 배열을 이용하지는 못하였기 때문에 이는 에너지 사용의 효율성 면에서 불합리한 것이라 할 수 있다.Since the steam reforming reaction is a strong endothermic reaction (ΔH> 206 KJ / hr), heat supply from the outside is required. To this end, the installation of the burners also uses natural gas (or hydrocarbons) as fuel for the burners. The conventional process uses a flame burner as shown in FIG. 1 and also uses natural gas (or hydrocarbon) as fuel for the burner. In addition, the burned flue gas contains carbon dioxide and water vapor. In the conventional method, only the heat required for the reforming reaction is used, and the hot flue gas (500 to 800 ° C.) containing the remaining carbon dioxide and water vapor after the remaining combustion is discharged to the atmosphere through the flue. Has been. This is unreasonable in terms of the efficiency of energy use because steam boilers used to make separate steams did not use steam, carbon dioxide and heat in exhaust gas.

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 개질반응을 통한 수소와 일산화탄소에 제조에 있어서 에너지 효율을 향상시키는 것을 주목적으로 한다. 본 발명의 또 다른 목적은 연료로 공급된 메탄의 연소 후에 발생하는 배가스인 이산화탄소와 수증기를 재활용하는 것이다.The present invention is to solve the problems of the prior art as described above, the main purpose is to improve the energy efficiency in the production of hydrogen and carbon monoxide through a reforming reaction. Another object of the present invention is to recycle carbon dioxide and water vapor, which are exhaust gases generated after the combustion of methane supplied as fuel.

제1도는 종래의 수증기 개질공정의 공정도이고,1 is a process chart of a conventional steam reforming process,

제2도는 본 발명의 반응기의 단면도이고,2 is a cross-sectional view of the reactor of the present invention,

제3도는 메탄의 전환율을 나타낸 그래프이고,3 is a graph showing the conversion rate of methane,

제4도는 생성물의 조성을 나타낸 그래프이다.4 is a graph showing the composition of the product.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 연료공급구 2 : 공기유입구1: fuel supply port 2: air inlet port

3 : 수소가스배출구 4 : 혼합부3: hydrogen gas outlet 4: mixing part

5 : 전기히터 6 : 연소촉매5: electric heater 6: combustion catalyst

7 : 개질촉매 8 : 지지체7: modified catalyst 8: support

본 발명에서는 메탄으로부터 수소와 일산화탄소를 생성시키는 반응에 있어서, 개질반응에 필요한 열을 공급하고 배출되는 배가스인 이산화탄소와 수증기에 과잉의 메탄을 가하여 원료로 사용하는 것을 특징으로 하며, 본 발명의 반응기는 연료를 공급하기 위한 연료공급구(1)와 공기유입구(2), 연료와 공기를 혼합하기 위한 혼합부(4), 유입된 혼합기체의 발화를 유도하기 위한 전기히터(5), 연소를 촉진하기 위한 연소촉매층(6), 수증기 및 이산화탄소의 개질을 촉진하기 위한 개질촉매층(7) 및 수소가스 배출구(3)를 구비한 것을 특징으로 한다.In the present invention, in the reaction for producing hydrogen and carbon monoxide from methane, supplying the heat required for the reforming reaction and adding excess methane to the carbon dioxide and water vapor, which is the exhaust gas is used as a raw material, the reactor of the present invention Fuel supply port (1) and air inlet (2) for supplying fuel, mixing section (4) for mixing fuel and air, electric heater (5) for inducing ignition of the introduced mixed gas, and promoting combustion It characterized in that it comprises a combustion catalyst layer (6), a reforming catalyst layer (7) and a hydrogen gas outlet (3) for promoting the reforming of water vapor and carbon dioxide.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

종래의 기술을 통하여 합성가스인 CO와 3H2를 생성시키기 위하여는 흡열반응인 상기 반응식 1을 진행시키기 위하여 별도의 열이 가해져야 하며, 이 열은 아래의 반응식 2와 같은 반응을 통하여 얻어진다.In order to generate the synthesis gas CO and 3H 2 through the prior art, a separate heat must be applied to proceed with the endothermic reaction 1, and this heat is obtained through the reaction shown in the following reaction formula 2.

CH4+2O2↔ CO2+2H2O+△HCH 4 + 2O 2 ↔ CO 2 + 2H 2 O + △ H

반응식 2에 의하여 생성되는 가스인 CO2및 H2O는 대기 중으로 방출되었으며, 방출된 CO2는 지구에 온실효과를 주는 환경오염물질이다. 또한 방출되는 H2O는 열을 함유한 상태에서 방출된다.The gases produced by Scheme 2, CO 2 and H 2 O, were released into the atmosphere, and the released CO 2 is an environmental pollutant that has a global greenhouse effect. In addition, the released H 2 O is released in a state containing heat.

본 발명에서는 종래의 기술에서는 그대로 방출되었던 CO2및 H2O를 반응에 이용하기 위하여 아래의 반응식 3과 같이 메탄의 촉매 연소반응을 이용하며, 반응 후의 배가스에 2몰의 메탄이 존재하면 다음의 반응식 4, 5와 같은 반응이 진행된다.In the present invention, in order to use CO 2 and H 2 O released as it is in the prior art for the reaction, a catalytic combustion reaction of methane is used, as shown in Scheme 3 below. Reactions as in Schemes 4 and 5 proceed.

CH4+3/2O2↔ CO2+H2OCH 4 + 3 / 2O 2 ↔ CO 2 + H 2 O

CH4+CO2↔ 2CO+2H2 CH 4 + CO 2 ↔ 2CO + 2H 2

CH4+H2O ↔ CO+3H2 CH 4 + H 2 O ↔ CO + 3H 2

상기 반응식 3과 4, 5를 조합하면 다음과 같은 전체 반응식 6으로 표현할 수 있다.Combination of the reaction schemes 3, 4, and 5 can be represented by the overall scheme 6.

3CH4+3/2O2↔ 3CO+6H2 3CH 4 + 3 / 2O 2 ↔ 3CO + 6H 2

따라서 본 발명에서는 종래 기술에서는 대기 중으로 방출되던 이산화탄소와 수증기는 재활용되어 투입된 메탄 3몰에 대하여 목적하는 합성가스인 일산화탄소와 수소를 이론적으로 각각 3몰과 6몰 생성시킬 수 있으며, 이는 종래의 기술에서의 1몰과 3몰 보다 높은 값이다.Therefore, in the present invention, carbon dioxide and water vapor released into the air in the prior art can theoretically generate 3 mol and 6 mol of theoretical carbon monoxide and hydrogen, respectively, with respect to 3 mol of methane injected. It is higher than 1 mol and 3 mol of.

본 발명의 반응기는 본 발명의 제조방법에 적합하도록 구성된 신규한 것으로, 그 단면도는 제2도와 같다.The reactor of the present invention is novel and is configured to be suitable for the production method of the present invention, the cross section of which is shown in FIG.

연료인 메탄은 연료공급구(1)를 통하여 공급되며, 공급된 연료는 공기유입구(2)를 통하여 유입된 공기와 함께 혼합부(4)에서 혼합된다. 연료와 공기의 혼합비율은 3 : 2이며, 이를 미리 전기히터(5)를 작동시켜 메탄의 초기 반응 온도인 300℃가 유지되도록 한 반응기 내부로 유입시키게 되면 혼합가스는 혼합부(4)를 통과하면서 소용돌이가 일어나게 되어 잘 혼합되어 연소가 시작된다. 일단 연소가 시작되면 전기히터(5)의 전원은 차단된다.Methane, which is a fuel, is supplied through the fuel supply port 1, and the supplied fuel is mixed in the mixing unit 4 with the air introduced through the air inlet 2. The mixing ratio of fuel and air is 3: 2, and when this is introduced into the reactor in which the electric heater 5 is operated in advance to maintain the initial reaction temperature of methane at 300 ° C., the mixed gas passes through the mixing unit 4. The vortex is generated and mixed well to start combustion. Once combustion starts, the power of the electric heater 5 is cut off.

전원을 차단하더라도 연소반응은 계속적으로 이어지며, 결과적으로 공기와 잘 혼합된 메탄은 연소촉매층(6)을 통과하면서 이산화탄소와 물 그리고 소량의 수소와 일산화탄소를 발생시키고 일부는 미반응상태로 2차 촉매인 개질촉매층(7)으로 이동된다. 2차 촉매에서는 메탄연소반응 결과 생성된 이산화탄소와 물이 미반응 메탄과 반응되어 수소와 일산화탄소를 생성시킨다. 연소촉매층(6)과 개질촉매층(7)은 돔형으로 형성시키고 개질촉매층(7)은 연소촉매층(6)을 둘러싸도록 형성함으로써 반응면적을 넓히고 연소촉매에서 발생된 연소열을 효과적으로 이용할 수 있다. 연소촉매층(6)과 개질촉매층(7)은 각각 지지체(8)에 부착된다.Even if the power is cut off, the combustion reaction continues. As a result, methane mixed well with air passes through the combustion catalyst layer 6 to generate carbon dioxide and water, a small amount of hydrogen and carbon monoxide, and some of the secondary catalyst is unreacted. It is moved to the phosphorus reforming catalyst layer 7. In the secondary catalyst, carbon dioxide and water generated from the methane combustion reaction are reacted with unreacted methane to produce hydrogen and carbon monoxide. The combustion catalyst layer 6 and the reforming catalyst layer 7 are formed in a dome shape, and the reforming catalyst layer 7 is formed so as to surround the combustion catalyst layer 6, thereby widening the reaction area and effectively utilizing the heat of combustion generated from the combustion catalyst. The combustion catalyst layer 6 and the reforming catalyst layer 7 are attached to the support 8, respectively.

반응 결과 생성되는 합성가스는 고온(500~800℃)이며, 이 열은 반응기 입구의 핀 달린 열교환기에서 반응기로 유입되는 반응물인 메탄과 공기를 예열함으로써 전체적인 에너지 효율을 높힐 수 있다.The syngas produced as a result of the reaction is a high temperature (500 ~ 800 ℃), this heat can increase the overall energy efficiency by preheating the reactant methane and air flowing into the reactor from the finned heat exchanger at the reactor inlet.

연소촉매는 Pd와 Rh가 각각 1중량%씩 CeO2에 담지되어 코디어라이트에 워쉬 코팅(wash-coating)되어 있는 Pd-Rh/cordierite를 사용하는 것이 바람직하며, 개질 촉매는 NiO, CaO, K2O, SiO2, MgO 등이 알루미나에 담지되어 있는 촉매를 사용하는 것이 바람직하다.Combustion catalyst is preferably Pd-Rh / cordierite which is 1% by weight of Pd and Rh supported on CeO 2 and wash-coated on cordierite, and the reforming catalyst is NiO, CaO, K It is preferable to use a catalyst in which 2 O, SiO 2 , MgO and the like are supported on alumina.

본 발명의 실시예는 다음과 같다.Embodiments of the present invention are as follows.

[실시예 1]Example 1

본 발명에서의 반응 후 배가스의 평형조성은 전산모델(ASPEN PLUS Rel.9.3-1)을 이용하여 구하였다. 여기에서 반응물로서 메탄의 촉매연소 반응과정은 메탄 3몰에 잉여의 물과 발열량을 크게 하기 위하여 양론상인 3/2몰보다 많은 2몰의 산소를 공급하는 것으로 하였으며, 촉매연소 반응온도는 800℃라고 가정하였다. 또한 개질반응은 화학평형에 도달된다고 가정하였으며 개질반응에서의 반응기 온도는 반응온도는 반응조건에 따라 결정되도록 하였고 그때의 배가스 조성을 전산 모사를 통하여 구하였다. 메탄의 촉매연소 과정을 통해 발생되는 열은 개질반응에 모두 사용될 수 있도록 반응기는 단열이 되어 외부와 열출입이 없는 것으로 가정하였다. 전산모사 결과 촉매연소시 메탄의 전환율에 따른 촉매연소 반응 후와 개질 반응 후에서의 생성물의 몰비는 아래의 표 1과 같으며, 온도-메탄의 전환율 그래프는 제3도와 같다.Equilibrium composition of the exhaust gas after the reaction in the present invention was determined using a computer model (ASPEN PLUS Rel.9.3-1). Here, the catalytic combustion reaction of methane as a reactant is to supply 2 moles of oxygen more than 3/2 moles of stoichiometry to increase excess water and calorific value to 3 moles of methane, and the catalytic combustion reaction temperature is 800 ° C. Assumed In addition, it was assumed that the reforming reaction reached chemical equilibrium, and the reactor temperature in the reforming reaction was determined to be determined by the reaction conditions, and the exhaust gas composition at that time was calculated by computer simulation. It is assumed that the reactor is insulated so that heat generated through catalytic combustion of methane can be used for all reforming reactions. As a result of computer simulation, the molar ratios of the products after catalytic combustion and reforming according to the conversion rate of methane during catalytic combustion are shown in Table 1 below, and the graph of temperature-methane conversion rate is shown in FIG.

Figure kpo00002
Figure kpo00002

전산모사 결과 메탄이 연소촉매상에서 연소반응이 일어날 때 메탄의 전환율이 0.45이상일 때 개질반응에 필요한 열을 촉매연소 반응열로 공급될 수 있다는 결론을 얻었으며 그 때의 배가스온도는 680℃이며 배가스조성은 수소가 5.069몰, 일산화탄소가 2.343몰, 미반응 메탄과 이산화탄소도 각각 0.147몰과 0.51몰이 되며 또한 배출되는 수분도 0.637몰이 됨을 알 수 있다.Computer simulations concluded that when methane is burned on the combustion catalyst, the heat required for reforming reaction can be supplied as catalytic combustion heat when the conversion of methane is 0.45 or more.The exhaust gas temperature at that time is 680 ℃ and the exhaust gas composition It can be seen that 5.069 mol of hydrogen, 2.343 mol of carbon monoxide, 0.147 mol and 0.51 mol of unreacted methane and carbon dioxide are also 0.637 mol of water discharged.

[실시예 2]Example 2

반응가스로는 99.9%의 메탄과 21%의 산소(He base)를 사용하여 메탄과 산소가 각각 3대 2의 몰비를 가지도록 MFC를 이용하여 조절한 후 연소용 촉매와 개질용 촉매가 2단으로 구성된 반응기속으로 반응기체가 통과하도록 하였으며, 전체 반응기체의 부피유량은 131.5ml/min으로 흐르게 하여 메탄연소 반응과 개질 반응이 연속적으로 일어나도록 하였다. 또한 촉매 연소시 발생되는 열의 손실을 막기 위하여 반응기 외부를 단열하였다. 반응 후 배가스는 가스 크로마토그래피(영린 600D)의 TCD를 이용하여 분석하였으며 칼럼은 CARBOXEN 1000을 사용하였다.99.9% of methane and 21% of oxygen (He base) were used as the reaction gas. Methane and oxygen were adjusted to have a molar ratio of 3 to 2, respectively. The reactor was allowed to pass through the reactor, and the volumetric flow rate of the entire reactor was 131.5 ml / min to allow the methane combustion and reforming reactions to occur continuously. In addition, the outside of the reactor was insulated to prevent the loss of heat generated during catalytic combustion. After the reaction, the flue gas was analyzed using TCD of gas chromatography (Young Lin 600D), and the column was CARBOXEN 1000.

700℃에서 얻어진 생성물은 상기 반응식 5의 이론치인 6몰의 97.3%에 해당하는 수소 5.84몰과 이론치인 3몰의 일산화탄소 70.7%에 해당하는 2.l2몰이 얻어졌으며, 반응 부산물로 이산화탄소 0.62몰과 물이 0.42몰이 얻어졌다. 그 생성물의 조성은 아래의 표 2 및 제4도와 같다.The product obtained at 700 ° C. obtained 5.84 mol of hydrogen corresponding to 97.3% of 6 mol of the theoretical value of Scheme 5 and 2.l2 mol of 3 mol of carbon monoxide of 70.7% of the theoretical value, and 0.62 mol of carbon dioxide and water as reaction by-products. This 0.42 mol was obtained. The composition of the product is shown in Table 2 and 4 below.

Figure kpo00003
Figure kpo00003

상기 메탄의 촉매연소 반응에서는 촉매로 Pd와 Rh이 각각 1wt%가 CaO2에 담지되어 코디어라이트에 워쉬코팅(wash coating)되어 있는 Pd-Rh/cordierite를 사용하였으며, 수증기와 이산화탄소의 개질을 위한 촉매로는 NiO 22wt%, CaO 13wt%, K2O 6.5wt%, SiO215wt%, MgO 12wt%가 알루미나에 담지되어 있는 촉매를 사용하였다.In the catalytic combustion reaction of methane, Pd-Rh / cordierite wash-coated with cordierite was used because 1 wt% of Pd and Rh were each supported on CaO 2 as a catalyst, and for reforming water vapor and carbon dioxide, As a catalyst, a catalyst in which 22 wt% NiO, 13 wt% CaO, 6.5 wt% K 2 O, 15 wt% SiO 2 , and 12 wt% MgO was supported on alumina was used.

본 발명에 의하여 메탄으로부터 수소와 일산화탄소를 얻는 공정에 있어서, 기존 공정의 수증기 공급설비와 반응열을 공급하기 위한 버너장치를 제외시킬 수 있기 때문에 용량대비 소형의 천연가스 개질장치의 제작이 가능하며 같은 양의 원료에서 1.7~2.8 정도의 수소 일산화탄소 비를 갖는 합성가스를 제조할 수 있으며 반응물로서 메탄과 공기의 비를 3대 2로 조절함으로써 개질반응에 필요한 열을 공급함과 동시에 여분의 수증기가 발생되도록 하여 개질시 발생되는 탄소침적 현상을 방지할 수 있는 장점이 있다.In the process of obtaining hydrogen and carbon monoxide from methane according to the present invention, since it is possible to exclude the burner device for supplying the steam supply equipment and the reaction heat of the existing process, it is possible to manufacture a small natural gas reformer for the capacity and the same amount Synthesis gas with hydrogen carbon monoxide ratio of 1.7 ~ 2.8 can be manufactured from raw materials of. And by controlling the ratio of methane and air to 3 to 2 as reactants, supplying heat for reforming reaction and generating extra steam There is an advantage that can prevent the carbon deposition phenomenon occurs during the reforming.

또한 기존 개질장비 대비 2.3배의 수율(생성되는 수소, 일산화탄소 9몰/기존 4몰)로 합성가스를 얻을 수 있다. 또한 현재 전세계적으로 문제가 되고 있는 이산화탄소의 배출은 기존 공정대비 70% 배출감소 효과가 있으며(본 발명의 결과에서는 반응온도 700℃에서 0.62몰의 이산화탄소가 나오므로 70%((2-0.62)/2임), 또한 그 동안 대기중으로 방출되었던 폐열을 일부 재사용하여 에너지 이용효율을 높일 수 있다.In addition, the synthesis gas can be obtained with a yield of 2.3 times that of the existing reforming equipment (generated hydrogen, carbon monoxide 9 mol / existing 4 mol). In addition, the emission of carbon dioxide, which is currently a problem worldwide, has a 70% emission reduction effect compared to the existing process (in the result of the present invention, since 0.62 mol of carbon dioxide is produced at the reaction temperature of 700 ° C., 70% ((2-0.62) / 2), and also can reuse the waste heat that has been released into the atmosphere during the time to increase energy use efficiency.

Claims (5)

연료와 산소를 공급하기 위한 연료공급구(1)와 공기유입구(2), 연료와 공기를 혼합하기 위한 혼합부(4), 유입된 혼합기체의 발화를 유도하기 위한 전기히터(5), 연소를 촉진하기 위한 개질촉매층(7) 및 수소가스 배출구(3)를 구비하되, 연소촉매층(6) 외부에 개질촉매층(7)이 형성되며, 연소촉매층(6)은 Pd와 Rh가 각각 1중량%씩 CeO2에 담지되어 코디어라이트에 워쉬코팅(wash-coating) 되어 있으며, 개질촉매층(7)은 NiO, CaO, K2O, SiO2, MgO가 알루미나에 담지되어 있는 것을 특징으로 하는 합성가스 제조용 반응기.A fuel supply port 1 and an air inlet port 2 for supplying fuel and oxygen, a mixing unit 4 for mixing fuel and air, an electric heater 5 for inducing ignition of the introduced mixed gas, combustion A reforming catalyst layer (7) and a hydrogen gas outlet (3) for promoting the reforming catalyst layer (7) is formed outside the combustion catalyst layer (6), and the combustion catalyst layer (6) has a Pd and Rh of 1% by weight, respectively. It is supported on each CeO 2 and is wash-coated to cordierite, and the reforming catalyst layer 7 includes NiO, CaO, K 2 O, SiO 2 , and MgO supported on alumina. Manufacturing reactor. 제1항에 있어서, 연소촉매층(6)과 개질촉매층(7)은 지지체(8)에 부착되어 있는 것을 특징으로 하는 합성가스 제조용 반응기.The reactor for syngas production according to claim 1, characterized in that the combustion catalyst layer (6) and the reforming catalyst layer (7) are attached to the support (8). 제1항에 있어서, 연소촉매층(6)과 개질촉매층(7)은 돔형 구조인 것을 특징으로 하는 합성가스 제조용 반응기.The reactor for syngas production according to claim 1, wherein the combustion catalyst layer (6) and the reforming catalyst layer (7) have a dome structure. 열원으로 메탄을 사용하고, 개질반응을 통하여 메탄으로부터 일산화탄소와 수소를 생성시키는 반응에 있어서, 제1항 기재의 반응기를 통하여 열원으로 사용된 메탄의 배가스인 이산화탄소와 수증기를 배출시키지 아니 한 상태에서 하기 반응식 3 내지 6을 유도하기 위하여 이산화탄소와 수증기의 혼합가스에 과잉의 메탄을 가하여 반응시킴으로써 배가스인 이산화탄소와 수증기를 원료로 재사용하는 것을 특징으로 하는 합성가스의 제조방법.In the reaction where methane is used as the heat source and carbon monoxide and hydrogen are generated from the methane through reforming reaction, carbon dioxide and water vapor, which are the exhaust gas of methane used as the heat source through the reactor according to claim 1, are not discharged. Method of producing a synthesis gas, characterized in that to recycle the carbon dioxide and water vapor as a raw material by reacting by adding excess methane to the mixed gas of carbon dioxide and water vapor to induce the reaction schemes 3 to 6. [반응식 3]Scheme 3 CH4+3/2O2↔ CO2+H2OCH 4 + 3 / 2O 2 ↔ CO 2 + H 2 O [반응식 4]Scheme 4 CH4+CO2↔ 2CO+2H2 CH 4 + CO 2 ↔ 2CO + 2H 2 [반응식 5]Scheme 5 CH4+H2O ↔ CO+3H2 CH 4 + H 2 O ↔ CO + 3H 2 [반응식 6(반응식 3, 4, 5의 전체 반응식)][Scheme 6 (whole scheme of schemes 3, 4, 5)] 3CH4+3/2O2↔ 3CO+6H2 3CH 4 + 3 / 2O 2 ↔ 3CO + 6H 2 제4항에 있어서, 연소반응과 개질반응이 반응기 내에서 동시에 일어나도록 하는 것을 특징으로 하는 합성가스의 제조방법.5. A process according to claim 4, wherein the combustion reaction and the reforming reaction occur simultaneously in the reactor.
KR1019970068685A 1997-12-15 1997-12-15 Reactor and process for preparing synthetic gas KR100246079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970068685A KR100246079B1 (en) 1997-12-15 1997-12-15 Reactor and process for preparing synthetic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970068685A KR100246079B1 (en) 1997-12-15 1997-12-15 Reactor and process for preparing synthetic gas

Publications (2)

Publication Number Publication Date
KR19990049702A KR19990049702A (en) 1999-07-05
KR100246079B1 true KR100246079B1 (en) 2000-03-15

Family

ID=19527300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970068685A KR100246079B1 (en) 1997-12-15 1997-12-15 Reactor and process for preparing synthetic gas

Country Status (1)

Country Link
KR (1) KR100246079B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395002B1 (en) * 1999-05-27 2003-08-19 할도르 토프쉐 에이/에스 Synthesis gas production by steam reforming
KR101076110B1 (en) 2009-03-26 2011-10-21 현대제철 주식회사 Preparation method and preparation apparatus of syngas containing hydrogen and carbon monoxide
KR101125650B1 (en) * 2004-12-10 2012-03-27 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR20230136268A (en) 2022-03-18 2023-09-26 한국화학연구원 Capture-free hydrocarbon reforming reactor and reforming method for CO2 reduction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445183B1 (en) * 2001-11-29 2004-08-21 주식회사 경동도시가스 Plate Type Steam Reformer
KR100905638B1 (en) * 2007-07-25 2009-06-30 한국에너지기술연구원 Syngas generation reactor and syngas generation method
KR102333666B1 (en) * 2021-05-11 2021-12-02 한국기계연구원 Co2-free hydrogen production system and hydrogen production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217605A (en) * 1983-05-26 1984-12-07 Babcock Hitachi Kk Apparatus for generating hydrogen
JPH04160002A (en) * 1990-10-22 1992-06-03 Takuma Sogo Kenkyusho:Kk Method and device for reforming methanol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217605A (en) * 1983-05-26 1984-12-07 Babcock Hitachi Kk Apparatus for generating hydrogen
JPH04160002A (en) * 1990-10-22 1992-06-03 Takuma Sogo Kenkyusho:Kk Method and device for reforming methanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395002B1 (en) * 1999-05-27 2003-08-19 할도르 토프쉐 에이/에스 Synthesis gas production by steam reforming
KR101125650B1 (en) * 2004-12-10 2012-03-27 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR101076110B1 (en) 2009-03-26 2011-10-21 현대제철 주식회사 Preparation method and preparation apparatus of syngas containing hydrogen and carbon monoxide
KR20230136268A (en) 2022-03-18 2023-09-26 한국화학연구원 Capture-free hydrocarbon reforming reactor and reforming method for CO2 reduction

Also Published As

Publication number Publication date
KR19990049702A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
US4618451A (en) Synthesis gas
US5740667A (en) Process for abatement of nitrogen oxides in exhaust from gas turbine power generation
AU696238B2 (en) Process for the preparation of hydrogen and carbon monoxide containing mixtures
KR100423544B1 (en) Compact steam reformer
KR970006922B1 (en) Process for the preparation of carbon monoxide rich gas
NZ501741A (en) Process for heat integration of an autothermal reformer and cogeneration power plant
US4758375A (en) Conversion process
MY121598A (en) Integration of steam reforming unit and cogeneration power plant
PL350136A1 (en) Secondary reforming process and burner
Iaquaniello et al. Natural gas catalytic partial oxidation: A way to syngas and bulk chemicals production
EP4228997A1 (en) Process for producing a gas stream comprising carbon monoxide
JP2023517755A (en) Hydrocarbon production
WO2003031325A2 (en) Steam reformer for methane with internal hydrogen separation and combustion
KR100246079B1 (en) Reactor and process for preparing synthetic gas
GB2139644A (en) Synthesis gas
US5632787A (en) Process and device for manufacturing synthesis gas and application
CA1331696C (en) Gas turbines
KR100570375B1 (en) Synthesis gas production system and method
KR20080075130A (en) Steam generation apparatus and method
KR101401108B1 (en) A reactor for producing syn-gas using tri-reforming reaction and a tri-reforming reaction system using same
EP4157790B1 (en) A process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst
CN1186428C (en) Technology for preparing synthetic gas by heat-exchange coke oven gas pressured catalyzing part oxidation method
CN2758234Y (en) Thermal activation type multistage conversion reactor having internal heat exchanger
Wakahara 02lOO345 Manufacture of synthesis gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee