KR100243833B1 - Method of highly activating hydrodesulfurization catalysts - Google Patents

Method of highly activating hydrodesulfurization catalysts Download PDF

Info

Publication number
KR100243833B1
KR100243833B1 KR1019980000746A KR19980000746A KR100243833B1 KR 100243833 B1 KR100243833 B1 KR 100243833B1 KR 1019980000746 A KR1019980000746 A KR 1019980000746A KR 19980000746 A KR19980000746 A KR 19980000746A KR 100243833 B1 KR100243833 B1 KR 100243833B1
Authority
KR
South Korea
Prior art keywords
desulfurization catalyst
high activation
desulfurization
molybdenum
activation method
Prior art date
Application number
KR1019980000746A
Other languages
Korean (ko)
Other versions
KR19990065457A (en
Inventor
임선기
김도완
권오학
조대희
Original Assignee
김선동
쌍용정유주식회사
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선동, 쌍용정유주식회사, 윤덕용, 한국과학기술원 filed Critical 김선동
Priority to KR1019980000746A priority Critical patent/KR100243833B1/en
Publication of KR19990065457A publication Critical patent/KR19990065457A/en
Application granted granted Critical
Publication of KR100243833B1 publication Critical patent/KR100243833B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Abstract

본 발명은 탈황촉매를 질화처리, 소성 및 황화처리하여, 고활성화하는 방법에 관한 것이다. 본 발명에 의하면, 탈황촉매를 질화제로 400 내지 800℃에서 질화처리하고, 300 내지 700℃에서 소성한 다음, 황화제로 300 내지 500℃에서 황화처리하여, 탈황촉매를 고활성화한다. 본 발명의 고활성화 방법에 의하면 탈황촉매의 활성을 종래의 방법에 비해 훨씬 더 증가시킬 수 있으며, 조작이 간단하여 정유 공정에서 이용되기에 적합하다.The present invention relates to a method for high activation by nitrifying, calcining and sulfiding a desulfurization catalyst. According to the present invention, the desulfurization catalyst is nitrified at 400 to 800 ° C. with a nitriding agent, calcined at 300 to 700 ° C., and then sulfided at 300 to 500 ° C. with a sulfiding agent to highly activate the desulfurization catalyst. According to the high activation method of the present invention, the activity of the desulfurization catalyst can be increased even more than the conventional method, and the operation is simple and suitable for use in oil refining processes.

Description

탈황촉매의 고활성화 방법High activation method of desulfurization catalyst

본 발명은 탈황촉매의 고활성화 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 탈황촉매를 질화처리, 소성 및 황화처리하여, 고활성화하는 방법에 관한 것이다.The present invention relates to a high activation method of the desulfurization catalyst. More specifically, the present invention relates to a method of high activation by nitrifying, calcining and sulfiding a desulfurization catalyst.

일반적으로, 탈황 공정은 원유 중에 포함되어 있는 유황 성분을 촉매상에서 수소와 반응시켜 제거하는 공정을 의미하며, 넓은 의미로는 전기 공정과 동시에 수반되는 수소화 반응, 수소화 분해반응 등 수소화 처리공정 전체를 포함한다. 탈황 공정은 각종 유분을 사용 전에 미리 처리함으로써 유황 성분의 근원적인 제거가 가능하여 현재 정유 공정에서 중요한 위치를 차지하고 있으며, 최근에는 환경보전을 위한 황함유량에 관한 엄격한 기준치의 적용, 석유화학 기초원료인 나프타 또는 가솔린, 경유 등 경질유 수요의 급격한 증가 등으로 인하여 고효율 탈황 공정에 대한 필요성이 날로 증대되고 있다.In general, the desulfurization process refers to a process for removing sulfur components contained in crude oil by reacting with hydrogen on a catalyst. In a broad sense, the desulfurization process includes the entire hydrogenation process such as a hydrogenation reaction and a hydrocracking reaction accompanying the electric process. do. The desulfurization process is able to remove sulfur components by treating various oils before use, and thus occupies an important position in the refinery process.In recent years, strict standards for sulfur content for environmental preservation are applied, and basic petrochemical raw materials The demand for high efficiency desulfurization processes is increasing day by day due to the rapid increase in the demand for light oil such as naphtha, gasoline and diesel.

한편, 탈황 공정에는 일반적으로 알루미나 담체에 몰리브데늄(Mo)이나 텅스텐(W) 및 코발트(Co)나 니켈(Ni) 등의 금속이 담지된 촉매가 거의 대부분 이용되고 있으며, 전기 금속은 산화물 상태로 시판된다. 그러나, 산화물 상태의 탈황촉매는 촉매활성이 낮아, 실제 공정에서는 황화물 상태로 변환하여 촉매활성을 증가시켜 사용한다. 다시 말해, 실제 정유 공정에서는 탈황 반응기에 탈황촉매를 투입한 다음, 액체 또는 기체상의 황함유 화합물을 이용하여 촉매의 상태를 황화상태로 전환하는 황화 공정이 필요하다.Meanwhile, in the desulfurization process, catalysts in which molybdenum (Mo) or tungsten (W) and metals such as cobalt (Co) and nickel (Ni) are generally supported on an alumina carrier are generally used. Is sold. However, the desulfurization catalyst in the oxide state is low in catalytic activity, and in actual process, the catalyst is converted into a sulfide state to increase the catalytic activity. In other words, in an actual refinery process, a sulfurization process is required in which a desulfurization catalyst is added to a desulfurization reactor, and then the state of the catalyst is converted to a sulfidation state using a liquid or gaseous sulfur-containing compound.

따라서, 탈황촉매의 황화공정에 관한 많은 연구가 수행되어 왔으며, 미합중국 특허 제 5,062,947호 및 제 5,001,101호에는 탈황촉매를 고온에서 황화처리하여 촉매활성을 증가시키는 방법이 개시되어 있다. 또한, 톱소(Topsoe) 등은 다양한 황화처리가 촉매활성에 미치는 영향을 보고하고 있다(참조: H. Topsoe et al., Hydrotreating Catalysis, Springer-Verlag, Berlin, pp. 80-83(1996)). 그러나, 전기의 방법들에 의해 활성화된 탈황촉매의 촉매활성 역시 고효율 탈황 공정에 대한 필요성을 충분히 만족시키지는 못하였으며, 보다 활성화된 탈황촉매의 개발이 절실히 요구되어 왔다.Therefore, many studies on the sulfidation process of the desulfurization catalyst have been conducted, and US Patent Nos. 5,062,947 and 5,001,101 disclose a method of increasing the catalytic activity by sulfiding a desulfurization catalyst at a high temperature. Topsoe et al. Also report the effects of various sulfidation treatments on catalytic activity (see H. Topsoe et al., Hydrotreating Catalysis, Springer-Verlag, Berlin, pp. 80-83 (1996)). However, the catalytic activity of the desulfurization catalyst activated by the foregoing methods also did not sufficiently satisfy the need for a high efficiency desulfurization process, and the development of a more activated desulfurization catalyst has been urgently required.

이에, 본 발명자들은 종래의 탈황촉매의 활성화 방법이 갖는 문제점을 극복하고자 예의 연구 노력한 결과, 탈황촉매를 질화처리, 소성 및 황화처리하므로써, 탈황촉매의 활성을 보다 증대시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive studies to overcome the problems of the conventional method for activating the desulfurization catalyst. As a result, the present inventors confirmed that the desulfurization catalyst can be further increased by nitriding, calcining, and sulfiding the catalyst. The invention was completed.

결국, 본 발명의 목적은 탈황촉매를 질화처리, 소성 및 황화처리하여, 고활성화시키는 방법을 제공하는 것이다.After all, it is an object of the present invention to provide a method of nitrifying, calcining and sulfiding a desulfurization catalyst to highly activate it.

도 1은 본 발명 및 종래 기술에 의해 활성화된 고표면적 알루미나에 담지된 탈황촉매의 티오펜 전환율을 도시한 그래프,1 is a graph showing the thiophene conversion rate of a desulfurization catalyst supported on high surface area alumina activated by the present invention and the prior art;

도 2는 본 발명 및 종래 기술에 의해 활성화된 저표면적 알루미나에 담지된 탈황촉매의 티오펜 전환율을 도시한 그래프.2 is a graph showing the thiophene conversion rate of the desulfurization catalyst supported on the low surface area alumina activated by the present invention and the prior art.

이하, 본 발명에 의한 탈황촉매의 고활성화 방법을 단계별로 보다 구체적으로 설명하고자 한다.Hereinafter, the high activation method of the desulfurization catalyst according to the present invention will be described in more detail step by step.

제 1단계:탈황촉매의 질화처리 Step 1: Nitriding Desulfurization Catalyst

담체에 담지된 탈황촉매를 질화제, 바람직하게는 암모니아 또는 수소의 함량이 30 내지 80 부피%인 질소/수소 혼합가스와 400 내지 800℃에서 반응시켜 탈황촉매 질화물을 수득한다.The desulfurization catalyst supported on the carrier is reacted with a nitriding agent, preferably a nitrogen / hydrogen mixed gas having an ammonia or hydrogen content of 30 to 80% by volume at 400 to 800 ° C. to obtain a desulfurization catalyst nitride.

이 때, 담체로는 알루미나, 실리카, 티타니아, 마그네시아 또는 활성탄을 사용하고, 탈황촉매로는 코발트-몰리브데늄, 몰리브데늄-니켈 또는 텅스텐-니켈 등을 사용하나, 코발트, 몰리브데늄, 니켈 또는 텅스텐이 포함된 탈황촉매라면 어느 것이든 가능하다. 담체에 담지된 탈황촉매와 질화제의 반응은 질화제를 담체에 담지된 탈황촉매 1g당 200 내지 300cc/min의 유량으로 유입하면서, 반응기의 온도를 분당 3 내지 7℃의 승온속도로 400 내지 800℃까지 천천히 가온하고, 전기 온도에서 30분 내지 120분 동안 유지시켜 수행한다.In this case, alumina, silica, titania, magnesia, or activated carbon are used as the carrier, and cobalt-molybdenum, molybdenum-nickel, or tungsten-nickel is used as the desulfurization catalyst, but cobalt, molybdenum, nickel, and the like are used. Or any desulfurization catalyst containing tungsten. The reaction between the desulfurization catalyst and the nitriding agent supported on the carrier is carried out at a flow rate of 200 to 300 cc / min per 1 g of the desulfurization catalyst supported on the carrier, and the temperature of the reactor is 400 to 800 at a heating rate of 3 to 7 ° C per minute. Warmed slowly to < RTI ID = 0.0 > C, < / RTI >

제 2단계:탈황촉매의 소성처리 Second step: firing of the desulfurization catalyst

전기 단계에서 수득한 탈황촉매 질화물을 300 내지 700℃에서 소성하여 탈황촉매 산화물을 수득한다. 이 때, 탈황촉매 질화물의 소성은 탈황촉매 질화물의 온도를 상온으로 낮추고, 분당 5 내지 15℃의 승온속도로 300 내지 700℃까지 가온한 다음, 전기 온도에서 3 내지 7시간 동안 유지시켜 수행한다.The desulfurization catalyst nitride obtained in the previous step is calcined at 300 to 700 ° C. to obtain a desulfurization catalyst oxide. At this time, the firing of the desulfurization catalyst nitride is carried out by lowering the temperature of the desulfurization catalyst nitride to room temperature, warming up to 300 to 700 ° C. at a temperature increase rate of 5 to 15 ° C. per minute, and then maintaining it at an electric temperature for 3 to 7 hours.

제 3단계:탈황촉매의 황화처리 Step 3: Sulfation Treatment of Desulfurization Catalyst

전기 단계에서 수득한 탈황촉매 산화물을 황화제, 바람직하게는 H2S의 함량이 5 내지 15 부피%인 H2S/H2혼합가스 또는 액상 황화물과 300 내지 500℃에서 반응시켜 고활성화된 코발트-몰리브데늄 탈황촉매 황화물을 제조한다. 이 때, 액상 황화물의 구체적인 예로는 이황화탄소, 디메틸설파이드(DSM) 또는 디메틸디설파이드(DMDS)가 있으며, 탈황촉매 산화물과 황화제의 반응은 300 내지 500℃에서 황화제를 탈황촉매 산화물 20mg당 40 내지 80cc/min의 유량으로 1 내지 3시간동안 유입하여 수행한다.A desulfurization catalyst oxide obtained in electrical phase sulfurizing agent, and preferably the content of H 2 S 5 to 15% by volume of H 2 S / H 2 mixed gas or liquid sulfide and the reacted at 300 to 500 ℃ and active cobalt Molybdenum desulfurization catalyst sulfides are prepared. In this case, specific examples of the liquid sulfide include carbon disulfide, dimethyl sulfide (DSM) or dimethyl disulfide (DMDS), and the reaction between the desulfurization catalyst oxide and the sulfiding agent is performed at a temperature of 300 to 500 ° C. for 40 mg / 20 mg of the sulfiding catalyst oxide. Inflow is carried out for 1 to 3 hours at a flow rate of 80 cc / min.

이하, 실시예에 의하여 본 발명을 보다 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

이들 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples according to the gist of the present invention.

참고예 1:고표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 제조 Reference Example 1 Preparation of Co-Mo Desulfurization Catalyst Supported on Alumina of High Surface Area

고표면적의 알루미나에 코발트의 담지량이 5%, 몰리브덴의 담지량이 16%가 되도록 코발트나이트레이트 헥사하이드레이트(Co(NO3)6H2O) 및 암모니움헵타몰리브데이트 테트라하이드레이트((NH4)6Mo7O24·4H2O)를 담지한 다음, 건조하고 500℃에서 소성하여, 고표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매를 제조하였다.Cobalt nitrate hexahydrate (Co (NO 3 ) 2 ˙ 6H 2 O) and ammonium heptamolybdate tetrahydrate ((NH 4 ) so that the loading of cobalt is 5% and molybdenum is 16% in high surface area alumina 6 Mo 7 O 24 .4H 2 O) was supported, dried and calcined at 500 ° C. to prepare a cobalt-molybdenum desulfurization catalyst supported on high surface area alumina.

참고예 2:저표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 제조 Reference Example 2: Preparation of Co-Mo Desulfurization Catalyst Supported on Alumina of Low Surface Area

지표면적의 알루미나 담체를 사용하는 것을 제외하고는, 참고예 1과 동일한 방법으로 저표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매를 제조하였다.A cobalt-molybdenum desulfurization catalyst supported on alumina having a low surface area was prepared in the same manner as in Reference Example 1, except that an alumina carrier having a surface area was used.

실시예 1:고표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 고활성화 (I) Example 1 High Activation of Co-Mo Desulfurization Catalyst Supported on High Surface Area Alumina (I)

참고예 1에서 제조한 고표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매 1g을 수정(quartz) 반응기에 넣고, 암모니아를 250cc/min의 유량으로 유입하면서 반응기의 온도를 분당 5℃의 승온속도로 700℃까지 천천히 가온한 다음, 전기 온도에서 1시간동안 유지시켜 탈황촉매 질화물을 얻었다. 전기 탈황촉매 질화물의 온도를 상온으로 낮추어 고온 전기로에 넣고 분당 10℃의 승온속도로 500℃까지 가온한 다음, 전기 온도에서 5시간동안 유지시켜 탈황촉매 산화물을 수득하였다. 이 탈황촉매 산화물 20mg을 스테인레스 스틸 반응기에 넣고 400℃에서 H2S의 함량이 10%인 H2S/H2혼합가스를 60cc/min의 유량으로 2시간동안 유입하여, 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.1 g of cobalt-molybdenum desulfurization catalyst supported on the high surface area alumina prepared in Reference Example 1 was placed in a quartz reactor, and the temperature of the reactor was increased at a rate of 5 ° C. per minute while introducing ammonia at a flow rate of 250 cc / min. The mixture was slowly heated to 700 ° C., and then maintained at an electric temperature for 1 hour to obtain a desulfurization catalyst nitride. The temperature of the electrodesulfurization catalyst nitride was lowered to room temperature, placed in a high temperature electric furnace, and warmed up to 500 ° C at a heating rate of 10 ° C per minute, and then maintained at the electrical temperature for 5 hours to obtain a desulfurization catalyst oxide. 20 mg of this desulfurization catalyst oxide was placed in a stainless steel reactor, and a mixture of H 2 S / H 2 containing 10% H 2 S at 400 ° C. was introduced for 2 hours at a flow rate of 60 cc / min to cobalt-molybdenum desulfurization. Catalytic sulfides were prepared.

실시예 2:고표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 고활성화 (II) Example 2: High Activation of Co-Mo Desulfurization Catalyst Supported on High Surface Area Alumina (II)

질화처리시 반응기의 온도를 500℃로 가온하는 것을 제외하고는, 실시예 1과 동일한 방법으로 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.A cobalt-molybdenum desulfurization catalyst sulfide was prepared in the same manner as in Example 1, except that the temperature of the reactor was heated to 500 ° C. during nitriding.

실시예 3:저표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 고활성화 (I) Example 3 High Activation of Co-Mo Desulfurization Catalyst Supported on Low Surface Area Alumina (I)

참고예 2에서 제조한 저표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.A cobalt-molybdenum desulfurization catalyst sulfide was prepared in the same manner as in Example 1, except that the cobalt-molybdenum desulfurization catalyst supported on the low surface area alumina prepared in Reference Example 2 was used.

실시예 4:저표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 고활성화 (II) Example 4 High Activation of Co-Mo Desulfurization Catalyst Supported on Low Surface Area Alumina (II)

참고예 2에서 제조한 저표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매를 사용하는 것을 제외하고는, 실시예 2와 동일한 방법으로 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.A cobalt-molybdenum desulfurization catalyst sulfide was prepared in the same manner as in Example 2, except that the cobalt-molybdenum desulfurization catalyst supported on the low surface area alumina prepared in Reference Example 2 was used.

비교실시예 1:고표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 활성화(I) Comparative Example 1 Activation of Co-Mo Desulfurization Catalyst Supported on Alumina of High Surface Area (I)

참고예 1에서 제조한 고표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매 20mg을 스테인레스 스틸 반응기에 넣고, 400℃에서 H2S의 함량이 10%인 H2S/H2혼합가스를 60cc/min의 유량으로 2시간동안 유입하여, 종래 기술에 의하여 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.20 mg of cobalt-molybdenum desulfurization catalyst supported on the high surface area alumina prepared in Reference Example 1 was placed in a stainless steel reactor, and 60 cc of H 2 S / H 2 mixed gas containing 10% H 2 S at 400 ° C. was used. Inflow for 2 hours at a flow rate of / min, to prepare a cobalt- molybdenum desulfurization catalyst sulfide by the prior art.

비교실시예 2:저표면적의 알루미나에 담지된 Co-Mo 탈황촉매의 활성화(I) Comparative Example 2: Activation of Co-Mo Desulfurization Catalyst Supported on Low Surface Area Alumina (I)

참고예 2에서 제조한 저표면적의 알루미나에 담지된 코발트-몰리브데늄 탈황촉매를 사용하는 것을 제외하고는, 비교실시예 1과 동일한 방법으로 종래 기술에 의하여 코발트-몰리브데늄 탈황촉매 황화물을 제조하였다.A cobalt-molybdenum desulfurization catalyst sulfide was prepared in the same manner as in Comparative Example 1 except that the cobalt-molybdenum desulfurization catalyst supported on the low surface area alumina prepared in Reference Example 2 was used. It was.

실시예 5:활성화된 Co-Mo 탈황촉매의 촉매활성(I) Example 5 Catalytic Activity of Activated Co-Mo Desulfurization Catalyst (I)

실시예 1 및 비교실시예 1에서 제조한 코발트-몰리브데늄 탈황촉매 황화물상에서, 티오펜의 수소화 탈황반응을 티오펜은 0.035cc/min의 유량으로, 수소는 150cc/min의 유량으로 유입하면서 400℃에서 수행하였다. 생성물을 가스크로마토그래프(HP-5890, Hewlett-Packard, 미국)를 이용하여 정량분석하고 티오펜의 전환율을 측정하여, 그 결과를 제 1도에 나타내었다. 제 1도에서 보듯이, 실시예 1(-○-)에서 제조한 코발트-몰리브데늄 탈황촉매 황화물의 티오펜 전환율이 비교실시예 1(-●-)에서 제조한 코발트-몰리브데늄 탈황촉매 황화물에 비해 20% 이상 높다는 것을 알 수 있었다.On the cobalt-molybdenum desulfurization catalyst sulfides prepared in Example 1 and Comparative Example 1, hydrodesulfurization of thiophene was carried out at a flow rate of 0.035 cc / min for thiophene and 400 cc with hydrogen flowing at a flow rate of 150 cc / min. It was carried out at ℃. The product was quantitatively analyzed using a gas chromatograph (HP-5890, Hewlett-Packard, USA) and the conversion rate of thiophene was measured, and the result is shown in FIG. As shown in FIG. 1, the thiophene conversion rate of the cobalt-molybdenum desulfurization catalyst sulfide prepared in Example 1 (-○-) was the cobalt-molybdenum desulfurization catalyst prepared in Comparative Example 1 (-●-). It can be seen that it is more than 20% higher than the sulfide.

실시예 6:활성화된 Co-Mo 탈황촉매의 촉매활성(II) Example 6: Catalytic Activity of Activated Co-Mo Desulfurization Catalyst (II)

실시예 4 및 비교실시예 2에서 제조한 코발트-몰리브데늄 탈황촉매 황화물을 사용하는 것을 제외하고는, 실시예 5와 동일한 방법으로 티오펜의 전환율을 측정하여, 그 결과를 제 2도에 나타내었다. 제 2도에서 보듯이, 실시예 4(-○-)에서 제조한 코발트-몰리브데늄 탈황촉매 황화물의 티오펜 전환율이 비교실시예 2(-●-)에서 제조한 코발트-몰리브데늄 탈황촉매 황화물에 비해 10% 이상 높다는 것을 알 수 있었다.Except for using the cobalt- molybdenum desulfurization catalyst sulfides prepared in Example 4 and Comparative Example 2, the conversion rate of thiophene was measured in the same manner as in Example 5, and the results are shown in FIG. It was. As shown in FIG. 2, the thiophene conversion rate of the cobalt-molybdenum desulfurization catalyst sulfide prepared in Example 4 (-○-) was the cobalt-molybdenum desulfurization catalyst prepared in Comparative Example 2 (-●-). It was found to be 10% higher than the sulfide.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 탈황촉매를 질화처리, 소성 및 황화처리하여, 고활성화시키는 방법을 제공한다. 본 발명의 고활성화 방법에 의하면 탈황촉매의 활성을 종래의 방법에 비해 훨씬 더 증가시킬 수 있으며, 비교적 조작이 간단하여 정유 공정에서 이용되기에 적합하다.As described and demonstrated in detail above, the present invention provides a method of nitrifying, calcining and sulfiding a desulfurization catalyst to highly activate it. According to the high activation method of the present invention, the activity of the desulfurization catalyst can be increased even more than the conventional method, and the operation is relatively simple and suitable for use in oil refining processes.

Claims (9)

(i) 담체에 담지된 탈황촉매를 질화제와 400 내지 800℃에서 반응시켜 탈황촉매 질화물을 수득하는 단계;(i) reacting the desulfurization catalyst supported on the carrier with the nitriding agent at 400 to 800 ° C. to obtain a desulfurization catalyst nitride; (ii) 전기 단계에서 수득한 탈황촉매 질화물을 300 내지 700℃에서 소성하여 탈황촉매 산화물을 수득하는 단계; 및,(ii) calcining the desulfurization catalyst nitride obtained in the previous step at 300 to 700 ° C. to obtain a desulfurization catalyst oxide; And, (iii) 전기 단계에서 수득한 탈황촉매 산화물을 황화제와 300 내 500℃에서 반응시켜 코발트-몰리브데늄 탈황촉매 황화물을 제조하는 단계를 포함하는 탈황촉매의 고활성화 방법.(iii) reacting the desulfurization catalyst oxide obtained in the previous step with a sulfiding agent at 500 ° C. in 300 to produce a cobalt-molybdenum desulfurization catalyst sulfide. 제 1항에 있어서,The method of claim 1, 담체는 알루미나, 실리카, 티타니아, 마그네시아 및 활성탄으로 구성된 그룹 중에서 선택되는 것임을 특징으로 하는The carrier is selected from the group consisting of alumina, silica, titania, magnesia and activated carbon 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 탈황촉매는 코발트-몰리브데늄, 몰리브데늄-니켈 및 텅스텐-니켈로 구성된 그룹 중에서 선택되는 것임을 특징으로 하는The desulfurization catalyst is selected from the group consisting of cobalt-molybdenum, molybdenum-nickel and tungsten-nickel 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 질화제는 암모니아 또는 수소의 함량이 30 내지 80부피%인 질소/수소 혼합가스인 것을 특징으로 하는The nitriding agent is a nitrogen / hydrogen mixed gas having an ammonia or hydrogen content of 30 to 80% by volume. 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 담체에 담지된 탈황촉매와 질화제의 반응은 질화제를 담체에 담지된 탈황촉매 1g당 200 내지 300cc/min의 유량으로 유입하면서, 반응기의 온도를 분당 3 내지 7℃의 승온속도로 400 내지 800℃까지 천천히 가온하고, 전기 온도에서 30분 내지 120분동안 유지시키는 것임을 특징으로 하는The reaction between the desulfurization catalyst and the nitriding agent supported on the carrier is carried out at a flow rate of 200 to 300 cc / min per 1 g of the desulfurization catalyst supported on the carrier, and the temperature of the reactor is 400 to 800 at a heating rate of 3 to 7 ° C per minute. Slowly warm up to ℃, it is characterized in that it is maintained for 30 minutes to 120 minutes at the electrical temperature 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 탈황촉매 질화물의 소성은 탈황촉매 질화물의 온도를 상온으로 낮추고, 분당 5 내지 15℃의 승온속도로 300 내지 700℃까지 가온한 다음, 전기 온도에서 3 내지 7시간동안 유지시키는 것임을 특징으로 하는Firing of the desulfurization catalyst nitride is characterized by lowering the temperature of the desulfurization catalyst nitride to room temperature, warming up to 300 to 700 ° C. at a heating rate of 5 to 15 ° C. per minute, and then maintaining it at an electric temperature for 3 to 7 hours. 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 황화제는 H2S의 함량이 5 내지 15부피%인 H2S/H2혼합가스또는 액상 황화물인 것을 특징으로 하는Sulfurizing agent is characterized in that the content of H 2 S 5 to 15% by volume of H 2 S / H 2 mixed gas or liquid sulfide 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 7항에 있어서,The method of claim 7, wherein 액상 황화물은 이황화탄소, 디메틸설파이드(DSM) 및 디메틸디설파이드(DMDS)로 구성된 그룹 중에서 선택되는 것임을 특징으로 하는Liquid sulfide is selected from the group consisting of carbon disulfide, dimethyl sulfide (DSM) and dimethyl disulfide (DMDS) 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst. 제 1항에 있어서,The method of claim 1, 탈황촉매 산화물과 황화제의 반응은 300 내지 500℃에서 황화제를 탈황촉매 산화물 20mg당 40 내지 80cc/min의 유량으로 1 내지 3시간동안 유입하는 것임을 특징으로 하는The reaction of the desulfurization catalyst oxide with the sulfiding agent is characterized in that the sulfiding agent is introduced at 300 to 500 ° C. at a flow rate of 40 to 80 cc / min per 20 mg of the desulfurization catalyst oxide for 1 to 3 hours. 탈황촉매의 고활성화 방법.High activation method of desulfurization catalyst.
KR1019980000746A 1998-01-13 1998-01-13 Method of highly activating hydrodesulfurization catalysts KR100243833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980000746A KR100243833B1 (en) 1998-01-13 1998-01-13 Method of highly activating hydrodesulfurization catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980000746A KR100243833B1 (en) 1998-01-13 1998-01-13 Method of highly activating hydrodesulfurization catalysts

Publications (2)

Publication Number Publication Date
KR19990065457A KR19990065457A (en) 1999-08-05
KR100243833B1 true KR100243833B1 (en) 2000-02-01

Family

ID=19531386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980000746A KR100243833B1 (en) 1998-01-13 1998-01-13 Method of highly activating hydrodesulfurization catalysts

Country Status (1)

Country Link
KR (1) KR100243833B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999148A (en) * 2017-10-10 2018-05-08 浙江海洋大学 A kind of rejuvenation method of water solution system desulphurization catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467769B1 (en) * 2000-08-24 2005-01-24 주식회사 포스코 Method of preparing gammma-alumina catalyst for high temperature desulfurization
KR100891794B1 (en) * 2002-12-23 2009-04-07 주식회사 포스코 A method for manufacturing stabilized maghemite catalyst for desulfurization
KR100586163B1 (en) * 2004-08-31 2006-06-08 재단법인서울대학교산학협력재단 Preparation of cobalt-molybdenum sulfide catalyst supported on alumina for deep hydrodesulfurization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999148A (en) * 2017-10-10 2018-05-08 浙江海洋大学 A kind of rejuvenation method of water solution system desulphurization catalyst
CN107999148B (en) * 2017-10-10 2020-11-06 浙江海洋大学 Reactivation method of aqueous solution system desulfurization catalyst

Also Published As

Publication number Publication date
KR19990065457A (en) 1999-08-05

Similar Documents

Publication Publication Date Title
DK2099565T3 (en) Hydrogen treatment catalyst, process for their preparation and use thereof
CA2553855C (en) A method of restoring catalytic activity of a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
US2880171A (en) Hydrodesulfurization of hydrocarbons with catalyst composed of molybdenum and two members of the iron group metals
JP5392979B2 (en) Selective hydrogenation process using sulfurization catalyst.
JP4676488B2 (en) Hydrotreating catalyst containing group V metal
CA2553857C (en) A method of restoring catalytic activity of a spent hydroprocessing catalyst, a spent hydroprocessing catalyst having restored catalytic activity and a hydroprocessing process
US4287050A (en) Catalytic hydrodesulfurization of organic compounds employing alumina promoted with zinc titanate, cobalt and molybdenum as the catalytic agent
JP5563259B2 (en) Selective hydrogenation process using a sulfurization catalyst having a specific composition
JP2007533834A (en) Method for producing low sulfur distillate
EP0191960A1 (en) Carbon-containing molybdenum and tungsten sulfide catalysts
JP2010089087A (en) Process for regeneration of catalyst for treatment of hydrocarbon
JP2637373B2 (en) Synthesis of methyl mercaptan from dimethyl disulfide
US4389304A (en) Catalytic hydrodesulfurization or hydrodenitrogenation of organic compounds employing alumina promoted with zinc, titanium, cobalt and molybdenum as the catalytic agent
KR20160085248A (en) Process for preparing a hydrotreating catalyst
JPH03217235A (en) Preparation and use of sulfidized catalyst
JP5053100B2 (en) Hydrotreating catalyst, process for its production and use thereof
US4522709A (en) Catalytic hydrodesulfurization or hydrodenitrogenation
KR20030082547A (en) A new aluminum trihydroxide phase and catalysts made therefrom
KR100243833B1 (en) Method of highly activating hydrodesulfurization catalysts
EP2334429A2 (en) Process for sulfiding catalysts for a sour gas shift process
US4371458A (en) Catalytic compounds employing alumina promoted with zinc, titanium, cobalt and molybdenum as the catalytic agent
JP2007501701A (en) Catalysts for the hydrotreatment and / or hydrocracking of hydrocarbons and their preparation
US4652546A (en) Hydrogel derived catalyst of zinc titanate and alumina promoted with cobalt and molybdenum for hydrodesulfurization or hydrodenitrogenation
KR100238458B1 (en) Co-mo bimetallic nitride catalysts and preparation thereof
JPS6174646A (en) Hydrotreating method and catalyst of hydrocarbon

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20161104

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20171108

Year of fee payment: 19