KR100232466B1 - Air-fuel ratio feed back control method using by varying fuel injection change - Google Patents

Air-fuel ratio feed back control method using by varying fuel injection change Download PDF

Info

Publication number
KR100232466B1
KR100232466B1 KR1019970025793A KR19970025793A KR100232466B1 KR 100232466 B1 KR100232466 B1 KR 100232466B1 KR 1019970025793 A KR1019970025793 A KR 1019970025793A KR 19970025793 A KR19970025793 A KR 19970025793A KR 100232466 B1 KR100232466 B1 KR 100232466B1
Authority
KR
South Korea
Prior art keywords
fuel
air
fuel ratio
amount
fuel injection
Prior art date
Application number
KR1019970025793A
Other languages
Korean (ko)
Other versions
KR19990002232A (en
Inventor
김태훈
Original Assignee
김영귀
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영귀, 기아자동차주식회사 filed Critical 김영귀
Priority to KR1019970025793A priority Critical patent/KR100232466B1/en
Publication of KR19990002232A publication Critical patent/KR19990002232A/en
Application granted granted Critical
Publication of KR100232466B1 publication Critical patent/KR100232466B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

본 발명은 연료분사량 섭동을 이용한 공연비 피드백 제어방법에 관한 것으로, 종래 산소센서를 이용한 공연비의 피드백제어는 이론공연비를 위시로 주기적인 사이클이 반복적으로 수행하기 때문에, 공연비의 피드백제어는 정상적인 상태에서도 산소센서의 출력특성상 공연비의 오차를 이론공연비에 접근하지 못 하였다.The present invention relates to an air-fuel ratio feedback control method using the fuel injection amount perturbation, and since the conventional feedback control of the air-fuel ratio using the oxygen sensor is performed periodically by the theoretical performance ratio, the feedback control of the air-fuel ratio is oxygen even in a normal state. Due to the output characteristics of the sensor, the error of air-fuel ratio could not approach the theoretical performance ratio.

이에, 본 발명은 예시도면 도 3 내지 도 4 에서와 같이 엔진의 출력 목표값과 산소센서(10)의 출력 평균값과의 오차값을 피드백제어에 의한 연료의 피드백 보정량(14)으로 설정하고, 상기 피드백 보정량(14)과 기본 연료분사량(12) 및 섭동 연료량(16)을 총 연료 분사량으로 산정하는 것이다.Accordingly, the present invention sets the error value between the output target value of the engine and the output average value of the oxygen sensor 10 as the feedback correction amount 14 of the fuel by feedback control as shown in FIGS. 3 to 4. The feedback correction amount 14, the basic fuel injection amount 12 and the perturbation fuel amount 16 are calculated as the total fuel injection amount.

따라서, 본 발명은 엔진으로 공급되는 연료의 최적화로 연비를 향상시키고 혼합가스의 공연비를 모든 조건하에서 이론공연비 부근의 범위내로 유지시켜 삼원촉매가 활성화되어 배기가스를 저감시키는 효과가 있다.Therefore, the present invention has the effect of improving fuel economy by optimizing the fuel supplied to the engine and maintaining the air-fuel ratio of the mixed gas within the range around the theoretical performance ratio under all conditions to activate the three-way catalyst to reduce the exhaust gas.

Description

연료분사량 섭동을 이용한 공연비 피드백 제어방법Air-fuel ratio feedback control method using fuel injection perturbation

본 발명은 연료분사량 섭동을 이용한 공연비 피드백 제어방법에 관한 것으로, 더욱 상세하게는 산소센서에 의해서 피드백제어가 되는 연료량에 미세한 변화를 주어 산소센서의 포화를 방지하고 이론공연비와 측정값의 오차를 측정하여 공연비를 제어하는 연료분사량 섭동을 이용한 공연비 피드백 제어방법에 관한 것이다.The present invention relates to an air-fuel ratio feedback control method using the fuel injection amount perturbation, and more particularly, by providing a small change in the fuel amount that is controlled by the oxygen sensor to prevent the saturation of the oxygen sensor and to measure the error between the theoretical performance ratio and the measured value It relates to an air-fuel ratio feedback control method using fuel injection amount perturbation to control the air-fuel ratio.

대기오염에 대한 관심이 급격히 높아지면서 대기오염 물질의 주요한 배출원인의 하나인 자동차의 배출가스에 대하여 매우 엄격한 배기규제가 추진되었으며, 일반적으로 자동차에서 배출되는 유해물질은 배기관에서 배출되는 배기가스와 엔진 크랭크케이스로부터의 블로바이가스 및 연료탱크나 기화기로부터의 연료증발가스의 3종류로 나누어진다.As interest in air pollution has increased rapidly, very strict emission regulations have been implemented for automobile emissions, one of the major sources of air pollutants, and in general, harmful substances emitted from automobiles are exhaust gases and engines emitted from exhaust pipes. It is divided into three types: blow-by gas from a crankcase and fuel evaporation gas from a fuel tank or a vaporizer.

이와 같은 대기오염 물질의 주요 성분은 탄화수소(HC), 일산화탄소(CO), 질소산화물(NOX)의 세가지 성분으로 엔진의 공연비와 관련하여 배출특성이 다르게 나타나 진다.The main components of such air pollutants are hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NO X ), and the emission characteristics are different in relation to the air-fuel ratio of the engine.

상기한 자동차의 유해물질을 해결하기 위하여 예시도면 도 1 은 엔진의 종합적인 제어 시스템을 보인 것이다.Exemplary drawings to solve the harmful substances of the vehicle Figure 1 shows a comprehensive control system of the engine.

도시된 바와 같이, 엔진(1)을 위시로하여 블로바이가스를 흡기계통으로 환원하여 재 연소시키는 블로바이가스 환원장치(PCV,2)가 설치되어 있고, 연료탱크 및 기화기로부터 발생한 증발 연료가스를 엔진의 작동중에 흡기계통으로 가스를 빨아내게 하는 차콜캐니스터장치(3)가 설치되어 있으며, 배기가스중의 질소산화물을 감소시키기 위한 수단으로 배기가스의 일부를 흡기계통으로 다시 순환시키는 배기가스 재순환장치(EGR,4) 등이 설치되어 있다.As shown, a blow-by gas reducing device (PCV, 2) for reducing the blow-by gas to the intake cylinder and re-burning the engine 1 is provided, and the evaporated fuel gas generated from the fuel tank and the carburetor is installed. A char canister device (3) is provided for sucking gas into the intake cylinder during operation of the engine, and an exhaust gas recirculation apparatus for circulating a part of the exhaust gas back into the intake cylinder as a means for reducing nitrogen oxides in the exhaust gas. (EGR, 4) and the like are provided.

또한, 배기가스 후처리 장치의 하나인 삼원촉매 시스템은 탄화수소, 일산화탄소, 질소산화물의 세 성분을 동시에 처리하기 위하여 촉매컨버터(7)가 설치되어 있다.In addition, the three-way catalyst system, which is one of the exhaust gas after-treatment apparatus, is provided with a catalytic converter 7 for simultaneously treating three components of hydrocarbon, carbon monoxide, and nitrogen oxide.

상기 배기기관에 설치되어 있는 촉매컨버터(7)에는 배기가스의 산소농도를 측정하여 전자제어장치(5)로 배기가스의 잔존 산소량을 알려주는 산소센서(6)가 설치되어 있는데, 산소센서(6)는 배기가스의 산소량을 검출하여 촉매컨버터(4)가 삼원촉매로서의 성능을 최대한 발휘시키는 혼합가스의 공연비를 모든 조건하에서 이론공연비 부근의 범위내에서 정확히 유지되도록 하여 준다.The catalytic converter 7 installed in the exhaust pipe is provided with an oxygen sensor 6 which measures the oxygen concentration of the exhaust gas and informs the electronic controller 5 of the amount of oxygen remaining in the exhaust gas. ) Detects the amount of oxygen in the exhaust gas so that the catalytic converter 4 accurately maintains the air-fuel ratio of the mixed gas that maximizes the performance as a three-way catalyst within the range near the theoretical performance ratio under all conditions.

산소센서(6)는 일종의 농담전지 원리를 응용한 것으로, 배기가스중의 산소농도와 대기중의 산소농도와의 차에 기인한 기전력의 상호 차이값을 전자제어장치(5)로 공급함으로서, 전자제어장치(5)내에 설정된 비교전압(0.45V)과 산소센서(6)로부터의 신호전압을 비교하여 혼합가스의 공연비가 농후한가 아니면 희박한가를 비교 판단한다.The oxygen sensor 6 adopts a kind of light and dark battery principle. The oxygen sensor 6 supplies the electronic controller 5 with the difference value of the electromotive force due to the difference between the oxygen concentration in the exhaust gas and the oxygen concentration in the atmosphere. The comparison voltage (0.45V) set in the control device 5 and the signal voltage from the oxygen sensor 6 are compared to determine whether the air-fuel ratio of the mixed gas is rich or lean.

즉 전자제어장치(5)는 이 차이에 의한 보정값을 출력 신호로하여 연료를 분사하는 인젝터로 송출하여 연료의 분사량을 이론공연비(가솔린의 경우 14.7:1)에 근접한 최적의 값으로 보상하게 된다.In other words, the electronic control unit 5 sends the injector that injects the fuel by using the correction value based on this difference as an output signal to compensate the injection amount of the fuel to an optimum value close to the theoretical performance ratio (14.7: 1 in the case of gasoline). .

따라서, 상기와 같이 피드백제어가 작용하고 있는 동안은 원칙적으로 공급 혼합가스는 언제나 이론공연비 주위에서 제어가 되고, 피드백제어가 작동해서는 곤란한 경우에 대해서는 피드백제어가 해제되어 운전의 이상을 방지하며, 정상적인 피드백제어에서 산소센서(6)는 예시도면 도 2 의 (가)에 해당하는 파형도를 보이게 된다.Therefore, while the feedback control is in operation as described above, in principle, the feed gas mixture is always controlled around the theoretical performance ratio, and in the case where the feedback control is difficult to operate, the feedback control is released to prevent abnormal operation. In the feedback control, the oxygen sensor 6 shows a waveform diagram corresponding to (a) of FIG. 2.

도시된 바와 같이, 산소센서(6)의 출력특성은 배기가스의 산소농도에 따라 농후한 상태에서 희박한 상태를 반복하는 주기적인 사이클을 가지면서 이론공연비인 기준값을 위시로 반복적인 보정을 하게 된다.As shown, the output characteristic of the oxygen sensor 6 has a periodic cycle of repeating the lean state in a rich state according to the oxygen concentration of the exhaust gas, and repeatedly corrected based on the reference value, which is the theoretical performance ratio.

그러나, 상술된 바와 같이 산소센서(6)의 기전력 측정에 의한 공연비의 피드백제어에서 보정값은 이론공연비를 위시로 농후한 공연비는 희박한 공연비로 보정되고, 또한 산소센서(6)의 측정에 의해서 희박한 공연비는 농후한 공연비로 보정되는 주기적인 사이클의 보정을 반복적으로 수행하기 때문에, 공연비의 피드백제어는 정상적인 상태에서도 산소센서(6)의 출력특성상 공연비의 오차를 이론공연비에 접근하지 못 하였다.However, in the feedback control of the air-fuel ratio by the electromotive force measurement of the oxygen sensor 6 as described above, the rich air-fuel ratio, including the theoretical air-fuel ratio, is corrected by the lean air-fuel ratio, and also by the measurement of the oxygen sensor 6 Since the air-fuel ratio repeatedly performs the periodic cycle correction to be corrected to the rich air-fuel ratio, the feedback control of the air-fuel ratio did not approach the theoretical performance ratio due to the output characteristic of the oxygen sensor 6 in the normal state.

즉, 상기한 바와 같은 특성은 예시도면 도 2 의 (나)에 도시된 바와 같은 파형도를 보이며, 이 파형도는 연료량이 일정한 시간에 대하여 가감되는 형태인 한계사이클에 도달하여 산소센서에 의한 피드백제어는 이론공연비에 도달할 수 없는 문제점이 있었다.That is, the characteristic as described above shows a waveform diagram as shown in (b) of FIG. 2, which shows a feedback cycle by the oxygen sensor after reaching the limit cycle in which fuel amount is added or subtracted over a certain time. Control has a problem that can not reach the theoretical performance ratio.

이에 본 발명은 상기한 종래 기술이 지닌 문제점을 해소시키기 위하여 안출된 것으로, 한계사이클에 큰 영향을 미치는 연료전달 메카니즘과 산소센서의 반응지연중 산소센서에 의해서 피드백제어를 하는 연료량에 미세한 변화를 주어 제어주기를 짧게 하여 주파수를 증가시켜 한계사이클을 극복하고, 이론공연비와 측정값의 오차를 측정하여 공연비를 제어하는 연료분사량 섭동을 이용한 공연비 피드백 제어방법을 제공하는데 발명의 목적이 있다.Accordingly, the present invention has been made to solve the problems of the prior art described above, and gives a small change in the amount of fuel to be fed back control by the oxygen sensor during the reaction delay of the oxygen sensor and the fuel delivery mechanism that greatly affects the limit cycle. An object of the present invention is to provide an air-fuel ratio feedback control method using a fuel injection amount perturbation which controls the air-fuel ratio by controlling the air-fuel ratio by overcoming the limit cycle by increasing the frequency by shortening the control period.

상기와 같은 목적을 실현하기 위한 본 발명은 전자제어장치의 연료보정값에 미세한 변화를 주어 산소센서가 검출하는 지연주기를 짧게 하고, 상기 산소센서가 측정한 기전력의 평균값과 목표값의 오차값을 측정하여 공연비를 산정함으로써, 기본연료 분사량을 정량적으로 산정하여 공연비를 산출하는 것이다.In order to achieve the above object, the present invention provides a small change in the fuel correction value of the electronic controller to shorten the delay period detected by the oxygen sensor, and the error value between the average value and the target value of the electromotive force measured by the oxygen sensor. By measuring and calculating the air-fuel ratio, the fuel-fuel ratio is quantitatively calculated to calculate the air-fuel ratio.

따라서, 본 발명은 엔진의 공연비를 이론공연비로 최적화시킴으로 연비의 향상과 삼원촉매의 성능을 향상시켜 배기가스를 저감시키는 것이다.Accordingly, the present invention is to optimize the air-fuel ratio of the engine to the theoretical performance ratio to improve the fuel economy and the performance of the three-way catalyst to reduce the exhaust gas.

도 1 은 종래 엔진의 종합적인 제어시스템을 보인 예시도,1 is an exemplary view showing a comprehensive control system of a conventional engine;

도 2 의 (가)는 산소센서의 출력특성을 나타낸 파형도이고, (나)는 산소센서의 한계사이클을 보인 그래프,2 (a) is a waveform diagram showing the output characteristics of the oxygen sensor, (b) is a graph showing the limit cycle of the oxygen sensor,

도 3 은 본 발명에 따른 공연비 피드백 제어방법의 구성도3 is a block diagram of an air-fuel ratio feedback control method according to the present invention

도 4 는 섭동에 의한 연료분사유량의 변화를 나타낸 그래프이다.4 is a graph showing a change in fuel injection flow rate due to perturbation.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 산소센서, 12 : 기본 연료분사량,10: oxygen sensor, 12: basic fuel injection amount,

14 : 피드백 보정량, 16 : 섭동 연료량.14: feedback correction amount, 16: perturbation fuel amount.

이하 본 발명을 첨부된 예시도면에 의거하여 구성과 작용을 상세히 설명하면 다음과 같다.Hereinafter, the configuration and operation of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 엔진의 출력 목표값과 산소센서(10)의 출력 평균값과의 오차값을 피드백제어에 의한 연료의 피드백 보정량(14)으로 설정하고, 상기 피드백 보정량(14)과 기본 연료분사량(12) 및 섭동 연료량(16)을 총 연료 분사량으로 산정하는 연료분사량 섭동을 이용한 공연비 피드백 제어방법이다.The present invention sets the error value between the output target value of the engine and the average output value of the oxygen sensor 10 as the feedback correction amount 14 of the fuel by feedback control, and the feedback correction amount 14 and the basic fuel injection amount 12. And a fuel injection amount perturbation that calculates the perturbation fuel amount 16 as the total fuel injection amount.

예시도면 도 3 은 본 발명에 따른 공연비 피드백 제어방법의 구성도로서, 연비의 향상과 삼원촉매의 활성화를 목적으로 한다.Exemplary Drawings FIG. 3 is a configuration diagram of an air-fuel ratio feedback control method according to the present invention, with the aim of improving fuel economy and activating a three-way catalyst.

이를 위하여 엔진으로 분사되는 총연료 분사량은 기본 연료분사량(12)과 피드백 보정량(14)과 섭동 연료량(16)의 합으로 산정되는데, 기본 연료분사량(12)은 엔진의 회전수와 흡입공기량에 의해서 결정되고, 피드백 보정량(14)은 엔진의 출력 목표값에서 산소센서(10)의 출력 평균값을 뺀 오차값으로 결정되며, 섭동 연료량(16)은 산소센서(10)의 측정에 따른 공연비오차의 미세한 변화량으로 결정되는 것이다.To this end, the total fuel injection amount injected into the engine is calculated as the sum of the basic fuel injection amount 12, the feedback correction amount 14 and the perturbation fuel amount 16, and the basic fuel injection amount 12 is determined by the engine speed and the intake air amount. The feedback correction amount 14 is determined as an error value obtained by subtracting the average output value of the oxygen sensor 10 from the output target value of the engine, and the perturbation fuel amount 16 is a fine air-fuel error according to the measurement of the oxygen sensor 10. It is determined by the amount of change.

상술한 바와 같이 종래의 공연비 보정은 기본 분사연료량과 산소센서에 의한 공연비 보정으로 연료의 분사량이 결정되었으나, 본 발명의 공연비 피드백 제어방법은 기본 분사연료량(12)에 섭동(연료량에 미세한 변화를 주는 것)을 주는 것으로, 예시도면 도 4 와 같은 연료분사유량의 변화가 그래프로 나타난다.As described above, in the conventional air-fuel ratio correction, the injection amount of the fuel is determined by the air-fuel ratio correction by the basic injection fuel amount and the oxygen sensor. The change of fuel injection flow rate as shown in FIG. 4 is shown graphically.

즉, 엔진의 회전수와 흡입공기량에 의해서 미리 정해진 주기와 진폭을 갖는 신호를 기본적인 주파수에 연료량에 섭동을 주게 되고, 후술되는 피드백 보정량(14)의 주파수가 중첩되면서 엔진의 1회 분사시 총연료 분사량이 결정되며 그 산출식은 다음과 같다.That is, a signal having a predetermined period and amplitude is perturbed to the fuel amount at a basic frequency according to the engine speed and the intake air amount, and the total fuel at the time of one injection of the engine while the frequency of the feedback correction amount 14 described later overlaps. The injection amount is determined and the formula is as follows.

[식 1][Equation 1]

mfi= mfb+ mfp+ mff m fi = m fb + m fp + m ff

여기서, mfi는 1회 분사시 총연료 분사량이고, mfb는 기본 분사연료량이며, mfp는 섭동에 의한 연료량이고, mff는 산소센서에 의한 피드백 보정량을 나타낸다.Here, m fi is the total fuel injection amount in one injection, m fb is the basic injection fuel amount, m fp is the fuel amount by perturbation, m ff represents the feedback correction amount by the oxygen sensor.

상기와 같이 연료량에 섭동을 주면, 종래 산소센서가 한계사이클에 도달하여 기전력을 발생시키지 못하여 반응의 변화를 측정하지 못하는 것, 즉 산소센서가 포화되는 것을 방지하여 전자제어장치가 평균적인 공연비를 산정할 수 있도록 하여 준다.When the amount of fuel perturbed as described above, the conventional oxygen sensor does not generate an electromotive force due to reaching the limit cycle, it is unable to measure the change in the reaction, that is, the electronic control device calculates the average air-fuel ratio by preventing the oxygen sensor from saturation Let them do it.

또한, 산소센서(10)에 의한 피드백 보정량(14)은 그 주기를 섭동 1사이클당 한 번 측정하여 섭동효과에 의해 나타나는 공연비의 정량적인 값을 1 주기동안 평균화하여 산정한 값이다.In addition, the feedback correction amount 14 by the oxygen sensor 10 is a value calculated by averaging the quantitative value of the air-fuel ratio represented by the perturbation effect for one cycle by measuring the cycle once per cycle.

즉, 산소센서(10)에서 검출되는 평균값은 섭동시마다 변하게 되며, 이때 전자제어장치에 내장되어 있는 출력 목표값과의 차이는 정량적인 값을 갖게된다.That is, the average value detected by the oxygen sensor 10 changes every time the perturbation, and the difference with the output target value embedded in the electronic control device has a quantitative value.

따라서, 정량적인 오차값은 산소센서에 의한 피드백 보정량(mff)을 최적화시킴으로써, 엔진의 총연료 분사량을 이론공연비에 최대한 근접할 수 있도록 해주는 것이다.Therefore, the quantitative error value is to optimize the feedback correction amount m ff by the oxygen sensor, so that the total fuel injection amount of the engine can be as close as possible to the theoretical performance ratio.

상술된 바와 같이 본 발명은 전자제어장치가 엔진의 총연료 분사량을 엔진의 회전속도와 흡입공기량에 의해서 결정되는 기본 연료분사량과, 산소센서에서 검출되는 평균값과 목표 출력값과의 오차값인 피드백 보정량과, 산소센서의 포화를 방지하여 주는 섭동 연료량의 합으로 산정하는 것으로, 엔진으로 공급되는 연료의 최적화로 연비를 향상시키고 혼합가스의 공연비를 모든 조건하에서 이론공연비 부근의 범위내로 유지시켜 촉매컴버터의 삼원촉매가 활성화되어 배기가스를 저감시키는 효과가 있다.As described above, in the present invention, the electronic control apparatus determines the total fuel injection amount of the engine based on the basic fuel injection amount determined by the engine rotation speed and the intake air amount, and the feedback correction amount which is an error value between the average value detected by the oxygen sensor and the target output value. In other words, the amount of perturbation fuel that prevents the saturation of the oxygen sensor is calculated.The fuel efficiency is improved by optimizing the fuel supplied to the engine, and the air / fuel ratio of the mixed gas is maintained within the range of the theoretical fuel ratio under all conditions. Three-way catalyst is activated to reduce the exhaust gas.

Claims (1)

엔진의 출력 목표값과 주기를 섭동 1사이클 당 한번 측정하여 섭동효과에 의해 나타나는 공연비의 적량적인 값을 1주기 동안 평균하여 산정한 산소센서(10)의 출력 평균값에 대한 오차값을 피드백제어에 의해 산출한 연료의 피드백 보정량(14)을 설정하고, 상기 피드백 보정량(14)과 기본 연료분사량(12) 및 섭동 연료량(16)을 총연료 분사량으로 산정하는 연료분사량 섭동을 이용한 공연비 피드백 제어방법.The feedback value is obtained by measuring the error value of the average output value of the oxygen sensor 10 calculated by averaging the appropriate value of the air-fuel ratio caused by the perturbation effect for one cycle by measuring the output target value and the period of the engine once per cycle. An air-fuel ratio feedback control method using a fuel injection amount perturbation which sets a feedback correction amount (14) of the calculated fuel and calculates the feedback correction amount (14), the basic fuel injection amount (12) and the perturbation fuel amount (16) as the total fuel injection amount.
KR1019970025793A 1997-06-19 1997-06-19 Air-fuel ratio feed back control method using by varying fuel injection change KR100232466B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970025793A KR100232466B1 (en) 1997-06-19 1997-06-19 Air-fuel ratio feed back control method using by varying fuel injection change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970025793A KR100232466B1 (en) 1997-06-19 1997-06-19 Air-fuel ratio feed back control method using by varying fuel injection change

Publications (2)

Publication Number Publication Date
KR19990002232A KR19990002232A (en) 1999-01-15
KR100232466B1 true KR100232466B1 (en) 1999-12-01

Family

ID=19510263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970025793A KR100232466B1 (en) 1997-06-19 1997-06-19 Air-fuel ratio feed back control method using by varying fuel injection change

Country Status (1)

Country Link
KR (1) KR100232466B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155047A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Air-fuel ratio controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155047A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Air-fuel ratio controller

Also Published As

Publication number Publication date
KR19990002232A (en) 1999-01-15

Similar Documents

Publication Publication Date Title
US5410873A (en) Apparatus for diminishing nitrogen oxides
US7987696B2 (en) Fuel distillation property determining apparatus and method
US7614391B2 (en) Oxygen sensor output correction apparatus for internal combustion engine
US6935104B2 (en) Engine control system
US6422003B1 (en) NOX catalyst exhaust feedstream control system
US6637191B1 (en) Method and system for diagnosing a secondary air supply for an internal combustion engine
US5505183A (en) Method and system for controlling emissions from an internal combustion engine
US5735255A (en) Engine control system for a lean burn engine having fuel vapor recovery
KR19990023479A (en) Apparatus and method for evaluating the concentration of vaporized fuel purged into the intake air passage of an internal combustion engine
US6684869B2 (en) System and method for detecting an air leak in an engine
US6561166B2 (en) Purge fuel canister measurement method and system
US9404431B2 (en) Method and device for operating an internal combustion engine
US6568246B1 (en) System and method for detecting an air leak in an exhaust system coupled to an engine
US7454895B2 (en) Diagnosing an aftertreatment system with a nonthermal plasma discharge device coupled to a lean burn engine
US6173704B1 (en) Exhaust gas purification system of internal combustion engine
US20050097884A1 (en) Control strategy for lean-to-rich transitions in an internal combustion engine
KR100232466B1 (en) Air-fuel ratio feed back control method using by varying fuel injection change
KR100440757B1 (en) Plasma exhaust gas treatment apparatus
KR100209176B1 (en) Engine combustion controller
JP2013213489A (en) Limiting nox emission
US7114324B2 (en) Method for operating a lean burn engine with an aftertreatment system including nonthermal plasma discharge device
KR20080057289A (en) Method for operation of an internal combustion engine and device for carrying out the method
JP3991292B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
US6769422B2 (en) Apparatus and method for controlling air-fuel ratio of engine
US11828243B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050906

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee