KR100221204B1 - Gene sequence of cmc-xylanase and expression thereof - Google Patents

Gene sequence of cmc-xylanase and expression thereof Download PDF

Info

Publication number
KR100221204B1
KR100221204B1 KR1019970047870A KR19970047870A KR100221204B1 KR 100221204 B1 KR100221204 B1 KR 100221204B1 KR 1019970047870 A KR1019970047870 A KR 1019970047870A KR 19970047870 A KR19970047870 A KR 19970047870A KR 100221204 B1 KR100221204 B1 KR 100221204B1
Authority
KR
South Korea
Prior art keywords
cmc
xylanase
enzyme
gene
dna
Prior art date
Application number
KR1019970047870A
Other languages
Korean (ko)
Other versions
KR19990025977A (en
Inventor
최윤재
우정희
조광근
김성찬
Original Assignee
최윤재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최윤재 filed Critical 최윤재
Priority to KR1019970047870A priority Critical patent/KR100221204B1/en
Publication of KR19990025977A publication Critical patent/KR19990025977A/en
Application granted granted Critical
Publication of KR100221204B1 publication Critical patent/KR100221204B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 섬유소 분해 미생물인 Fibrobacter succinogenes 균주로부터 합성, 분비되는 섬유소 분해효소의 일종인 CMC-xylanase를 대량 생산하는데 유용한 것이다.The present invention is useful for mass production of CMC-xylanase, a kind of fibrinolytic enzyme synthesized and secreted from Fibrobacter succinogenes strain, a fibrinolytic microorganism.

본 발명은 혐기성 반추미생물인 Fibrobacter succinogenes S85로 부터 chromosomal DNA를 분리하는 단계; CMC-xylanase 유전자를 클로닝하는 단계; CMC-xylanase 유전자를 지닌 E. coli 형질 전환체를 선별하고, DNA 염기서열을 결정하는 단계; Fibrobacter succinogenes S85과 CMC-xylanase 유전자를 도입한 형질전환체의 효소활성을 비교하는 단계로 구성되어 있다.The present invention comprises the steps of separating chromosomal DNA from Fibrobacter succinogenes S85, anaerobic ruminant; Cloning the CMC-xylanase gene; Selecting an E. coli transformant carrying a CMC-xylanase gene and determining a DNA sequence; Comparing the enzyme activity of transformants with Fibrobacter succinogenes S85 and CMC-xylanase gene.

Description

Fibrobacter succinogenes S85의 CMC-xylanase 유전자의 염기서열 및 그 유전자의 발현Nucleotide Sequences of the CMC-xylanas Gene of フ ibrobacter uuccinogenes S85 and Expression of the Gene

본 발명은 Fibrobacter succinogenes S85의 CMC-xylanase 유전자의 염기서열 및 그 유전자의 발현에 관한 것이다. 더욱 상세하게는 유전공학적인 기법을 사용하여 섬유소 분해 미생물인 Fibrobacter succinogenes S85로부터 합성, 분비되는 섬유소 분해효소의 일종인 CMC-xylanase를 대량 생산하는데 유용하도록 Fibrobacter succinogenes S85의 chromosomal DNA로부터 pUC19 벡터를 이용하여 DNA library를 제조한 후 이로부터 선별한 CMC-xylanase 및 그 유전자를 함유하고 있는 발현벡터와 형질전환된 미생물에 관한 것이다.The present invention relates to the nucleotide sequence of the CMC-xylanase gene of Fibrobacter succinogenes S85 and the expression of the gene. More specifically, using pUC19 vector from chromosomal DNA of Fibrobacter succinogenes S85 for mass production of CMC-xylanase, a kind of fibrinolytic enzyme synthesized and secreted from fibrolytic microorganism Fibrobacter succinogenes S85 using genetic engineering techniques. The present invention relates to a CMC-xylanase selected from the DNA library prepared thereafter, and an expression vector containing the gene and a transformed microorganism.

자연계 탄수화물의 68% 이상을 차지하고 있는 섬유소는 지구상에 약 7천억톤 정도가 존재하고 있으며 매년 4백억톤 정도가 새롭게 생합성되고 있다. 섬유소는 β-1, 4결합에 의해 glucose가 계속 연결된 형태의 물질로서 이러한 섬유소를 효율적으로 이용하여 대체에너지 및 식량자원으로 이용하려는 연구가 전세계적으로 활발하게 진행되고 있다.More than 68% of the natural carbohydrates of fiber exist in the world of about 700 billion tons, about 40 billion tons of new biosynthesis each year. Fibrin is a substance in which glucose is continuously connected by β-1 and 4 bonds. As a result, studies are being actively conducted to use as an alternative energy and food resource by efficiently using such fiber.

최근에는 이러한 섬유소를 효소적인 가수분해를 이용하여 glucose나 그밖의 다른 물질로 전환시키려는 연구가 관심의 초점이 되고 있으며 이를 위하여 박테리아나 곰팡이로부터 섬유소의 분해활성이 높은 섬유소 분해효소를 대량 생산하기 위해 여러 가지 시도가 이루어지고 있다. 그러나 이러한 분해효소의 활성은 단일 효소에 의하여 나타나는 것이 아니라 몇몇 효소가 복합체 형태로 존재하여 상호협력적으로 섬유소를 분해한다(Eveleigh, in cellulase: a perspective. phil. Traans. Roy. Soc. Lond. A321, 435(1987); Lamed와 Bayer, Adb. Appl. Microbiology 33, 1(1988); Lamed 등, J. Bacteriol. 169, 3792(1987)). 일반적으로 섬유소 분해효소는 생산되는 미생물의 종류에 따라 다소간의 차이가 있으나 대부분의 경우 endoglucanase(endocellulase, EC 3.2.1.4), exoglucanase(exocellulase, EC 3.2.1.91) 및 β-glucosidase(cellobiase, EC 3.2.1.21)로 구성되어 있는 효소복합체로써 glucose를 얻기 위해서는 이들 3가지 종류의 효소가 모두 필요하다. 또한 천연상태의 섬유소는 hemicellulose(xylan)과 lignin의 matrix상에 embedding되어 있어 섬유소효소만으로는 효율적인 효소적 가수분해를 유도할 수 없으므로 xylanase활성을 가지는 endoglucanase인 CMC-xylanase를 cloning이 필요하였다.Recently, research on converting these fibers into glucose or other substances by enzymatic hydrolysis has been the focus of attention. To this end, various studies have been conducted to produce large amounts of fibrinolytic enzymes with high fibrinolytic activity from bacteria or fungi. There are several attempts being made. However, the activity of these degrading enzymes is not caused by a single enzyme, but several enzymes exist in the form of complexes, which cooperatively degrade the fiber (Eveleigh, in cellulase: a perspective. Phil. Traans. Roy. Soc. Lond. A321). , 435 (1987); Lamed and Bayer, Adb. Appl. Microbiology 33, 1 (1988); Lamed et al., J. Bacteriol. 169, 3792 (1987)). In general, fibrinase is somewhat different depending on the type of microorganism produced, but in most cases endoglucanase (endocellulase, EC 3.2.1.4), exoglucanase (exocellulase, EC 3.2.1.91) and β-glucosidase (cellobiase, EC 3.2. All of these three enzymes are required to obtain glucose as an enzyme complex composed of 1.21). In addition, natural cellulose was embedded on the matrix of hemicellulose (xylan) and lignin, so it was necessary to cloning CMC-xylanase, an endoglucanase with xylanase activity, because fibrinase alone could not induce efficient enzymatic hydrolysis.

따라서, 본 발명은 상기와 같은 사실에 의거하여 안출한 것으로 xylanase활성을 가지는 endoglucanase인 CMC-xylanase 유전자를 클로닝하고, 동유전자를 함유하는 발현벡터를 제조한 다음 그 벡터에 의하여 형질전환된 대장균을 제공하므로써 CMC-xylanase를 대량 생산함을 그 목적으로 한다.Therefore, the present invention was made on the basis of the above facts, cloned the CMC-xylanase gene, which is an endoglucanase having xylanase activity, prepared an expression vector containing a homogene, and then provided with E. coli transformed by the vector. The aim is to mass produce CMC-xylanase.

이하, 본 발명의 구성과 작용을 첨부한 도면을 참고로 하여 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, the configuration and operation of the present invention will be described.

도 1은 대장균 발현벡터로의 CMC-xylanase 유전자 클로닝 과정을 도식화한 것이다.Figure 1 illustrates the cloning of CMC-xylanase gene into E. coli expression vector.

도 2는 Fibrobacter succinogenes S85의 CMC-xylanase 유전자가 함유된 재조합 대장균이 고체 LB 배지상에 존재하는 기질(CMC와 xylan)을 분해하여 각각 Clear zone을 형성한 것으로 CMC-xylanase 효소가 발현됨을 나타낸 것이다.Figure 2 shows that the recombinant Escherichia coli containing the CMC-xylanase gene of Fibrobacter succinogenes S85 decomposes the substrate (CMC and xylan) present on the solid LB medium to form a clear zone, respectively, expressing the CMC-xylanase enzyme.

도 3은 클로닝한 CMC-xylanase 유전자의 DNA염기 서열을 나타낸 것이다.Figure 3 shows the DNA base sequence of the cloned CMC-xylanase gene.

본 발명은 혐기성 반추미생물인 Fibrobacter succinogenes S85(ATCC 19169)로 부터 chromosomal DNA를 분리하는 단계; CMC-xylanase 유전자를 클로닝하는 단계; CMC-xylanase 유전자를 지닌 E. coli 형질 전환체를 선별하고 DNA 염기서열을 결정하는 단계; 형질전환된 E. Coli 유래의 CMC-xylanase의 효소활성을 비교하는 단계로 구성되어 있다.The present invention comprises the steps of separating the chromosomal DNA from Fibrobacter succinogenes S85 (ATCC 19169), an anaerobic ruminant; Cloning the CMC-xylanase gene; Selecting an E. coli transformant carrying a CMC-xylanase gene and determining a DNA sequence; Comparing the enzymatic activity of CMC-xylanase derived from transformed E. Coli.

도 1은 대장균 발현 벡터로의 CMC-xylanase 유전자 클로닝 과정을 나타낸 것이다. 또 도 2는 Fibrobacter succinogenes S85의 CMC-xylanase 유전자가 함유된 재조합 대장균을 통해 발현된 CMC-xylanase 효소가 고체 LB 배지상에 존재하는 기질인 CMC(a)와 oat spelt xylan(b)을 분해하여 각각 투명환(clear zone)을 형성한 것으로 CMC-xylanase 효소가 발현됨을 나타낸 것이다. 도 3은 클로닝한 CMC-xylanase 유전자의 DNA 염기서열을 나타낸 것이다.Figure 1 shows the CMC-xylanase gene cloning process into E. coli expression vector. FIG. 2 shows that CMC-xylanase enzyme expressed through recombinant E. coli containing CMC-xylanase gene of Fibrobacter succinogenes S85 decomposes CMC (a) and oat spelt xylan (b), which are substrates present on solid LB medium, respectively. Formation of a clear zone (clear zone) indicates that the CMC-xylanase enzyme is expressed. Figure 3 shows the DNA sequence of the cloned CMC-xylanase gene.

본 발명은 반추미생물인 Fibrobacter succinogenes S85(ATCC 19169)를 각각 50㎖의 Sweet E. broth(Holdman 등, in Anaerobic laboratory manual(4th ed.), Virginia Polytech. Inst. and State Univ. Blackburg, Virginia(1977))에 접종하여 혐기적 상태하에서 subculture로 이용하였다. 수득된 subculture를 1리터의 PY 배지(Holdman 등, in Anaerobic laboratory manual(4th ed.), Virginia Polytech. Inst. and State Univ. Blackburg, Virginia(1977))에 재차 접종한 후 37℃에서 36시간 정도 혐기적 상태로 정치배양하였다. chromosomal DNA를 분리하기 위하여 배양액을 원심분리(4℃, 5500 rpm, 10 min)하여 균체를 수집하였다. 수집한 균체로부터 chromosomal DNA를 분리하고(Mamur, J. Mol. Biol. 3, 208(1961): Thomas, J. Mol. Biol.11, 476(1965): Saito와 Miura, Biochem. Biophys. Acta 72, 619(1963)), 최종적으로 분리된 chromosomal DNA를 3mL의 TE 완충용액(10mM Tris-Cl, 1mM EDTA, pH 7.4)에 용해하였다. chromosomal DNA로부터 gene library를 제조하기 위하여 제한효소 Sau3AI로 부분절단하였다. 제한효소 Sau3AI로 부분절단되어 생성된 gene library로부터 적정 크기의 단편을 얻기 위하여 10~40% sucrose gradient 원심분리(20℃, 25,000 rpm, 24 hour)를 수행하여 2-8kb 정도의 DNA 단편을 수집하였다.The present invention provides fibrobacter succinogenes S85 (ATCC 19169), which is a ruminant microorganism, each 50 ml of Sweet E. broth (Holdman et al., In Anaerobic laboratory manual (4th ed.), Virginia Polytech. Inst. And State Univ. Blackburg, Virginia (1977). )) Was used as a subculture under anaerobic conditions. The obtained subculture was inoculated again in 1 liter of PY medium (Holdman et al., In Anaerobic laboratory manual (4th ed.), Virginia Polytech. Inst. And State Univ. Blackburg, Virginia (1977)), and then incubated for 36 hours at 37 ° C. Political culture in an anaerobic state. To isolate the chromosomal DNA, the culture was centrifuged (4 ° C, 5500 rpm, 10 min) to collect the cells. Chromosomal DNA was isolated from the collected cells (Mamur, J. Mol. Biol. 3, 208 (1961): Thomas, J. Mol. Biol. 11, 476 (1965): Saito and Miura, Biochem. Biophys. Acta 72 619 (1963)), and finally isolated chromosomal DNA was dissolved in 3 mL of TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.4). To prepare a gene library from chromosomal DNA, it was partially cut with restriction enzyme Sau3AI. DNA fragments of 2-8 kb were collected by centrifugation (20 ° C, 25,000 rpm, 24 hours) at 10-40% sucrose gradient to obtain the appropriate size fragment from the gene library generated by cleavage with restriction enzyme Sau3AI. .

한편, 클로닝 벡터로는 pUC19를 사용하였으며 이를 제한효소 BamHI으로 절단한 후 calf intestine phosphate(CIP)로 처리하였다. 형질전환을 위한 미생물 균주로는 E. coli DH5α를 사용하였고, competent cell을 만들기 위해 CaCl2방법을 사용하였다.Meanwhile, pUC19 was used as a cloning vector, which was digested with restriction enzyme BamHI and treated with calf intestine phosphate (CIP). E. coli DH5 α was used as a microbial strain for transformation, and CaCl 2 was used to make competent cells.

CMC-xylanase 유전자를 클로닝하기 위하여 cohesive termini의 접합 방법을 사용하였다. 먼저, BamHI으로 절단하여 CIP 처리된 벡터(0.1㎍)와 외부 DNA(0.3㎍)를 microfuge tube에 넣고 혼합한 후 이차 증류수로 총 부피가 7.5㎕가 되게 한 다음, 10x Bacteriophage T4DNA ligase 완충용액 1㎕(200mM Tris-Cl, pH 7.6, 50mM dithiothreitol, 500㎎/mL bovine serum albumin)와 Bacteriophage T4DNA ligase 0.1 unit와 5mM ATP 1㎕를 첨가하여 혼합한 후 16℃에서 4시간이상 반응을 시켰다. 반응이 종료된 후 2㎕를 취하여 competent E. coli에 형질전환시키는데 사용하였다.Cohesive termini conjugation was used to clone the CMC-xylanase gene. First, CIP-treated vector (0.1㎍) and external DNA (0.3㎍) were cut into BamHI, mixed in a microfuge tube, and the total volume was made to 7.5μl with secondary distilled water, and then 10x Bacteriophage T 4 DNA ligase buffer solution. 1 μl (200 mM Tris-Cl, pH 7.6, 50 mM dithiothreitol, 500 mg / mL bovine serum albumin), 0.1 unit of Bacteriophage T 4 DNA ligase and 1 μl of 5 mM ATP were added to the mixture, followed by reaction at 16 ° C. for at least 4 hours. . After the reaction was completed, 2 μl was taken and used to transform competent E. coli.

형질전환시킨 E. coli중에서 외부 DNA의 Insertion 여부를 확인하기 위하여 α-complementation을 이용한 선별방법을 사용하였다. 먼저, mL당 50㎍의 ampicilin이 첨가된 LB agar plate에 40㎕의 X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) stock 용액 (20mg/mL in dimethylformamide)과 4㎕의 IPTG(200mg/mL)용액을 spreading 하였다. 이렇게 만들어진 plate위에 150㎕의 transformant를 살포한 후 37℃에서 12-16 시간동안 배양하였다. 배양이 종료된 후 plate를 수시간동안 4℃에서 보관하여 콜로니 색의 변화를 더욱 뚜렷하게 하였다. 벡터만을 갖는 콜로니는 파란색을 나타내지만 재조합된 DNA를 가지고 있는 콜로니는 E. coli 본래의 색인 흰색을 나타내었다. 본 발명에서 형질전환된 E. Coli는 1997년 9월 4일 국제기탁기관 생명공학연구소에 기탁번호 KTCC 8830P호로 기탁하였다.In order to confirm the insertion of external DNA in transformed E. coli, a screening method using α-complementation was used. First, 40 μl of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) stock solution (20 mg / mL in dimethylformamide) was added to an LB agar plate containing 50 μg of ampicilin per mL. 4 μl of IPTG (200 mg / mL) solution was spread. 150 μl of transformant was sprayed onto the plate thus prepared and incubated at 37 ° C. for 12-16 hours. After the incubation was completed, the plate was stored at 4 ° C. for several hours to further change colony color. Colonies with only the vector are blue, but colonies with the recombined DNA show the original white color of E. coli. E. Coli transformed in the present invention was deposited on September 4, 1997, the deposit number KTCC 8830P to the International Institute of Biotechnology.

α-complementation 방법을 사용하여 선별된 흰색의 콜로니는 CMC-xylanase 유전자의 함유 여부를 확인하기 위한 2차 선별작업에 사용하였다. CMC-xylanase 유전자를 가진 E. coli 형질전환체를 선별하기 위하여 먼저, mL당 50㎍의 ampicilin과 0.5%의 CMC(carboxymethylcellulose) 또는 oat spelt xylan이 첨가된 LB agar plate에 형질전환체를 각각 picking하여 37℃에서 16-24시간동안 배양하였다. 콜로니가 형성된 plate에 0.5%의 congo-red 용액을 콜로니가 완전히 잠기도록 첨가하여 30분간 정치시켰다. 고분자인 CMC나 oat spelt xylan과 결합되지 않은 congo-red는 1M NaCl을 첨가하여 제거하였다. 형성된 clear zone의 유무로 효소활성을 확인하였다. 이렇게 선별된 미생물군이 CMC-xylanase 효소를 발현시키는지의 여부를 확인하기 위하여 다시 액체 LB 배지에 접종하여 37℃에서 12시간 정도 shaking하면서 배양하여 CMC-xylanase 효소활성을 조사하여 CMC-xylanase 유전자의 클로닝 유무를 확인하였다. 클로닝된 CMC-xylanase 유전자의 DNA 염기서열을 결정하기 위하여는 Sanger방법을 사용하였다. CMC-xylanase 유전자에 의하여 발현된 CMC-xylanase 효소가 이용하는 기질을 규명하기 위하여 cellobiose, PNPG, PNPC(p-nitrophenol cellobioside), carboxymethylcellulose을 기질로 사용하여 기질로의 이용유무를 확인한 결과 모든 기질을 이용하였다. 또 세포내 CMC-xylanase 효소의 locali zation을 조사한 결과 약 67.9%가 세포밖으로 분비하는 것으로 확인되었다.White colonies selected using the α-complementation method were used in the second screening process to confirm the presence of the CMC-xylanase gene. In order to select E. coli transformants with CMC-xylanase gene, first, the transformants were picked on LB agar plates containing 50 μg of ampicilin per mL and 0.5% CMC (carboxymethylcellulose) or oat spelt xylan. Incubated at 37 ° C. for 16-24 hours. 0.5% congo-red solution was added to the colony-formed plates and allowed to stand for 30 minutes. Congo-red that was not bound to the polymer CMC or oat spelt xylan was removed by adding 1M NaCl. Enzyme activity was confirmed with or without the formed clear zone. In order to confirm whether the selected microorganisms express CMC-xylanase enzyme, inoculate the liquid LB medium again and incubate with shaking at 37 ° C for 12 hours to examine CMC-xylanase enzyme activity and clone the CMC-xylanase gene. Check the presence or absence. Sanger method was used to determine the DNA sequence of the cloned CMC-xylanase gene. In order to identify the substrate used by the CMC-xylanase enzyme expressed by the CMC-xylanase gene, all substrates were used as a result of using cellobiose, PNPG, p-nitrophenol cellobioside (PNPC), and carboxymethylcellulose as substrates. . In addition, the localization of intracellular CMC-xylanase enzymes revealed that 67.9% of the cells secreted extracellularly.

이하 본발명의 구체적인 구성과 작용을 단계별로 상세히 설명한다.Hereinafter will be described in detail step by step the specific configuration and operation of the present invention.

제 1단계: 제한효소로 DNA의 절단Step 1: cleavage of DNA with restriction enzymes

본 발명에서 사용된 제한효소와 반응 완충용액은 코스코 바이오텍사(KOSCO Biotech Co., Korea)로부터 구매하였으며, 멸균된 1.5mL microfuge tube에서 보통 반응부피가 10㎕에서 100㎕가 되도록 하였으며 반응온도는 37℃에서 1시간 내지 2시간 반응시켰고, 반응이 완료된 후에는 65℃에서 15분간 열처리하였다. 10배 완충액 조성은 다음과 같다.Restriction enzyme and reaction buffer used in the present invention was purchased from Kosko Biotech Co., Korea, the reaction volume in a sterile 1.5mL microfuge tube was usually from 10μl to 100μl and the reaction temperature was 37 The reaction was carried out at 1 ° C. for 2 hours, and after the reaction was completed, the result was heat treated at 65 ° C. for 15 minutes. The 10-fold buffer composition is as follows.

10배 완충용액 A: 6mM Tris-HCl, 6mM NaCl, 6mM MgCl2, 1mM DTT, pH 7.510-fold buffer A: 6 mM Tris-HCl, 6 mM NaCl, 6 mM MgCl 2 , 1 mM DTT, pH 7.5

10배 완충용액 B: 6mM Tris-HCl, 50mM NaCl, 6mM MgCl2, 1mM DTT, pH 7.510-fold buffer B: 6 mM Tris-HCl, 50 mM NaCl, 6 mM MgCl 2 , 1 mM DTT, pH 7.5

10배 완충용액 C: 10mM Tris-HCl, 50mM NaCl, 10mM MgCl2, 1mM DTT, pH 7.910-fold buffer C: 10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl 2 , 1 mM DTT, pH 7.9

10배 완충용액 D: 6mM Tris-HCl, 150mM NaCl, 6mM MgCl2, 1mM DTT, pH 7.910-fold buffer D: 6 mM Tris-HCl, 150 mM NaCl, 6 mM MgCl 2 , 1 mM DTT, pH 7.9

EcoR1을 위한 10배 완충용액: 100mM Tris-HCl, 50mM NaCl, 10mM MgCl2, pH 7.510-fold buffer for EcoR1: 100 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl 2 , pH 7.5

Smal을 위한 10배 완충용액: 10mM Tris-HCl, 50mM KCl, 7mM MgCl2, pH 7.510-fold buffer for Smal: 10 mM Tris-HCl, 50 mM KCl, 7 mM MgCl 2 , pH 7.5

제 2단계: 페놀 추출과 에탄올 침전Step 2: Phenol Extraction and Ethanol Precipitation

효소반응이 완료된 후 효소를 불활성화시키거나 핵산을 추출할 때 페놀을 사용하였다. 페놀은 10mM Tris-HCl(pH 8.0), 1mM EDTA 용액으로 포화시켰다. 페놀 추출방법은 시료와 페놀을 1:1(v:v)의 비율로 섞은 후 강하게 흔들어 혼합시킨후 원심분리(15,000g, 5min)시켜 상층액을 새 튜브로 옮긴후 동일 부피의 페놀-클로로포름 용액(페놀과 클로로포름의 비율이 1:1(v:v)인 용액)을 첨가하여 추출한 후 상층액을 새로운 튜브에 옮긴후 이 상층액의 0.1부피의 3M 나트륨 아세테이트와 2 부피의 에탄올(-20℃)을 가하고 -20℃에서 12시간 정도 정치한 후 원심분리(15,000g, 20min, 4℃)하여 핵산을 침전시켰다.After the enzymatic reaction was completed, phenol was used to deactivate the enzyme or extract the nucleic acid. The phenol was saturated with 10 mM Tris-HCl (pH 8.0), 1 mM EDTA solution. The phenol extraction method is to mix the sample and phenol in a ratio of 1: 1 (v: v), shake vigorously, and then centrifuge (15,000 g, 5 min) to transfer the supernatant to a new tube, and then to the same volume of phenol-chloroform solution. After extraction by adding (a solution of phenol-chloroform ratio of 1: 1 (v: v)), the supernatant was transferred to a new tube, and 0.1 volume of 3M sodium acetate and 2 volumes of ethanol (-20 ° C.) were added. ) Was added and allowed to stand at -20 ° C for about 12 hours, followed by centrifugation (15,000g, 20min, 4 ° C) to precipitate nucleic acid.

제 3단계: 접합반응Step 3: conjugation reaction

접합효소는 T4DNA 접합효소(T4DNA ligase, KOSCO Biotech Co.)와 10배 접합 완충용액(0.5M 트리스-HCl(pH 7.8) 0.1M MgCl2, 0.2M DTT, 10mM ATP)을 사용하였으며 보통 10㎕ 부피에 100단위체의 접합효소를 사용하였고 평찰 말단(blunt end)을 갖는 DNA접합은 1,000 unit의 접합효소를 사용하였다. 반응조건은 15℃에서 12시간 이상 반응시켰다.Bonding enzyme was used as the enzyme T 4 DNA junction (T 4 DNA ligase, KOSCO Biotech Co.) and 10 times the bonding buffer (0.5M Tris -HCl (pH 7.8) 0.1M MgCl 2 , 0.2M DTT, 10mM ATP) Usually, 100 units of conjugate enzyme was used in a volume of 10 μl, and the DNA conjugate having a blunt end was used for 1,000 units of conjugate enzyme. Reaction conditions were made to react at 15 degreeC for 12 hours or more.

제 4단계: 대장균 형질 전환Step 4: E. coli transformation

E. Coli 숙주 세포로는 DH5α를 사용하였다. 숙주세포를 50mL의 액체 LB 배지(1% 박토트립톤, 0.5% 박토 효모 추출물, 1% NaCl)에 접종한 후 37℃에서 650nm에서의 광학밀도 값이 0.25에서 0.5에 도달할 때까지 배양한 후 얼음위에서 10분간 정치시킨후 원심분리(4℃, 10min, 3,000g)하여 세포들을 분리하고 10mL의 0.1M CaCl2용액을 첨가하여 얼음위에서 10분간 정치시킨후 원심분리(4℃, 10min, 3,000g)에 의하여 세포를 분리하고 2mL의 0.1M CaCl2를 첨가하여 균일하게 분산시켜 4℃에 보관시킨후 24시간 후에 사용하였다. 형질전환은 위에서 얻은 200㎕세포에 접합 반응액 10㎕를 가하여 얼음위에서 1시간 동안 정치시킨후 42℃에서 90초간 열처리한 다음 0.8mL의 액체 LB 배지를 가하여 37℃에서 45분 동안 배양한 후 50ug/mL의 엠피실린을 함유하고 있는 고체 LB 배지가 있는 페트리 디시(petri dish)에 도포한 후 37℃에서 밤새 배양하였다.DH5α was used as E. Coli host cell. Host cells were inoculated in 50 mL of liquid LB medium (1% bactotrypton, 0.5% bacterium yeast extract, 1% NaCl), and then cultured at 37 ° C. until the optical density at 650 nm reached 0.25 to 0.5. After standing on ice for 10 minutes, centrifuge (4 ℃, 10min, 3,000g) to separate the cells, and add 10mL of 0.1M CaCl 2 solution for 10 minutes on ice, then centrifuge (4 ℃, 10min, 3,000g). Cells were isolated, and 2 mL of 0.1M CaCl 2 was added and uniformly dispersed, stored at 4 ° C., and used after 24 hours. In the transformation, 10 µl of the conjugated reaction solution was added to 200 µl cells obtained above, and left to stand on ice for 1 hour, followed by heat treatment at 42 ° C. for 90 seconds, incubation at 0.8 ° C. in liquid LB medium for 45 minutes, and 50ug. It was applied to a petri dish with solid LB medium containing / mL of empicillin and incubated overnight at 37 ° C.

이하에는 본 발명의 구체적인 구성과 작용을 공정별 실시예를 들어 설명한다. 본 발명의 권리범위는 하기 기재된 실시예에만 국한하지 아니함은 물론이다.Hereinafter, the specific configuration and operation of the present invention will be described by the embodiment of the process. Of course, the scope of the present invention is not limited only to the examples described below.

제 1공정: chromosomal DNA의 분리Step 1: Isolation of Chromosomal DNA

DNA의 추출 혐기성 미생물인 Fibrobacter succinogenes S85(ATCC 19169)를 100mL의 Swelet E broth에 접종하여 혐기적 상태하에서 subculture로 이용하였다. subculture를 1리터의 Peptone Yeast Extract(PY) 배지에 재차 접종한 후 37℃에서 36시간 정도 혐기적 상태로 정치배양하였다. 이들 균체를 원심분리(4℃, 5,500rpm, 10min)하여 수집한 후 300mL의 saline-EDTA 용액(0.15M NaCl, 0.1M EDTA, pH8.0)에 2회 세척하고 40mL의 saline-Tris용액(0.1M NaCl, 10mM EDTA, 0.1M Tris-HCl, pH9.0)에 용해하였다. 용해시킨 후 lysozyme을 1.8mg/mL의 농도로 첨가하여 37℃에서 10분간 온화하게 흔들었다. 12mL의 Tris-SDS 용액(5%(W/V)SDS, 0.14M NaCl, 1mM EDTA, 20mM Tris-HCl, pH7.5)을 한방울씩 천천히 첨가한 후 60℃에서 20분동안 온화하게 흔들었다. Proteinase K를 1mg/mL의 농도로 첨가한 후 3℃에서 3시간동안 정치시킨후 페놀 추출과 에탄올 침전을 시켜 chromosomal DNA를 침전시킨후 유리막대로 DNA를 건져서 70%(V/V)에탄올 용액에 세척한 다음 30ml의 SSC용액(0.1M NaCl, 0.015M Na3citrate)에 용해시켰다. DNA가 용해된 SSC용액에 30㎕의 RNAase용액(50mg/mL)을 첨가하여 37℃에서 1시간동안 배양하여서 RNA를 제거한 후 다시 페놀 추출과 에탄올 침전을 시켰다. 유리막대로 침전된 DNA를 건져서 70%(V/V)에탄올 용액에 세척하여 3mL의 TE 완충용액(10mM Tris-HCl(pH8.0), 1mM EDTA)에 용해시킨 후 0.1배 TE 완충용액을 넣고 투석을 시켜서 순수한 chromosomal DNA를 얻었다.Extraction of DNA Fibrobacter succinogenes S85 (ATCC 19169), an anaerobic microorganism, was inoculated into 100 mL Swelet E broth and used as a subculture under anaerobic conditions. Subcultures were inoculated again in 1 liter of Peptone Yeast Extract (PY) medium and then incubated in anaerobic conditions at 37 ° C. for 36 hours. The cells were collected by centrifugation (4 ° C, 5,500 rpm, 10 min), washed twice with 300 mL of saline-EDTA solution (0.15 M NaCl, 0.1 M EDTA, pH8.0), and 40 mL of saline-Tris solution (0.1 M NaCl, 10 mM EDTA, 0.1M Tris-HCl, pH9.0). After dissolution, lysozyme was added at a concentration of 1.8 mg / mL and gently shaken at 37 ° C for 10 minutes. 12 mL of Tris-SDS solution (5% (W / V) SDS, 0.14 M NaCl, 1 mM EDTA, 20 mM Tris-HCl, pH7.5) was slowly added dropwise and gently shaken at 60 ° C. for 20 minutes. Proteinase K was added at a concentration of 1mg / mL, and then left at 3 ° C for 3 hours, followed by phenol extraction and ethanol precipitation to precipitate chromosomal DNA, and then the DNA was washed with a glass rod to wash in 70% (V / V) ethanol solution. Then dissolved in 30ml of SSC solution (0.1M NaCl, 0.015M Na 3 citrate). 30 μl of RNAase solution (50mg / mL) was added to the SSC solution in which DNA was dissolved, followed by incubation at 37 ° C. for 1 hour to remove RNA, followed by phenol extraction and ethanol precipitation. The DNA precipitated with the glass rod was collected, washed in 70% (V / V) ethanol solution, dissolved in 3 mL of TE buffer solution (10 mM Tris-HCl (pH8.0), 1 mM EDTA), and then dialyzed with 0.1 times TE buffer solution. Pure chromosomal DNA was obtained.

제 2공정: CMC-xylanase 유전자의 클로닝Step 2: Cloning the CMC-xylanase Gene

유전자 라이브러리(gene library)의 제조Preparation of Gene Library

상기 제 1공정에서 얻은 chromosomal DNA 용액 70㎕와 10배 완충용액 B 10㎕, 이차증류수 19㎕, 3단위의 제한효소 Sau3AI를 혼합하여 8분동안 37℃에서 반응시킨후 75℃에서 10분동안 열처리하여 제한효소를 불활성화시켰다. 제한효소 Sau3AI로 부분절단되어 생성된 유전자 라이브러리로부터 2-8kb의 DNA단편을 얻기 위하여 10-40% sucrose gradient 원심분리(20℃, 25,000rpm, 24hours)한 후 400㎕씩 microcentrifuge tube에 받은 후 5M NaCl 용액을 30㎕ 첨가한 다음 2부피의 에탄올을 첨가한 후 -20℃에서 12시간이상 방치하였다. 4℃에서 20분동안 14,000rpm으로 원심분리한 다음 70% 에탄올로 세척후 30㎕의 TE 완충용액에 용해시켰다. 각 fraction에서 1㎕씩을 전기영동하여 2-8kb DNA단편을 함유한 fraction 3번과 4번을 선별하였다.70 μl of the chromosomal DNA solution obtained in step 1, 10 μl of 10-fold buffer B, 19 μl of secondary distilled water, and 3 units of restriction enzyme Sau3AI were reacted at 37 ° C. for 8 minutes, followed by heat treatment at 75 ° C. for 10 minutes. The restriction enzyme was inactivated. To obtain a DNA fragment of 2-8kb from the gene library generated by cleavage with the restriction enzyme Sau3AI, 10-40% sucrose gradient centrifugation (20 ° C, 25,000rpm, 24hours) was received in a microcentrifuge tube at 400µL and then 5M NaCl. 30 μl of the solution was added, followed by addition of 2 volumes of ethanol, followed by standing at -20 ° C. for at least 12 hours. After centrifugation at 14,000 rpm for 20 minutes at 4 ℃ washed with 70% ethanol and dissolved in 30 μl of TE buffer. 1 μl of each fraction was electrophoresed to select fractions 3 and 4 containing 2-8 kb DNA fragments.

클로닝을 위한 벡터의 준비Preparation of the vector for cloning

클로닝을 위해 벡터는 pUC19을 사용하였고 이를 제한효소 Sau3AI의 절단 부위와 동일한 BamHI으로 절단하였다. 제한효소 BamHI으로 절단한 pUC19 벡터 30㎕(5㎍), 이차증류수 103㎕, 1M 트리스-HCl(pH 8.0) 15㎕, calf intestine phosphatase(KOSCO Biotech Co) 2단위를 첨가하여 혼합한 후 37℃에서 30분동안 배양한 후, 페놀 추출후 다시 동일부피의 에테르(증류수로 포화시킨 에테르)로 2회 추출한 다음 에탄올로 침전시킨후 20㎕ TE 완충용액에 용해시켰다.For cloning, the vector used pUC19, which was cut with BamHI identical to the cleavage site of the restriction enzyme Sau3AI. 30 μl (5 μg) of pUC19 vector digested with restriction enzyme BamHI, 103 μl of secondary distilled water, 15 μl of 1M Tris-HCl (pH 8.0), and 2 units of calf intestine phosphatase (KOSCO Biotech Co) were mixed and mixed at 37 ° C. After incubation for 30 minutes, phenol was extracted, and then extracted twice with the same volume of ether (ether saturated with distilled water), precipitated with ethanol, and dissolved in 20 μl TE buffer.

유전자 클로닝Gene cloning

pUC19벡터에 클로닝하기 위해 선별된 fraction 3번과 4번의 DNA를 각각 1㎕, BamHI으로 절단한 pUC19 벡터 1㎕, 10배 접합 완충용액 1㎕, 이차증류수 5㎕, T4DNA 접합효소 1㎕를 첨가하고 혼합하여 15℃에서 12시간 이상 반응시켰다. 반응종료후 상기 제 4단계 설명에서와 같이 대장균을 준비한 후 접합반응 용액 10㎕와 200㎕의 대장균 분산 용액을 혼합하여 얼음위에서 1시간동안 정치시켜 42℃에서 90초간 열처리를 한 다음 0.8mL의 액체 LB배지를 가하여 37℃에서 45분동안 배양하였다. 형질전환시킨 E. coli중에서 외부 DNA의 insertion 여부를 확인하기 위하여 α-complementation을 이용한 선별방법을 사용하였다. 먼저, mL당 50㎍을 앰피실린이 첨가된 고체 LB배지에 40㎕의 X-gal (5-bromo-4-chloro-3-indolyl-β-D-galacto pyranoside) stock 용액(20mg/mL in dimethylformide)과 4㎕의 IPTG (20mg/mL)용액을 spreading 하였다. 이렇게 만든 고체 LB배지 위에 150㎕의 형질전환시킨 E. coli를 도말한 후 37℃에서 12-16시간동안 배양하였다. pUC19 벡터만을 갖는 콜로니는 파란색을 나타내지만 벡터와 외부 DNA가 재조합된 경우에는 콜로니가 흰색을 나타낸다. α-complementation방법을 사용하여 선별된 흰색의 콜로니는 CMC-xylanase 유전자의 함유여부를 확인하기 위하여 2차 선별작업에 사용하였다.1 μl of the selected fractions 3 and 4 for cloning into the pUC19 vector, 1 μl of the pUC19 vector digested with BamHI, 1 μl of 10-fold conjugation buffer, 5 μl of secondary distilled water, and 1 μl of T 4 DNA conjugated enzyme. The mixture was added and mixed to react at 15 DEG C for at least 12 hours. After completion of the reaction, E. coli was prepared as described in the fourth step, 10 μl of the conjugated reaction solution and 200 μl of the E. coli dispersion solution were mixed, left on ice for 1 hour, heat treated at 42 ° C. for 90 seconds, and then 0.8 mL of liquid LB medium was added and incubated at 37 ° C. for 45 minutes. In order to confirm the insertion of external DNA in the transformed E. coli was used a screening method using α-complementation. First, 40 µl of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galacto pyranoside) stock solution (20 mg / mL in dimethylformide) was added to a solid LB medium containing 50 µg / ml of ampicillin. ) And 4 μl of IPTG (20 mg / mL) solution were spread. 150 μl of transformed E. coli was plated on the solid LB medium thus prepared and incubated at 37 ° C. for 12-16 hours. Colonies with only the pUC19 vector are blue, but colonies are white when the vector and the external DNA are recombined. White colonies selected using the α-complementation method were used in the second screening process to confirm the inclusion of the CMC-xylanase gene.

제 3공정: CMC-xylanase유전자를 지닌 E. coli 형질전환체의 선별 및 DNA 염기 서열결정Step 3: screening and DNA sequencing of E. coli transformants carrying CMC-xylanase gene

CMC-xylanase 유전자를 가진 E. coli 형질전환체를 선별하기 위하여 먼저, mL당 50㎍의 앰피실린과 0.5%의 CMC(carboxymethylcellulose) 또는 oat spelt xylan이 첨가된 LB agar plate에 형질전환체를 각각 picking하여 37℃에서 16-24시간동안 배양하였다. 콜로니가 형성된 plate에 0.5%의 congo-red 용액을 콜로니가 완전히 잠기도록 첨가하여 30분간 정치시켰다. 고분자인 CMC나 oat spelt xylan과 결합되지 않은 congo-red는 1M NaCl을 첨가하여 제거하였다. 형성된 투명환(clear zone)의 유무로 효소활성을 확인하였다. 이렇게 선별된 미생물군이 CMC-xylanase 효소를 발현시키는지의 여부를 확인하기 위하여 다시 액체 LB 배지에 접종하여 37℃에서 12시간정도 shaking하면서 배양하여 CMC-xylanase 효소활성을 조사하여 CMC-xylanase 유전자의 클로닝 유무를 확인하였다. 액체 LB 배지에서 배양한 배양용액을 sonication에 의하여(4℃, 4min, duty cycle 50%) 미생물을 파괴한 후 5500rpm에서 30분간 원심분리하여 상층액을 효소액으로 이용하였다. 기질은 CMC로서 50mM potassium phosphate 완충용액에 용해시킨다. 효소액 1.0mL와 기질 1.0mL를 혼합한 후 37℃에서 30분 동안 shaking하면서 반응시킨후 10분동안 끓는 물에 담구어 효소를 불활성화 시켰다. 환원당의 측정을 위해 DNS(3,5-dinitrosalicylic acid)를 이용하여 반응시킨 다음 550nm에서 흡광도를 측정하였다. 효소 1unit는 37℃에서 1분동안 해리된 1umole의 환원당에 해당한다.To screen for E. coli transformants with the CMC-xylanase gene, first picking the transformants on an LB agar plate containing 50 μg of ampicillin per mL and 0.5% CMC (carboxymethylcellulose) or oat spelt xylan, respectively. Incubated at 37 ° C. for 16-24 hours. 0.5% congo-red solution was added to the colony-formed plates and allowed to stand for 30 minutes. Congo-red that was not bound to the polymer CMC or oat spelt xylan was removed by adding 1M NaCl. Enzyme activity was confirmed with or without the clear zone formed. In order to confirm whether the selected microorganisms express CMC-xylanase enzyme, inoculate the liquid LB medium again and incubate with shaking at 37 ° C for 12 hours to examine CMC-xylanase enzyme activity and clone the CMC-xylanase gene. Check the presence or absence. The culture solution incubated in liquid LB medium was disrupted by sonication (4 ℃, 4 min, duty cycle 50%) and then centrifuged at 5500 rpm for 30 minutes to use the supernatant as an enzyme solution. The substrate is dissolved in 50 mM potassium phosphate buffer as CMC. After mixing the enzyme solution 1.0mL and substrate 1.0mL shaking reaction for 30 minutes at 37 ℃ and soaked in boiling water for 10 minutes to inactivate the enzyme. In order to measure the reducing sugar, the reaction was performed using DNS (3,5-dinitrosalicylic acid) and then absorbance was measured at 550 nm. One unit of enzyme corresponds to 1 μole of reducing sugar dissociated for 1 minute at 37 ° C.

제 4공정: Fibrobacter succinogenes S85과 CMC-xylanase 유전자를 도입한 형질전환체의 효소활성 비교Fourth Step: Comparison of Enzyme Activity of Transformants with Fibrobacter succinogenes S85 and CMC-xylanase Gene

Fibrobacter succinogenes S85을 1 리터의 Peptone Yeast Extract(PY) 배지에 접종한 후 37℃에서 36시간정도 혐기적 상태로 정치배양하였다. 배양한 배양용액을 5500rpm에서 10분간 원심분리하여 균체를 수집한 후 50mM potassium phosphate buffer 20mL에 분산시킨 후 sonication에 의하여(4℃, 4min, duty cycle 50%) 미생물을 파괴한 후 5500rpm에서 30분간 원심분리하여 상층액을 효소액으로 이용하였다. CMC-xylanase 유전자를 도입한 E. coli 형질전환체는 1리터의 액체 LB배지(ampicilin 50㎍/mL)에 접종한 후 37℃에서 12시간정도 shaking하면서 배양하였다. 배양한 배양용액을 5500rpm에서 10분간 원심분리하여 균체를 수집한 후 50mM potassium phosphate buffer 50mL에 분산시킨 후 sonication에 의하여(4℃, 4min, duty cycle 50%) 미생물을 파괴한 후 5500rpm에서 30분간 원심분리하여 상층액을 효소액으로 이용하였다. 기질은 CMC로 50mM potassium phosphate 완충용액에 용해시킨다. 효소액 1.0mL와 기질1.0mL를 혼합한 후 37℃에서 30분동안 shaking하면서 반응시킨후 10분동안 끓는 물에 담구어 효소를 불활성화 시킨다. 환원당은 측정을 위해 DNS(3,5-dinitrosalicylic acid)를 이용하여 반응시킨 다음 550nm에서 흡광도를 측정하였다. 발현되는 CMC-xylanase 효소활성은 Fibrobacter succinogenes S85의 경우 0.013 units/mg protein이었고, CMC-xylanase 유전자가 도입된 E. coli 형질전환체의 경우 0.244 units/mg protein으로 형질전환을 시켜서 CMC-xylanase를 발현시킬 경우 본래 균주가 가진 효소활성보다 18.77배 더 높았다.Fibrobacter succinogenes S85 was inoculated in 1 liter of Peptone Yeast Extract (PY) medium and then incubated in an anaerobic state at 37 ° C. for 36 hours. The cultured culture solution was centrifuged at 5500 rpm for 10 minutes to collect the cells, and then dispersed in 20 mL of 50 mM potassium phosphate buffer, followed by sonication (4 ℃, 4 min, duty cycle 50%) to destroy microorganisms, followed by centrifugation at 5500 rpm for 30 minutes. The supernatant was separated and used as the enzyme solution. E. coli transformants, which were introduced with the CMC-xylanase gene, were inoculated in 1 liter of liquid LB medium (ampicilin 50㎍ / mL) and incubated with shaking at 37 ° C for 12 hours. The cultured culture solution was centrifuged at 5500rpm for 10 minutes to collect the cells, and then dispersed in 50mL of 50mM potassium phosphate buffer, followed by sonication (4 ℃, 4min, duty cycle 50%) to destroy microorganisms and then centrifuged at 5500rpm for 30 minutes. The supernatant was separated and used as the enzyme solution. The substrate is dissolved in 50 mM potassium phosphate buffer with CMC. After mixing 1.0 mL of the enzyme solution and 1.0 mL of the substrate, the reaction is shaken at 37 ° C. for 30 minutes, and then immersed in boiling water for 10 minutes to inactivate the enzyme. Reducing sugar was reacted using DNS (3,5-dinitrosalicylic acid) for the measurement and then the absorbance was measured at 550nm. The CMC-xylanase enzyme activity expressed was 0.013 units / mg protein for Fibrobacter succinogenes S85, and 0.244 units / mg protein for E. coli transformant with CMC-xylanase gene to express CMC-xylanase. In this case, the enzyme activity was 18.77 times higher than the enzyme activity.

본 발명은 이상 단계별 및 공정별 실시예를 통하여 설명한 바와 같이 신규한 CMC-Xylanase 유전자의 염기서열을 제공하고 이 유전자를 함유하는 벡타, 상기 발현벡타에 의하여 형질전환된 E. Coli를 제공하는 효과가 있을 뿐만 아니라 형질전환체로부터 분리사용이 용이한 CMC-Xylanase를 대량 생합성할 수 있는 효과가 있으므로 생물산업 및 효소산업상 매우 유용한 발명인 것이다.The present invention provides a nucleotide sequence of a novel CMC-Xylanase gene and a vector containing the gene, E. Coli transformed by the expression vector as described through the steps and process-specific examples described above In addition, since it has the effect of mass biosynthesis of CMC-Xylanase, which is easy to separate and use from a transformant, it is a very useful invention in the biological industry and the enzyme industry.

Claims (4)

하기의 DNA염기 서열을 가지는 Fibrobacter succinogenes S85의 CMC-xylanase 유전자CMC-xylanase gene of Fibrobacter succinogenes S85 having the following DNA base sequence
Figure kpo00000
Figure kpo00000
Fibrobacter succinogenes S85의 CMC-xylanase 유전자를 함유하는 발현벡터Expression vector containing CMC-xylanase gene of Fibrobacter succinogenes S85 제 2항의 발현벡터에 의하여 형질전환된 대장균(KTCC 8830P)E. coli transformed by the expression vector of claim 2 (KTCC 8830P) 제 3항 기재의 형질전환 미생물에 의하여 제조되는 재조합 CMC-Xylanase 효소Recombinant CMC-Xylanase enzyme prepared by the transforming microorganism according to claim 3
KR1019970047870A 1997-09-20 1997-09-20 Gene sequence of cmc-xylanase and expression thereof KR100221204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970047870A KR100221204B1 (en) 1997-09-20 1997-09-20 Gene sequence of cmc-xylanase and expression thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970047870A KR100221204B1 (en) 1997-09-20 1997-09-20 Gene sequence of cmc-xylanase and expression thereof

Publications (2)

Publication Number Publication Date
KR19990025977A KR19990025977A (en) 1999-04-06
KR100221204B1 true KR100221204B1 (en) 1999-10-01

Family

ID=19521447

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970047870A KR100221204B1 (en) 1997-09-20 1997-09-20 Gene sequence of cmc-xylanase and expression thereof

Country Status (1)

Country Link
KR (1) KR100221204B1 (en)

Also Published As

Publication number Publication date
KR19990025977A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
US9206434B2 (en) Heterologous biomass degrading enzyme expression in thermoanaerobacterium saccharolyticum
Reinhold-Hurek et al. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph
Hakamada et al. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans
Juncosa et al. Identification of active site carboxylic residues in Bacillus licheniformis 1, 3-1, 4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis.
US9150843B2 (en) Beta-glucosidase variants
Li et al. Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila
JP2530181B2 (en) DNA fragment containing alkaline cellulase gene, recombinant plasmid and recombinant microorganism incorporating the DNA fragment
KR20030027902A (en) Methods and Compositions for Simultaneous Saccharification and Fermentation
Adav et al. Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass
Gerasimova et al. Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1
EP3374503B1 (en) Cellulase derived from metagenomics
Roy et al. Isolation and characterization of xylanase producing strain of Bacillus cereus from soil
Lee et al. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme
Li et al. A novel β-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose
BEYLOT et al. Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase
WO1995004815A1 (en) SECRETION OF CLOSTRIDIUM CELLULASE BY $i(E. COLI)
WO2010101158A1 (en) Novel gene derived from clostridium cellulovorans and use thereof
Paul et al. Purified cellulase‐mediated simultaneous sugar utilization by Bacillus albus isolated from Similipal, Odisha, India
WO2014142529A1 (en) Novel cellulase derived from metagenome, and preparation method therefor
KR100221204B1 (en) Gene sequence of cmc-xylanase and expression thereof
Kobayashi et al. Bifunctional pectinolytic enzyme with separate pectate lyase and pectin methylesterase domains from an alkaliphilic Bacillus
KR100341451B1 (en) Beta-glucosidase gene derived from Luminococcus albus
Singh et al. Overexpression and protein folding of a chimeric beta-glucosidase constructed from Agrobacterium tumefaciens and Cellvibrio gilvus.
KR101834493B1 (en) A novel β-Mannosidase and producing method thereof
Min et al. Cloning of the endoglucanase gene from Actinomyces sp. 40 in Escherichia coli and some properties of the gene products

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100625

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee