KR100220021B1 - Photocatalyst for treating waste water and process of treating waste water using the said catalyst - Google Patents

Photocatalyst for treating waste water and process of treating waste water using the said catalyst Download PDF

Info

Publication number
KR100220021B1
KR100220021B1 KR1019960022851A KR19960022851A KR100220021B1 KR 100220021 B1 KR100220021 B1 KR 100220021B1 KR 1019960022851 A KR1019960022851 A KR 1019960022851A KR 19960022851 A KR19960022851 A KR 19960022851A KR 100220021 B1 KR100220021 B1 KR 100220021B1
Authority
KR
South Korea
Prior art keywords
catalyst
oxide
wastewater
titanium dioxide
carbonate
Prior art date
Application number
KR1019960022851A
Other languages
Korean (ko)
Other versions
KR980000684A (en
Inventor
박윤창
김태관
정훈
Original Assignee
정훈
박윤창
김태관
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정훈, 박윤창, 김태관 filed Critical 정훈
Priority to KR1019960022851A priority Critical patent/KR100220021B1/en
Publication of KR980000684A publication Critical patent/KR980000684A/en
Application granted granted Critical
Publication of KR100220021B1 publication Critical patent/KR100220021B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이산화티타늄 또는 메타티탄산에 산화물, 탄산화물, 수산화물중 1종 이상을 가하고 혼입한 다음 볼밀로 처리한 후 550 내지 1100℃에서 소성하는 것을 특징으로 하는 폐수처리용 촉매의 제조방법을 제공한다. 또한, 산화물, 탄산화물, 수산화물중 1종 이상이 0.01중량% 내지 5.0중량% 혼입하여 상기 제조방법으로 하는 폐수처리용 촉매를 제공한다.The present invention provides a process for producing a catalyst for treating wastewater, characterized in that at least one of oxides, carbonates and hydroxides is added to and mixed with titanium dioxide or metatitanic acid, followed by ball milling and then calcining at 550 to 1100 ° C . Also, at least one of oxides, carbonates, and hydroxides is mixed with 0.01 wt% to 5.0 wt% to provide a catalyst for treating wastewater according to the above production method.

또한, 본 발명은 200-600nm의 파장을 가진 빛을 쪼여주면서 상기 방법으로 제조한 촉매를 폐수와 접촉시키는 것을 특징으로 하는 폐수처리방법을 제공한다.The present invention also provides a method for treating wastewater, characterized in that the catalyst produced by the above method is contacted with wastewater while irradiating light having a wavelength of 200-600 nm.

Description

폐수처리용 촉매의 제조방법, 폐수처리용 촉매 및 이를 이용한 폐수처리방법Process for producing wastewater treatment catalyst, catalyst for treating wastewater and method for treating wastewater using the same

본발명은 폐수처리용 촉매에 관한 것으로서, 특히 폐수처리효율이 향상된 폐수처리용 촉매, 그 제조방법 및 이를 이용한 폐수 처리방법에 관한것이다.The present invention relates to a catalyst for treating wastewater, and more particularly, to a catalyst for treating wastewater with improved efficiency of wastewater treatment, a method for producing the catalyst, and a method for treating wastewater using the same.

지금까지 알려진 폐수처리방법으로는 활성오니법이라 불리는 생물학적 방법과 화학적 방법이 있다. 활성오니법은 유기화합물을 분해시키는 데 긴 시간이 걸리며, 폐수를 조류 및 박테리아의 성장에 적합한 농도로 희석시켜야 한다. 따라서, 이 방법은 처리시설을 갖추는 데 넓은 공간이 요구되며 난분해성 물질인 방향족유기물이 함유된 폐수의 경우 활성오니가 쇼크를 받거나 잘 처리되지 않아서 분해되지 않은 채 방류되는 단점을 가지고 있다.Conventional wastewater treatment methods include biological methods and chemical methods called activated sludge methods. The activated sludge process takes a long time to decompose organic compounds and the wastewater should be diluted to a concentration suitable for the growth of algae and bacteria. Therefore, this method has a disadvantage that wastewater containing aromatics organic matter, which is a decomposing substance, is required to have a large space for disposing a treatment facility, and the activated sludge is shocked or not treated well and discharged without being decomposed.

현재 가장 일반적으로 사용되는 화학적 처리법은 철산화법, 팬톤(Fenton)산화법, 오존산화법 등이 있다. 철산화법은 제일철과 제이철을 이용하여 단순한 산화와 응집을 이용하는 방법으로 가격이 저렴하고 처리방식이 용이하며 응집이 우수하나 처리효율이 저조하다. 펜톤산화방법은 제일철 또는 제이철을 이용하고 산 조건하에서 산화력이 큰 과산화수소수를 이용하는 방법이다. 비교적 처리 효율이 우수한 것으로 나타나고 있으나 난분해성 유기물을 포함하는 폐수의 처리는 거의 불가능하다. 최근에 음용수 처리에 널리 사용되고 있는 오존 산화법은 처리비용이 높고 오존에 대한 이차오염이 우려되며, 오존 처리 후 발생되는 가스를 활성탄으로 흡착처리해야 하고 오존 발생기의 장치가 복잡하며 음용수처리는 용이하지만 여러가지 유기물질이 함유된 폐수의 처리효율에는 적합하지 못하다. 이외에 고온고압법과 자외선과 오존, 과산화수소를 이용한 산화법이 알려져 있으나 COD농도가 100ppm이하인 폐수에서만 이용되고 있어 실폐수처리방법으로는 적합하지 않다.Currently, the most commonly used chemical treatment methods are iron oxidation, Fenton oxidation, and ozone oxidation. The iron oxidation method uses ferric oxide and ferric oxide by simple oxidization and coagulation. It is inexpensive, easy to treat, and has good flocculation but low treatment efficiency. The Fenton oxidation method is a method using ferrous or ferric oxide and hydrogen peroxide having a high oxidizing power under an acidic condition. Although the treatment efficiency is relatively high, it is almost impossible to treat wastewater containing refractory organic matter. Recently, the ozone oxidation method, which is widely used for drinking water treatment, has a high treatment cost and secondary pollution to ozone. It is necessary to adsorb the gas generated after ozone treatment with activated carbon, the apparatus of ozone generator is complicated and the treatment of drinking water is easy, It is not suitable for the treatment efficiency of wastewater containing organic substances. In addition, high-temperature high-pressure method and oxidation method using ultraviolet ray, ozone and hydrogen peroxide are known, but they are not suitable for water-repellent method because they are used only in waste water having a COD concentration of 100 ppm or less.

일반적으로 처리해야 할 폐수에 함유된 화학물질은 매우 다양하다.In general, the chemicals contained in wastewater to be treated are very diverse.

폐수에 함유된 유기물은 탄소, 수소, 질소, 산소, 황 등의 원소로 이루어진 물질을 말하며 이들은 알칸, 알켄, 알킨 세가지로 크게 구분하며 여기에 유기물의 특성을 나타내는 작용기들이 결합되어 있다. 작용기의 형태에 따라 알데히드, 니트릴, 알코올, 아민, 아마이드, 방향족, 산 등으로 구분되어진다.Organic matter contained in wastewater refers to a substance composed of elements such as carbon, hydrogen, nitrogen, oxygen, and sulfur. These substances are largely divided into alkane, alkene, and alkene. Depending on the type of functional group, it is divided into aldehyde, nitrile, alcohol, amine, amide, aromatic, and acid.

이러한 유기물질들은 유익한 물질이지만, 제조과정에서 발생하는 폐수는 강이나 바다로 흘러 우리의 자연환경을 저해하는 주 요인이 되고 있다.These organic materials are beneficial, but the wastewater from the manufacturing process flows into rivers and oceans and is a major factor impeding our natural environment.

위에서 언급한 것과 같이 폐수에 함유된 유기물의 종류가 매우 다양하므로 이에 대한 처리가 매우 어렵다.As mentioned above, the kinds of organic matter contained in the wastewater are very diverse, and the treatment is very difficult.

폐수 중에 질소함유화합물, 예를 들면 아민화합물, 아미드화합물, 아미노산 화합물 등을 포함한 폐수는 음이온 고분자응집제를 이용하여 응집 처리하나 슬러지에 아민을 함유하기 때문에 후속처리가 필요하며, 흡착방법을 사용할 경우도 흡착제의 효율이 저하되기 때문에 효과적으로 처리하기가 곤란하다.Wastewater containing nitrogen-containing compounds such as amine compounds, amide compounds, and amino acid compounds in the wastewater is subjected to coagulation treatment using an anionic polymer coagulant, but subsequent treatment is required because it contains an amine in the sludge. The efficiency of the adsorbent deteriorates and it is difficult to effectively treat the adsorbent.

황화합물을 함유한 폐수의 경우 생물학적 처리와 연소법중 하나 또는 두가지를 병행하여 처리하나 생물학적 처리에 있어서 유기체가 나쁘게 영향을 받지 않도록 폐수용액을 희석시기는 것이 필요하며, 연소하는 경우 별도의 연료가 필요하며 폐수에 황이 많이 함유되어 있기때문에 다량의 이산화황이 형성되므로 탈황장치가 필요하다.In the case of wastewater containing sulfur compounds, one or both of the biological treatment and the combustion method may be treated in parallel, but in the biological treatment, it is necessary to dilute the wastewater solution so that the organism is not adversely affected. Desulfurization equipment is needed because a large amount of sulfur dioxide is formed because the wastewater contains a lot of sulfur.

유기 할로겐 화합물이 함유된 폐수의 경우 유기 할로겐 화합물이 분해가 어렵기 때문에 자연환경에서 심하게 축적되어 그 결과로 지하수 오염이 여러곳에서 나타난다. 더구나 이런 유기 할로겐 화합물은 발암물질로 판명되어 트리클로로에틸렌, 테트라클로로에틸렌, 1,1,1,-트리클로로에탄 등이 수질오염 방지법의 규제품목으로 지정되어 있다. 유기 할로겐 화합물을 함유한 폐수를 처리하는 알려진 방법으로는 증발법, 흡착법 등이 있으나 근본적인 환경오염 방지가 곤란하거나 흡착제 처리공정 등이 필요하다. 미생물 분해법은 처리하는 데 오랜시간이 걸리고, 처리효율이 오니에 따라 다르기 때문에 매우 불안정하다. 최근에 많은 연구가 진행된 광분해 방법, 방사에너지를 이용한 복사-방사법이 실험적 단계에 있다.In the case of wastewater containing organohalogen compounds, organohalogen compounds are difficult to decompose and accumulate in the natural environment, resulting in groundwater contamination in many places. Moreover, these organohalogen compounds have been identified as carcinogenic substances and trichlorethylene, tetrachlorethylene, 1,1,1, - trichloroethane, etc. have been designated as regulated items in the Water Pollution Prevention Act. Known methods for treating wastewater containing organohalogen compounds include evaporation and adsorption methods, but it is difficult to prevent environmental pollution and it is necessary to process the adsorbent. The microbial decomposition method takes a long time to process, and the treatment efficiency is very unstable because it differs depending on the sludge. Photodegradation methods and radiant - radiation - radiation methods, which have been recently studied, are at the experimental stage.

광촉매를 이용하여 난분해성 유기물을 분해하는 일반적인 방법은 광으로 자외선을 이용하며, 촉매로는 산화티타늄, 산화아연, 산화철, 황화카드뮴, 황화아연등이 사용되고 있다.As a general method for decomposing decomposable organic compounds by using a photocatalyst, ultraviolet rays are used as light, and titanium oxide, zinc oxide, iron oxide, cadmium sulfide, and zinc sulfide are used as catalysts.

광촉매를 이용한 분해방법은 미국특허 제 5,266,540호, 제 3,924,134호, 제4,370,263호, 대한민국특허 96-1961호 등에 제시되어 있다.A decomposition method using a photocatalyst is disclosed in U.S. Patent Nos. 5,266,540, 3,924,134, 4,370,263, and Korean Patent 96-1961.

그러나, 이러한 선행 기술은 대부분 효율이 떨어지거나, 상업화가능성이 매우 회박한 장치에 관한 기술 내용이다. 미국특허 제 5,266,540호의 경우 자외선과 숯과 산화티타늄, 산화아연, 산화철 중에서 선택된 촉매로 이루어진 슬러지를 사용하는데 촉매 사용량이 1.2%로 상업화시 촉매의 사용량이 많을 뿐 아니라 처리효율도 매우 낮아 비경제적이다.However, these prior art techniques are mostly technical in terms of devices that are inefficient or highly commercialized. U.S. Patent No. 5,266,540 uses sludge composed of a catalyst selected from ultraviolet rays, charcoal, titanium oxide, zinc oxide, and iron oxide. The amount of catalyst used is 1.2%, which is not economical because the amount of catalyst used is high and the treatment efficiency is very low.

미국특허 제 3,924,134호는 장치에 관한 특허이며, 미국특허 제 4,370,263호는 표면에 산화루테늄을 포함하고, 니오비움(Niobium)으로 처리된 이산화티타늄을 함유하는 광분해용촉매에 관한 것으로 루테늄이나, 니오비움 등의 고가의 화합물을 사용하므로 비경제적이다.U.S. Patent No. 3,924,134 is a patent for a device and U.S. Patent No. 4,370,263 relates to a photocatalytic catalyst containing titanium dioxide treated with Niobium containing ruthenium oxide on its surface, And thus it is uneconomical.

대한민국특허 제 96-1961의 경우 광을 사용하지 않고 촉매만으로 폐수처리할 경우 효율이 매우 낮으며, 폐수처리시 온도가 100-370℃의 온도이고, 산소가스가 공급되어야만 하며, 일정한 압력을 주어야 하므로 흘러가는 일반폐수의 처리가 불가능하며, 특정폐수를 처리할지라도 고온, 고압하에서 처리해야 하므로 위험하고 처리비용이 매우 비싼 단점이 있다.In Korean Patent No. 96-1961, efficiency is very low when treating wastewater only with catalyst without using light, and the temperature of the wastewater treatment is in the range of 100-370 ° C, oxygen gas must be supplied and a constant pressure must be applied It is impossible to treat the flowing wastewater, and even if the wastewater is treated, there is a disadvantage that it is dangerous and the treatment cost is very high because it must be treated under high temperature and high pressure.

광촉매로 사용되는 화합물은 hv라는 에너지를 가진 광자가 와서 부딪히게되면 광촉매의 밴드갭(bandgap)에너지와 같거나 이보다 큰 에너지를 갖게되고 그 결과 전자는 가전자대(valence band)로부터 나와 전도대(conduction band)로 옮기면서 그 자리에 홀을 남기게 된다. 들뜬 상태에 있는 전자들은 다시 가전자대로 돌아가며 이때 열로써 에너지를 내놓는다. 이때 적당한 스카밴저(scavenger)나 표면 결함상태가 존재하여 전자나 홀을 트랩하게 되면 재결합이 이루어지지 않고 산화-환원 반응이 일어나게 된다, 가전자대홀은 강력한 산화제이며, 전도대전자들은 좋은 환원제가 된다. 대부분 유기광분해 반응은 직접 또는 간접적으로 홀의 산화력을 이용한다. 광촉매로 사용될 수 있는 것은 산화티타늄, 산화아연, 산화철, 황화카드뮴, 황화아연, 산화니켈, 산화코발트 등이 있으나, 산화티타늄이 실제 응용에 가장 적합한 화합물로 지금까지 알려져 있다. 산화티타늄은 에너지 갭이 3.2eV이며 화학적, 생물학적으로 안정하여 부식도 잘 일어나지 않을 뿐만 아니라 값도 매우 싸다.When a photon with an energy of hv comes in contact with a compound used as a photocatalyst, it has energy equal to or greater than the bandgap energy of the photocatalyst. As a result, the electron comes out of the valence band, ) And leave a hole in the place. The electrons in the excited state are returned to the electric field again, and the energy is released by the heat. At this time, when there is a proper scavenger or surface defect state, trapping electrons or holes causes a redox reaction without recombination. The valence band hole is a strong oxidizing agent, and the conduction band electrons become a good reducing agent. Most organic photolysis reactions utilize the oxidizing power of holes directly or indirectly. Titanium oxide, zinc oxide, iron oxide, cadmium sulfide, zinc sulfide, nickel oxide, and cobalt oxide can be used as the photocatalyst, but titanium oxide is known as the most suitable compound for practical application. The titanium oxide has an energy gap of 3.2 eV and is chemically and biologically stable, so that it does not easily corrode and is very cheap.

이산화티타늄은 아나타제와 루타일의 두 형태로 존재하며 아나타제형의 이산화티타늄은 1100℃이상의 고온으로 처리하면 루타일형으로 바뀌게된다. 이런 이산화티타늄은 만들 때의 조건 즉 온도와 시간 등에 따라 그 성질이 달라지게 되므로 촉매로 이산화티타늄 자체를 사용할 경우 반응성이 떨어져서 촉매 사용량을 많이 사용하여야 한다. 이산화티타늄 자체를 사용할 경우 반응성이 떨어져서 촉매 사용량을 많이 사용하여야 하고 반응시간이 길어져 상업화가 어렵다.Titanium dioxide exists in two forms, anatase and rutile. Titanium dioxide in anatase form is converted to rutile when it is treated at a temperature higher than 1100 ° C. Since titanium dioxide itself has different properties depending on the conditions of production, that is, temperature and time, when the titanium dioxide itself is used as a catalyst, the reactivity is reduced and the amount of catalyst used should be increased. When titanium dioxide itself is used, the reactivity is decreased, so the amount of catalyst used should be increased and the reaction time is long, making commercialization difficult.

본 발명은 상기와 같은 문제점들을 해결하기 위해 안출한 것으로 질소, 황 및유기 할로겐 화합물을 포함하는 폐수는 물론, 난분해 물질인 방향족을 포함하는 유기화합물을 효과적으로 분해하며 미생물처리를 할 경우 미생물의 활성을 활발하게 하는 이산화티타늄촉매, 그 제조방법 및 이를 이용한 폐수 처리방법을 제공하는 것을 목적으로 한다.Disclosure of the Invention The present invention has been devised in order to solve the above-mentioned problems, and it is an object of the present invention to provide a method for effectively decomposing organic compounds including aromatics, which are pyrolysis materials, as well as wastewaters containing nitrogen, sulfur and organic halogen compounds, And to provide a method for producing the titanium dioxide catalyst and a method for treating wastewater using the same.

제 1도는 이산화티타늄에 Fe를 혼입시켜 제조한 화합물의 UV-가시광선 흡수스펙트럼을 보여주는 그림이며;FIG. 1 is a view showing a UV-visible light absorption spectrum of a compound prepared by incorporating Fe into titanium dioxide; FIG.

제 2도는 이산화티타늄에 Mn을 혼입시켜 제조한 화합물의 UV-가시광선 흡수 스펙트럼을 보여주는 그림이며;FIG. 2 is a view showing the UV-visible light absorption spectrum of a compound prepared by incorporating Mn into titanium dioxide; FIG.

제 3도는 피리딘(1000ppm)이 함유된 원폐수의 UV-가시광선 흡수 스펙트럼을 보여주는 그림이며;FIG. 3 shows a UV-visible light absorption spectrum of crude wastewater containing pyridine (1000 ppm); FIG.

제 4도는 피리딘(1000ppm)이 함유된 원폐수에 산화철 0.4 중량%를 혼합시킨 이산화티타늄을 촉매로 넣고 UV램프(20watt)에 의해 60시간 조사시켜 처리한 폐수의 UV-가시광선 흡수 스펙트럼을 보여주는 그림이며;4 shows the UV-visible light absorption spectrum of wastewater treated with 60 wt% of titanium dioxide mixed with 0.4 wt% of iron oxide in a raw wastewater containing pyridine (1000 ppm) and irradiated with UV lamp (20 watt) for 60 hours ;

제 5도는 니트로벤젠(100ppm)이 함유된 원폐수의 가스 크로마토그램을 보여 주는 그림이며;FIG. 5 is a graph showing the gas chromatogram of raw wastewater containing nitrobenzene (100 ppm); FIG.

제 6도는 니트로벤젠(100ppm)이 함유된 원폐수에 산화코발트 0.4 증량%를FIG. 6 shows an example in which 0.4% by weight of cobalt oxide was added to the raw wastewater containing nitrobenzene (100 ppm)

혼합시킨 이산화티타늄을 촉매로 넣고 UV램프(20watt)에 의해 120시간 조사시켜 처리한 폐수의 가스 크로마토그램을 보여주는 그림이며This figure shows the gas chromatogram of the wastewater treated with the mixed titanium dioxide as a catalyst and irradiated with UV lamp (20 watt) for 120 hours

제 7도는 스카이바이오(SKYBIO)(1000ppm)가 함유된 원폐수의 액체 크로마토그램을 보여주는 그림이며;7 shows the liquid chromatogram of raw wastewater containing SKYBIO (1000 ppm);

제 8도는 스카이바이오(SKYBI0)(1000ppm)가 함유된 원폐수에 산화크롬 0.4중량%를 혼합시킨 이산화티타늄을 촉매로 넣고 UV램프(20watt)에 의해 2시간 조사시켜 처리한 액체 크로마토그램을 보여주는 그림이다.FIG. 8 is a view showing a liquid chromatogram obtained by irradiating a raw wastewater containing SKYBI0 (1000 ppm) with titanium dioxide mixed with 0.4 weight% of chromium oxide as a catalyst and irradiating with a UV lamp (20 watt) for 2 hours to be.

본 발명은 폐수처리용 촉매에 관한 것으로써 특히 효율이 향상된 폐수처리용 촉매의 제조방법에 관한 것이다. 본 발명은 이산화티타늄 또는 메타티탄산에 산화물, 탄산화물, 수산화물중 1종 이상을 가하고 혼입한 다음 볼밀로 처리한 후 550내지 1100℃에서 소성하는 것을 특징으로 하는 폐수처리용 제조방법을 제공한다.The present invention relates to a catalyst for treating wastewater, and more particularly, to a method for producing a catalyst for treating wastewater with improved efficiency. The present invention provides a manufacturing method for wastewater treatment characterized in that at least one of oxides, carbonates, and hydroxides is added to and mixed with titanium dioxide or metatitanic acid, followed by ball milling and then calcining at 550 to 1100 ° C.

또한 본 발명은 산화물, 탄산화물, 수산화물중 1종 이상이 0.01중량% 내지 5.0중량% 혼입되는 것을 포함하는 상기의 제조방법을 따르는 폐수처리용 광촉매를 제공한다.The present invention also provides a photocatalyst for wastewater treatment according to the above process, which comprises 0.01 to 5.0 wt% of at least one oxide, carbonic acid, and hydroxide.

이때, 상기 산화물은 산화철, 산화크롬(Ⅲ), 산화주석(Ⅱ), 산화주석(Ⅳ), 산화구리, 산화아연, 산화코발트, 산화망간(Ⅱ), 산화망간(Ⅲ) 및 산화망간(Ⅳ)일 수 있다. 상기 탄산화물은 탄산망간, 탄산구리, 탄산아연 및 탄산철일 수 있다. 상기 수산화물은 아이온옥시하이드록사이드(α-FeO(OH)), 수산화구리, 수산화아연 및 수산화철로 이루어진 군으로부터 선택될 수 있다.The oxide may be at least one selected from the group consisting of iron oxide, chromium oxide (III), tin oxide (II), tin oxide (IV), copper oxide, zinc oxide, cobalt oxide, manganese oxide (II), manganese oxide ). The carbonate may be manganese carbonate, copper carbonate, zinc carbonate and iron carbonate. The hydroxide may be selected from the group consisting of aion oxyhydroxide (? -FeO (OH) 2), copper hydroxide, zinc hydroxide and iron hydroxide.

본 발명에서 촉매중의 산화물, 탄산화물, 수산화물중 1종 이상의 비율은 0.01 내지 5.아중량%의 범위이고, 보다 바람직하게는 0.1-2.0중량%이다. 만약 산화물, 탄산화물, 수산화물중 1종 이상의 비율이 0.01%이하이면 그 효과가 순수한 이산화티타늄촉매 정도밖에 되지 못하고, 그 비율이 5.0%이상이면 혼입이 되지 않는 문제가 있다. 또한 본발명에 따른 촉매 제조방법중 소성온도는 바람직하게는 550내지 700℃이다. 상기 소성온도에서 가장 뛰어난 촉매활성을 나타내는 촉매가 제조될 수 있다. 다른 한편으로, 본 발명에서 개발된 촉매는 폐수중에서 사용하고 여과하여 재사용하기 위하여 촉매의 크기를 기존의 촉매보다 크게하므로 여과를 매우 용이하게 할 수 있다.In the present invention, the ratio of at least one of oxides, carbonates, and hydroxides in the catalyst is in the range of 0.01 to 5.8 wt%, and more preferably 0.1 to 2.0 wt%. If the ratio of at least one of oxides, carbonates, and hydroxides is 0.01% or less, the effect is only a pure titanium dioxide catalyst. If the ratio is 5.0% or more, there is a problem that the titanium oxide is not incorporated. The firing temperature in the catalyst production method according to the present invention is preferably 550 to 700 占 폚. A catalyst exhibiting the best catalytic activity at the calcination temperature can be prepared. On the other hand, the catalyst developed in the present invention can be used in wastewater, and the size of the catalyst is larger than that of the conventional catalyst for reuse by filtration.

본 발명의 산화물, 탄산화물, 수산화물중 1종 이상이 혼입된 촉매의 경우 대체로 넓은 파장의 영역에서 에너지 흡수가 일어나며 특히 가시광선 영역에서도 에너지 흡수가 일어난다. 이와 같은 사실은 제 1도와 제 2도로부터 분명히 알 수 있다. 여기서, 제 1도는 이산화티타늄에 Fe를 각각 0.1,0.2,0.4,0.6%를 혼입시켜 제조한 화합물의 UV-가시광선 흡수 스펙트럼을 보여주는 그림이고, 제 2도는 이산화티아늄에 Mn을 각각 0.1,0.2,0.4,0.6%를 혼입시켜 제조한 화합물의 UV-가시광선 흡수 스팩트럼을 보여주는 그림이다. 그 결과 가시광선 영역의 파장을 가진 빛을 이용하여서도 유기물질을 분해시킬 수 있다. 이와 같이 본 발명의 산화물, 탄산화물, 수산화물중 1종 이상이 혼입된 이산화티타늄 촉매의 경우 240nm에서 600nm의 UV 및 가시광선영역에 걸치는 넓은 범위에서 효율적이다. 이에 반해 산화물, 탄산화물, 수산화물중 1종 이상이 혼입되지 않은 순수한 이산화티타늄의 경우 330nm에서 380nm의 UV광선영역의 좁은 범위 밖에 효율적이지 못하다.In the case of catalysts containing at least one of the oxides, carbonates, and hydroxides of the present invention, energy absorption takes place in a broad wavelength region and energy absorption occurs particularly in a visible light region. This fact can be clearly seen from the first and second roads. FIG. 1 is a diagram showing a UV-visible light absorption spectrum of a compound prepared by incorporating 0.1, 0.2, 0.4, and 0.6% of Fe into titanium dioxide, and FIG. 2 is a graph showing the absorption spectra of Mn, , 0.4% and 0.6%, respectively. As a result, organic materials can be decomposed using light having a wavelength in the visible light region. As described above, in the case of the titanium dioxide catalyst containing at least one of oxides, carbonates, and hydroxides of the present invention, it is effective in a wide range covering the UV and visible ray regions of 240 nm to 600 nm. On the other hand, pure titanium dioxide in which at least one of oxides, carbonates, and hydroxides are not mixed is ineffective in a narrow range of the UV ray region at 330 nm to 380 nm.

메타티탄산으로부터 산화물, 탄산화물, 수산화물중 1종 이상을 혼입하여 만든 촉매가 이산화티타늄에 산화물, 탄산화물, 수산화물중 1종 이상을 혼입한 것보다 효율면에서 좋고 경제적이다. 그렇지만, 이산화티타늄에 산화물, 탄산화물, 수산화물중 1종 이상을 혼입시켜 제조한 촉매도 폐수처리시 좋은 처리효과를 보여준다.Catalysts prepared by mixing at least one of oxides, carbonates, and hydroxides from metatitanic acid are more economical and more efficient than those mixed with at least one of oxides, carbonates, and hydroxides in titanium dioxide. However, a catalyst prepared by mixing at least one of oxides, carbonates, and hydroxides with titanium dioxide shows a good treatment effect in wastewater treatment.

본 발명의 폐수처리용 촉매는 방향족화합물, 질소화합물, 황화물 또는 유기할로겐화합물을 포함하는 폐수처리에 적합하다.The catalyst for treating wastewater of the present invention is suitable for treating wastewater containing an aromatic compound, a nitrogen compound, a sulfide or an organic halogen compound.

이산화티타늄을 제조할 때 소성온도와 시간은 이산화티타늄의 특성에 매우중요한 요소이다. 종래 이산화티타늄 제조과정에서는 중간물질로 메타티탄산이 생기며 여기에 하소제로서 탄산칼륨과 리튬화합물을 첨가하여 1100℃에서 4시간동안 소성하여 이산화티타늄을 제조했다. 이렇게 제조된 이산화티타늄은 정제된 후에도 불순물을 포함하므로 그 자체로서는 광촉매로서 효율성이 다소 떨어진다. 따라서 본 발명에서는 직접 메타티탄산에 혼입시키고자 하는 산화물, 탄산화물, 수산화물중 1종 이상을 혼입한 후 볼밀로 24-48시간 처리한 후 2-12시간 동안 550-1100℃에서 소성하여 이산화티타늄 촉매를 제조하였다. 다르게는, 이미 제조된 이산화티타늄에 산화물, 탄산화물, 수산화물중 1종 이상을 혼입하여 볼밀로 24-48시간 처리한 후 550-1100℃에서 2-14시간 소성하여 이산화티탄늄 촉매를 제조할 수도 있다.The firing temperature and time in the preparation of titanium dioxide are very important factors in the properties of titanium dioxide. In the conventional titanium dioxide manufacturing process, metatitanic acid is produced as an intermediate. Potassium carbonate and a lithium compound are added as a calcining agent thereto, and titanium dioxide is produced by baking at 1100 ° C. for 4 hours. Since the titanium dioxide thus produced contains impurities even after being purified, the efficiency as a photocatalyst itself is somewhat deteriorated. Accordingly, in the present invention, at least one of oxides, carbonates, and hydroxides to be incorporated in the metatitanic acid is directly mixed with the titanium oxide catalyst, and then the titanium oxide catalyst is treated with a ball mill for 24-48 hours and then fired at 550-1100 ° C for 2-12 hours, . Alternatively, one or more of oxides, carbonates, and hydroxides may be added to the titanium dioxide that has been previously prepared, treated with a ball mill for 24-48 hours, and then fired at 550-1100 ° C for 2-14 hours to prepare a titanium dioxide catalyst have.

또한 본 발명에서는 (a) 폐수에 상기한 본 발명의 폐수처리용 촉매를 가한 다음 혼합하는 단계 및 (b) 상기 혼합물에 200-600nm의 파장을 갖는 빛을 쪼여 주면서 폐수와 촉매를 접촉시기는 단계를 구비하는 것을 특징으로 하는 폐수처리 방법을 제공한다. 폐수와 촉매와의 접촉은 바람직하게는, 실온에서 이루어진다.(A) adding wastewater to the wastewater by adding the catalyst for treating wastewater according to the present invention, and (b) contacting the wastewater with the catalyst while irradiating the mixture with light having a wavelength of 200-600 nm, The waste water treatment method comprising the steps of: Contact between the wastewater and the catalyst is preferably carried out at room temperature.

위에서 제조된 촉매를 사용하여 실폐수 및 특정 유기물의 COD제거율 및 분해정도 및 처리 후의 활성오니의 영향성 평가, 냄새를 포함한 폐수의 경우 냄새제거 효율을 평가하였다.The catalysts prepared above were used to evaluate the COD removal rate and decomposition degree of the actual wastewater and the specific organic matter, the influence of the activated sludge after the treatment, and the odor removal efficiency in the case of the wastewater containing odor.

이하 본 발명의 실시예에 관한 촉매제조예와 폐수처리예가 기술되어 있지만 본 발명은 아래 기술된 내용에 제한되지 않는다.Although the catalyst preparation and wastewater treatment examples according to the embodiments of the present invention are described below, the present invention is not limited to the following description.

[실시예][Example]

[실시예 1][Example 1]

전체무게가 100g이 되도록하고 산화철의 중량비울이 0.01, 0.03, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 5.0%가 되도록 이산화티타늄과 산화철의 무게를 달은 후 볼밀용기에 넣고 에틸알코올을 소량 넣고 잘 혼합한다.The weight of titanium dioxide and iron oxide were weighed so that the weight of iron oxide was 100 g and the weight of iron oxide was 0.01, 0.03, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 and 5.0% Add a small amount and mix well.

속도조절이 가능한 볼밀에 올려놓고 24-48시간 동안 볼밀한 후 100-110℃에서 건조시기고, 몰타르로 분쇄하고 고운채로 친다. 세라믹 용기에 담은 후 전기노에 넣고 700℃에서 2-8시간 소결하여 산화철이 혼입된 이산화티타늄 촉매를 제조하였다.Put on a speed adjustable ball mill, ball mill for 24-48 hours, dry at 100-110 ℃, crush with mortar and keep fine. And then sintered in an electric furnace at 700 ° C for 2-8 hours to prepare a titanium dioxide catalyst containing iron oxide.

[실시예 2][Example 2]

실시예 1과 동일한 방법으로 산화철 대신 탄산망간을 사용하여 탄산망간이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having manganese carbonate incorporated therein was prepared in the same manner as in Example 1, except that manganese carbonate was used instead of iron oxide.

[실시예 3][Example 3]

실시예 1과 동일한 방법으로 산화철 대신 산화철(Ⅲ)을 사용하여 산화크롬(Ⅲ)이 혼입된 이산화티타늄 촉매를 제조하였다.Titanium oxide catalyst containing chromium (III) oxide was prepared in the same manner as in Example 1, except that iron oxide (III) was used instead of iron oxide.

[실시예 4][Example 4]

실시예 1과 동일한 방법으로 산화철 대신 산화주석(Ⅱ)을 사용하여 산화주석(Ⅱ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing tin oxide (II) was prepared in the same manner as in Example 1, except that tin oxide (II) was used instead of iron oxide.

[실시예 5][Example 5]

실시예 1과 동일한 방법으로 산화철 대신 산화주석(Ⅳ)을 사용하여 산화주석(Ⅳ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing tin oxide (IV) was prepared in the same manner as in Example 1, except that tin oxide (IV) was used instead of iron oxide.

[실시예 6][Example 6]

실시예 1과 동일한 방법으로 산화철 대신 산화구리를 사용하여 산화구리가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing copper oxide was prepared in the same manner as in Example 1, except that copper oxide was used instead of iron oxide.

[실시예 7][Example 7]

실시예 1과 동일한 방법으로 산화철 대신 산화아연을 사용하여 산화아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing zinc oxide was prepared in the same manner as in Example 1, except that zinc oxide was used instead of iron oxide.

[실시예 8][Example 8]

실시예 1과 동일한 방법으로 산화철 대신 산화코발트를 사용하여 산화코발트가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing cobalt oxide was prepared in the same manner as in Example 1, except that cobalt oxide was used instead of iron oxide.

[실시예 9][Example 9]

실시예 1과 동일한 방법으로 산화철 대신 아이온옥시하이드록사이드(α-FeO(OH))를 사용하여 아이온옥시하이드록사이드가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst in which anion oxyhydroxide was incorporated was prepared in the same manner as in Example 1 using anion oxyhydroxide (? -FeO (OH) 2) instead of iron oxide.

[실시예 10][Example 10]

실시예 1과 동일한 방법으로 산화철 대신 산화망간(Ⅱ)을 사용하여 산화망간(Ⅱ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese (II) oxide was prepared in the same manner as in Example 1, except that manganese oxide (II) was used instead of iron oxide.

[실시예 11][Example 11]

실시예 1과 동일한 방법으로 산화철 대신 산화망간(Ⅲ)을 사용하여 산화망간(Ⅲ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese (III) oxide was prepared in the same manner as in Example 1, except that manganese oxide (III) was used instead of iron oxide.

[실시예 12][Example 12]

실시예 1과 동일한 방법으로 산화철 대신 산화망간(Ⅳ)을 사용하여 산화망간(Ⅳ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese oxide (IV) was prepared in the same manner as in Example 1, except that manganese oxide (IV) was used instead of iron oxide.

[실시예 13][Example 13]

실시예 1과 동일한 방법으로 산화철 대신 탄산구리를 사용하여 탄산구리가혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having copper carbonate incorporated therein was prepared in the same manner as in Example 1 except that copper carbonate was used instead of iron oxide.

[실시예 14][Example 14]

실시예 1과 동일한 방법으로 산화철 대신 탄산아연을 사용하여 탄산아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having zinc carbonate incorporated therein was prepared in the same manner as in Example 1, except that zinc carbonate was used instead of iron oxide.

[실시예 15][Example 15]

실시예 1과 동일한 방법으로 산화철 대신 탄산철을 사용하여 탄산철이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having iron carbonate incorporated therein was prepared in the same manner as in Example 1, except that iron carbonate was used instead of iron oxide.

[실시예 16][Example 16]

실시예 1과 동일한 방법으로 산화철 대신 수산화구리를 사용하여 수산화구리가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing copper hydroxide was prepared in the same manner as in Example 1 using copper hydroxide instead of iron oxide.

[실시예 17][Example 17]

실시예 1과 동일한 방법으로 산화철 대신 수산화아연을 사용하여 수산화아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing zinc hydroxide was prepared in the same manner as in Example 1 using zinc hydroxide instead of iron oxide.

[실시예 19][Example 19]

전체무게가 100g이 되도록하고 산화철의 중량비율이 0.01, 0.03, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 5.0%가 되도록 메타티탄산과 산화철의 무게를달은 후 볼밀용기에 넣고 에틸알코올을 소량 넣고 잘 혼합한다.Weight of iron oxide and iron oxide were weighed such that the weight ratio of iron oxide was 0.01, 0.03, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 and 5.0% Add a small amount of ethyl alcohol and mix well.

속도조절이 가능한 볼밀에 올려놓고 24-48시간 동안 볼밀한 후 100-110℃에서 건조시기고, 몰타르로 분쇄하고 고운채로 친다.Put on a speed adjustable ball mill, ball mill for 24-48 hours, dry at 100-110 ℃, crush with mortar and keep fine.

세라믹 용기에 담은 후 노에 넣고 550-1100℃에서 2-8시간 소성하여 산화철이 혼입된 이산화티타늄 촉매를 제조하였다.The catalyst was placed in a ceramic vessel and then placed in a furnace and calcined at 550-1100 ° C for 2-8 hours to prepare a titanium dioxide catalyst containing iron oxide.

[실시예 20][Example 20]

실시예 19와 동일한 방법으로 산화철 대신 탄산망간을 사용하여 탄산망간이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having manganese carbonate incorporated therein was prepared in the same manner as in Example 19, except that manganese carbonate was used instead of iron oxide.

[실시예 21][Example 21]

실시예 19와 동일한 방법으로 산화칠 대신 산화크롬(Ⅲ)을 사용하여 산화크롬(Ⅲ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing chromium (III) oxide was prepared in the same manner as in Example 19 using chromium oxide (III) instead of oxide.

[실시예 22][Example 22]

실시예 19와 동일한 방법으로 산화철 대신 산화주석(Ⅱ)을 사용하여 산화주In the same manner as in Example 19, tin oxide (II) was used instead of iron oxide,

석(Ⅱ)이 혼입된 이산화티타늄 촉매를 제조하였다.To prepare a titanium dioxide catalyst incorporating stones (II).

[실시예 23][Example 23]

실시예 19와 동일한 방법으로 산화철 대신 산화주석(Ⅳ)을 사용하여 산화주석(Ⅳ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing tin oxide (IV) was prepared in the same manner as in Example 19 using tin oxide (IV) instead of iron oxide.

[실시예 24][Example 24]

실시예 19와 동일한 방법으로 산화철 대신 산화구리를 사용하여 산화구리가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing copper oxide was prepared in the same manner as in Example 19 using copper oxide instead of iron oxide.

[실시예 25][Example 25]

실시예 19와 동일한 방법으로 산화철 대신 산화아연을 사용하여 산화아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having zinc oxide incorporated therein was prepared in the same manner as in Example 19 using zinc oxide instead of iron oxide.

[실시예 26][Example 26]

실시예 19와 동일한 방법으로 산화철 대신 산화코발트를 사용하여 산화코발트가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing cobalt oxide was prepared in the same manner as in Example 19 using cobalt oxide instead of iron oxide.

[실시예 27][Example 27]

실시예 19와 동일한 방법으로 산화철 대신 아이온하이드록사이드(α-FeO(OH))을 사용하여 아이온하이드록사이드이 혼입된 이산화티타늄 촉매를 제조 하였다.A titanium dioxide catalyst incorporating anion hydroxide was prepared in the same manner as in Example 19 using anion hydroxide (? -FeO (OH) 2) instead of iron oxide.

[실시예 28][Example 28]

실시예 19와 동일한 방법으로 산화철 대신 산화망간(Ⅱ)을 사용하여 산화망간(Ⅱ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese (II) oxide was prepared in the same manner as in Example 19, except that manganese oxide (II) was used instead of iron oxide.

[실시예 29][Example 29]

실시예 19와 동일한 방법으로 산화철 대신 산화망간(Ⅲ)을 사용하여 산화망간(Ⅲ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese (III) oxide was prepared in the same manner as in Example 19, except that manganese oxide (III) was used instead of iron oxide.

[실시예 30][Example 30]

실시예 19와 동일한 방법으로 산화철 대신 산화망간(Ⅳ)을 사용하여 산화망간(Ⅳ)이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing manganese oxide (IV) was prepared in the same manner as in Example 19 using manganese oxide (IV) instead of iron oxide.

[실시예 31][Example 31]

실시예 19와 동일한 방법으로 산화철 대신 탄산구리를 사용하여 탄산구리가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having copper carbonate incorporated therein was prepared in the same manner as in Example 19 using copper carbonate instead of iron oxide.

[실시예 32][Example 32]

실시예 19와 동일한 방법으로 산화철 대신 탄산아연을 사용하여 탄산아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having zinc carbonate incorporated therein was prepared in the same manner as in Example 19 using zinc carbonate instead of iron oxide.

[실시예 33][Example 33]

실시예 19와 동일한 방법으로 산화철 대신 탄산철을 사용하여 탄산철이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having iron carbonate incorporated therein was prepared in the same manner as in Example 19 using iron carbonate instead of iron oxide.

[실시예 34][Example 34]

실시예 19와 동일한 방법으로 산화철 대신 수산화구리를 사용하여 수산화구리가 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing copper hydroxide was prepared in the same manner as in Example 19 using copper hydroxide instead of iron oxide.

[실시예 35][Example 35]

실시예 19와 동일한 방법으로 산화철 대신 수산화아연을 사용하여 수산화아연이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst containing zinc hydroxide was prepared in the same manner as in Example 19 using zinc hydroxide instead of iron oxide.

[실시예 36][Example 36]

실시예 19와 동일한 방법으로 산화철 대신 수산화철을 사용하여 수산화철이 혼입된 이산화티타늄 촉매를 제조하였다.A titanium dioxide catalyst having iron hydroxide incorporated therein was prepared in the same manner as in Example 19 using iron hydroxide instead of iron oxide.

(처리예 1)(Treatment Example 1)

난분해성 유기물질인 피리딘이 1000ppm 함유된 폐수 8.0L에 실시예 1에서얻은 촉매(산화철 0.4 중량% 사용)0.8g을 넣고 파장이 300-500nm인 20watt UV램프가 장착된 반응기에 실온에서 60시간 반응시킨 결과 피리딘이 98%이상 분해되었다.0.8 g of the catalyst obtained in Example 1 (using 0.4 wt% of iron oxide) was added to 8.0 liters of wastewater containing 1000 ppm of pyridine, which is a decomposable organic substance, and reacted in a reactor equipped with a 20 watt UV lamp having a wavelength of 300-500 nm for 60 hours at room temperature As a result, 98% or more of pyridine was decomposed.

촉매로 처리하기 전후의 폐수의 UV-가시광선 흡수스펙트럼을 제 3도 및 제 4도에 나타내었다. 약 250nm에서 나타난 피크가 피리딘에 상응하는 피크이다. 이 그림으로부터도 본 발명의 촉매가 난분해성 유기물질인 피리딘을 효과적으로 분해한다는 것을 분명히 알 수 있다.The UV-visible light absorption spectra of the wastewater before and after treatment with the catalyst are shown in FIG. 3 and FIG. The peak at about 250 nm is the peak corresponding to the pyridine. From this figure, it can be clearly seen that the catalyst of the present invention effectively decomposes pyridine, which is a decomposable organic substance.

(비교처리예 1)(Comparative Processing Example 1)

처리예 1과 같은 방법으로 산화철이 혼입되지 않은 이산화티타늄자체를 사용하여 피리딘을 처리할 경우 120시간이 소요되었다.It took 120 hours to treat pyridine with titanium dioxide itself, which did not incorporate iron oxide, in the same manner as in Process Example 1. [

(처리예 2)(Process Example 2)

난분해성 유기물질인 페놀 1000ppm이 함유된 폐수 1L에 실시예 2에서 얻은 촉매 (탄산망간 0.4 중량% 사용) 1.0g을 UV램프가 장착된 반응기에서 반응시킨 결과, 48시간 반응 후에는 페놀이 99% 분해되었다.1.0 g of the catalyst (0.4 wt% of manganese carbonate) obtained in Example 2 was reacted in 1 L of the wastewater containing 1000 ppm of phenol, which is a decomposable organic substance, in a reactor equipped with a UV lamp. As a result, 99% Disassembled.

(처리예 3)(Treatment Example 3)

난분해성 유기물질인 톨루엔 900ppm이 함유된 폐수 3.5L에 실시예 5에서 얻은 촉매(산화조석(Ⅳ) 0.4 중량% 사용) 3.0g을 pH를 8.1로 맞춘 후 UV램프가 장착된 반응기에서 6시간 반응 시킨 결과 COD(Cr)값이 15%감소 하였으며, 48시간 반응후에는 COD값이 99.0%감소하였다.3.0 g of the catalyst obtained in Example 5 (using 0.4 wt% of oxidized tritium (IV)) was adjusted to pH 8.1 with 3.5 L of a wastewater containing 900 ppm of a decomposable organic substance, and then reacted in a reactor equipped with a UV lamp for 6 hours The COD (Cr) value decreased by 15% and the COD value decreased by 99.0% after 48 hours.

(처리예 4)(Process Example 4)

니트로벤젠 100ppm이 함유된 폐수 1L에 실시예 8에서 얻은 촉매 (산화코발트 0.4 중량%사용) 1.0g을 UV램프가 장착된 반응기에서 120시간 반응 시킨 결과 니트로 벤젠이 완전히 분해되었다. 촉매로 처리하기 전후의 폐수의 가스크로마토그램을 제 5도와 제 6도에 나타내었다. 큰 피크는 표준물질에 상응하는 피크이고 작은 피크가 니트로벤젠에 상응하는 피크이다. 이 그림으로부터도 본 발명의 촉매가 난분해성 유기물질인 니트로벤젠을 효과적으로 분해한다는 것을 분명히 알 수 있다.1.0 g of the catalyst obtained in Example 8 (using 0.4 wt% of cobalt oxide) was reacted in 1 L of a wastewater containing 100 ppm of nitrobenzene for 120 hours in a reactor equipped with a UV lamp, whereby nitrobenzene was completely decomposed. Gas chromatograms of wastewater before and after treatment with catalyst are shown in FIG. 5 and FIG. 6. The large peak is the peak corresponding to the reference material and the small peak is the peak corresponding to the nitrobenzene. From this figure, it can be clearly seen that the catalyst of the present invention effectively decomposes nitrobenzene, which is a decomposable organic substance.

(처리예 5)(Process Example 5)

활성오니에 큰 영향을 주는 이소티아졸론(상품명 :스카이바이오)이 1000ppm함유된 폐수를 실시예 3에서 얻은 촉매(산화크롬 0.4 중량% 사용)로 처리예 3과 같은 방법으로 2시간 처리한 결과 이소티아졸론 화합물이 완전히 분해되었다.Treated wastewater containing 1000 ppm of isothiazolone (trade name: SKY BIO), which greatly affects the activated sludge, with the catalyst (0.4 wt% of chromium oxide used) obtained in Example 3 for 2 hours in the same manner as in Example 3, The thiazolone compound was completely decomposed.

촉매로 처리하기 전후의 폐수의 액체 크로마토그램을 제 7도 및 제 8도에 나타내었다. 이 그림으로부터도 본 발명의 촉매가 난분해성 유기물질인 이소티아졸론을 효과적으로 분해한다는 것을 분명히 알 수 있다.Liquid chromatograms of wastewater before and after treatment with catalyst are shown in FIG. 7 and FIG. From this figure, it can be clearly seen that the catalyst of the present invention effectively decomposes isothiazolone, which is a decomposable organic substance.

(처리예 6)(Treatment Example 6)

난분해성 유기물질인 아세토니트릴 1000ppm이 함유된 폐수 1L에 실시예 10에서 얻은 촉매 (산화망간(Ⅱ) 0.4 중량% 사용) 1.0g을 UV램프가 장착된 반응기에 넣고 240시간 반응시킨 결과 COD값이 99.8%감소하였다.1.0 g of the catalyst obtained in Example 10 (using 0.4 wt% of manganese (II) oxide) was placed in a reactor equipped with a UV lamp and reacted for 240 hours in 1 L of waste water containing 1000 ppm of a decomposable organic substance acetonitrile. And decreased by 99.8%.

(처리예 7)(Process Example 7)

실시예 10에서부터 실시예 18까지에서 얻은 촉매(혼입화합물 0.4 중량% 사The catalysts obtained in Examples 10 to 18 (0.4 weight% mixed compound

용)를 가지고 위와 같은 방법으로 아세톤, 피리딘, 이소프로필알콜, 톨루엔, 메탄올이 함유된 폐수를 처리한 결과 혼입된 화합물에 따라 약간의 차이는 있었지만 대부분 240시간 이내에 거의 분해되었다., And the wastewater containing acetone, pyridine, isopropyl alcohol, toluene, and methanol was treated in the same manner as above. However, most of the wastewater containing the acetone, pyridine, isopropyl alcohol, toluene and methanol was decomposed within 240 hours.

(처리예 8)(Process Example 8)

실시예 19에서부터 실시예 36까지에서 얻은 촉매(혼입화합물 0.4 중량% 사용)를 가지고 위와 같은 방법으로 아세톤, 피리딘, 이소프로필알굴, 톨루엔, 메탄올이 함유된 폐수를 처리한 결과 혼입된 화합물에 따라 약간의 차이는 있었지만 대부분 150시간 이내에 거의 분해되었다.The wastewater containing acetone, pyridine, isopropyl azole, toluene and methanol was treated with the catalysts obtained in Examples 19 to 36 (using the mixed compound of 0.4 wt%) in the same manner as described above. As a result, , But most of them were disintegrated within 150 hours.

이 결과는 혼합과정에서 메타티탄산에 산화물, 탄산화물 또는 수산화물을혼합시킨 화합물이 이산화티타늄에 산화물, 탄산화물 또는 수산화물을 혼입하여 만든 화합물 보다 촉매 활성도가 우수하다는 것을 보여준다.This result shows that the compound of metatitanic acid mixed with oxides, carbonates or hydroxides in the mixing process has better catalytic activity than the compound made by mixing oxide, carbonates or hydroxides with titanium dioxide.

(비교처리예 2)(Comparative Processing Example 2)

혼입된 촉매 대신 이산화티타늄만을 사용하여 처리예 2 내지 처리예 7과 같은 방법으로 처리한 경우 분해되는 시간이 2배 내지 10배로 길어졌다.When titanium dioxide alone was used instead of the incorporated catalyst, the decomposition time was increased to 2 to 10 times in the same manner as in Processes 2 to 7.

상기 처리예 l에서 처리예 8까지는 난분해성 유기물질을 가지고 시험한 결과이고 하기 처리예 9에서 처리예 12까지는 실제 폐수장에서 본 발명을 시험하기 위하여 몇 개 회사의 실폐수를 가지고 COD값의 변화, 미생물에 대한 영향성 등을 평가한결과이다.The above Processes 1 to 8 are the results of the tests with the refractory organic substances, and the following Processes 9 to 12 are actual wastewater tests, , And the effect on microorganisms.

(처리예 9)(Process Example 9)

악취가 심하고, pH가 5.5이면서 초기 COD(Cr)값이 4650ppm인 섬유회사 S사의 원폐수 5L에 실시예 11에서 얻은 촉매(산화망간(Ⅲ) 0.4 중량% 사용) 0.5g을 넣고 10%수산화나트륨용액으로 pH를 7.5로 맞춘 후 유동형(flow type)반응기에 유량 속도를 분당 3L로 하고 파장이 300-500nm이고 20watt인 UV램프를 장치한 후 반응시킨 결과 30분 후 악취가 완전히 사라졌다.10시간 후에는 pH가 6.2로 떨어졌고, COD값이 60% 감소하였으며 활성오니에 미치는 영향의 평가결과 오니의 종류가 다양해지고 균수가 4배 많아졌으려, 균의 활성이 좋아졌다.0.5 g of the catalyst obtained in Example 11 (using 0.4 wt% of manganese oxide (III)) was added to 5 L of raw wastewater of a textile company S company having a pH of 5.5 and an initial COD (Cr) value of 4650 ppm, and 10% sodium hydroxide After adjusting the pH to 7.5 with a solution, the UV lamp with a wavelength of 300-500 nm and a wavelength of 300-500 nm was applied to the flow type reactor at a flow rate of 3 L / min. After the reaction, the odor completely disappeared after 30 minutes. Thereafter, the pH dropped to 6.2, the COD value decreased by 60%, and the effect on the activated sludge was evaluated. As a result, the number of sludge varied and the number of bacteria increased four times.

(비교처리예 3)(Comparative Processing Example 3)

처리예 9와 같은 방법으로 혼입된 촉매 대신 이산화티타늄을 사용하여 처리한 결과 악춰가 완전히 사라지지 않았으나,10시간 반응 후 COD값이 45% 감소하였다.The treatment with titanium dioxide instead of the catalyst incorporated in the same manner as in Process Example 9 resulted in a 45% reduction in the COD value after 10 hours of reaction, although the cracking did not disappear completely.

(처리예 10)(Treatment Example 10)

붉은 색을 띄며 pH가 10.0이면서 초기COD(Mn)값이 700ppm인 G사의 원폐수 8L에 실시예 11에서 얻은 촉매 (산화망간(Ⅲ) 0.4 중량% 사용) 0.8g을 넣고 20watt인 UV램프(파장:380nm)가 장착된 유동형 반응기에서 유량속도를 분당 3L로 하여 반응시킨 결과 60분 후 붉은 색이 완전히 사라졌고 10시간 후 pH가 8.0으로 떨어졌으며, COD값이 70%감소하였다.0.8 g of the catalyst (0.4 wt% of manganese oxide (III)) obtained in Example 11 was added to 8 L of raw wastewater having a pH of 10.0 and an initial COD (Mn) value of 700 ppm and a 20 watt UV lamp : 380 nm), the reaction was carried out at a flow rate of 3 L / min. As a result, the red color completely disappeared after 60 minutes, the pH dropped to 8.0 after 10 hours, and the COD value decreased by 70%.

(비교처리예 4)(Comparative Processing Example 4)

처리예 10과 같은 방법으로 산화망간이 혼입된 촉매 0.8g대신 이산화티타늄 0.8g을 사용하여 처리한 결과 색이 완전히 사라지지 않았으며, 10시간 반응시킨 결과 COD값이 28%감소하였다.Instead of 0.8 g of the catalyst containing manganese oxide in the same manner as in Process Example 10, 0.8 g of titanium dioxide was treated with 0.8 g of the catalyst, and the color did not completely disappear. As a result of the reaction for 10 hours, the COD value decreased by 28%.

(처리예 11)(Process Example 11)

냄새가 심하고 폐수를 순환하여 사용하고 COD(Cr)값이 5690ppm인 D사의 도장용 폐수 5.5L에 실시예 19에서 얻은 촉매(산화철 0.4 중량% 사용) 5.5g을 넣고처리예 10과 같은 방법으로 반응시킨 결과 30 분후 도장용 용제인 신너의 특이한냄새가 사라졌으며 2시간 후 COD값이 48%감소하였다. 활성오니에 대한 영향성 평가 결과 처리예 9와 동일한 효과를 나타내었다.5.5 g of the catalyst obtained in Example 19 (using 0.4 wt.% Of iron oxide) was added to 5.5 L of coating wastewater of Company D having a COD (Cr) value of 5690 ppm and a wastewater circulatingly used. As a result, after 30 minutes, the characteristic odor of thinner as a coating solvent disappeared and the COD value decreased by 48% after 2 hours. The results of the evaluation of the influence on the activated sludge show the same effect as in the treatment example 9. [

(비교처리예 5)(Comparative Processing Example 5)

처리예 11과 같은 방법으로 산화철이 혼입된 촉매 5.5g대신 이산화티타늄 30g을 사용하여 처리한 결과 신너의 특이한 냄새가 남아 있었으며, 2시간 반응시킨 결과 COD값이 22%감소하였다.As a result of treating with 30 g of titanium dioxide in place of 5.5 g of the iron oxide-containing catalyst in the same manner as in Example 11, the specific odor of the thinner remained. As a result of the reaction for 2 hours, the COD value was reduced by 22%.

(처리예 12)(Process Example 12)

냄새가 심하고 폐수를 순환하여 사용하는 A사의 도장용 폐수의 경우 처리예11과 동일한 결과를 나타냈다.The same results as in Treatment Example 11 were obtained in the case of coating wastewater of Company A, which has a strong odor and circulates the wastewater.

상기 처리예 및 비교처리예로부터 알 수 있듯이 본 발명의 제조방법에 따른 촉매 사용량이 적으면서도 처리효율이 매우 좋았다. 또한, 이산화티타늄만을 사용할때 보다 본 발명의 제조방법에 따라 이산화티타늄에 산화물, 탄산화물, 수산화물중 1종 이상을 혼입하여 사용할 경우 효과적으로 난분해성 물질을 분해할 수 있었고 반응 시간도 훨씬 단축시킬 수 있었다. 또한 본 발명에서는 폐수처리시 산소가스를 공급할 필요가 없고, 실온에서도 폐수처리 효율이 좋고, 압력을 고려할 필요가 없어 흘러가는 일반 폐수도 처리가 가능하며, 위험하지도 않고, 고가의 화합물인 루테늄이나 니오비움등을 사용하지 않고 가격이 저렴한 산화티타늄을 사용하기 때문에 처리비용이 훨씬 싸서 경제적이며, 본 발명에 따른 촉매의 크기가 기존 촉매보다 크기때문에 폐수처리 후 여과하여 재사용하는 것이 용이하다.As can be seen from the above treatment examples and comparative treatment examples, the treatment efficiency according to the production method of the present invention was very low while the amount of the catalyst was small. In addition, when one or more of oxides, carbonates, and hydroxides are mixed in titanium dioxide according to the production method of the present invention, the refractory materials can be effectively decomposed and the reaction time can be shortened . Further, in the present invention, it is not necessary to supply oxygen gas during wastewater treatment, and it is also possible to treat ordinary wastewater which flows well at a room temperature without any consideration of pressure, and is not dangerous. It is economical because the titanium oxide which is inexpensive and cheap is used. Therefore, the process cost is much lower and economical, and since the size of the catalyst according to the present invention is larger than that of the existing catalyst, it is easy to filter and reuse it after wastewater treatment.

Claims (13)

이산화티타늄 또는 메타티탄산에 산화물, 탄산화물, 수산화물중 1종 이상을 가하고 혼입한 다음 볼밀로 처리한 후 550 내지 1100℃에서 소성하는 것을 특징으로 하는 폐수처리용 촉매의 제조방법.Wherein at least one of oxides, carbonates, and hydroxides is added to titanium dioxide or metatitanic acid, and the mixture is treated with a ball mill, followed by calcination at 550 to 1100 占 폚. 산화물, 탄산화물, 수산화물중 1종이상이 0.01중량% 내지 5.0중량% 혼입된 제1항의 제조방법에 다른 폐수처리용 촉매.The catalyst for treating wastewater according to claim 1, wherein 0.01 wt% to 5.0 wt% of at least one of oxide, carbonate, and hydroxide is incorporated. 제1항에 있어서, 상기 산화물이 산화철, 산화크롬(Ⅲ), 산화주석(Ⅱ), 산화주석(Ⅳ), 산화구리, 산화아연, 산화코발트, 산화망간(Ⅱ ), 산화망간(Ⅲ) 및 산화망간(Ⅳ)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 폐수처리용 촉매의 제조방법.The method of claim 1, wherein the oxide is selected from the group consisting of iron oxide, chromium oxide (III), tin oxide (II), tin oxide (IV), copper oxide, zinc oxide, cobalt oxide, manganese oxide (II) And manganese oxide (IV). ≪ RTI ID = 0.0 > 11. < / RTI > 제1항에 있어서, 상기 탄산화물이 탄산망간, 탄산구리, 탄산아연 및 탄산철로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 폐수처리용 촉매의 제조방법.The method according to claim 1, wherein the carbonate is at least one selected from the group consisting of manganese carbonate, copper carbonate, zinc carbonate, and iron carbonate. 제1항에 있어서, 상기 수산화물이 아이온옥시하이드록사이드(α- FeO(OH)), 수산화구리, 수산화아연 및 수산화철로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 폐수처리용 촉매의 제조방법.The method for producing a catalyst for treating wastewater according to claim 1, wherein the hydroxide is at least one selected from the group consisting of aion oxyhydroxide (? -FeO (OH) 2), copper hydroxide, zinc hydroxide and iron hydroxide. 제1항 및 제3항 내지 제5항중 어느 한 항에 있어서, 소성시간이 2 내지 14시간인 것을 특징으로 하는 폐수처리용 촉매의 제조방법.The method for producing a catalyst for treating wastewater according to any one of claims 1 to 5, wherein the calcination time is 2 to 14 hours. 제6항에 있어서, 상기 이산화티타늄 또는 메타티탄산에 첨가되는 산화물, 탄산화물, 수산화물중 1종 이상의 양이 0.01중량% 내지 5.0죽량%인 것을 특징으로 하는 폐수처리용 촉매의 제조방법.The method for producing a catalyst for treating wastewater according to claim 6, wherein the amount of at least one of oxides, carbonates, and hydroxides added to the titanium dioxide or the metatitanic acid is 0.01 wt% to 5.0 wt%. (a) 폐수에 제l항에서 얻어진 촉매를 가한 다음 혼합하는 단계와 ;(a) adding wastewater to the catalyst obtained in (1) and mixing; (b) 상기 혼합물에 200-600nm의 파장을 갖는 빛을 쪼여 주면서 상기 폐수와 촉매를 접촉시키는 단계를 구비하는 것을 특징으로 하는 폐수 처리방법.(b) contacting the mixture with the catalyst while irradiating the mixture with light having a wavelength of 200-600 nm. 제8항에 있어서, (b) 단계의 폐수와 촉매의 접촉이 실온에서 이루어지는 것을 특징으로 하는 폐수 처리방법.9. The method according to claim 8, wherein the contact between the wastewater and the catalyst in step (b) is carried out at room temperature. 제8항에 있어서, 상기 폐수가 방향족 화합물을 포함하는 것을 특징으로 하는 폐수 처리방법.The method according to claim 8, wherein the wastewater comprises an aromatic compound. 제8항에 있어서, 상기 폐수가 질소화합물을 포함하는 것을 특징으로 하는 폐수 처리방법.The method according to claim 8, wherein the wastewater comprises a nitrogen compound. 제8항에 있어서, 상기 폐수가 황화합물을 포함하는 것을 특징으로 하는 폐수 처리방법.9. The method of claim 8, wherein the wastewater comprises a sulfur compound. 제8항에 있어서, 상기 폐수가 유기할로겐화합물을 포함하는 것을 특징으로 하는 폐수 처리방법.9. The method of claim 8, wherein the wastewater comprises an organohalogen compound.
KR1019960022851A 1996-06-21 1996-06-21 Photocatalyst for treating waste water and process of treating waste water using the said catalyst KR100220021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960022851A KR100220021B1 (en) 1996-06-21 1996-06-21 Photocatalyst for treating waste water and process of treating waste water using the said catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960022851A KR100220021B1 (en) 1996-06-21 1996-06-21 Photocatalyst for treating waste water and process of treating waste water using the said catalyst

Publications (2)

Publication Number Publication Date
KR980000684A KR980000684A (en) 1998-03-30
KR100220021B1 true KR100220021B1 (en) 1999-09-01

Family

ID=19462824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960022851A KR100220021B1 (en) 1996-06-21 1996-06-21 Photocatalyst for treating waste water and process of treating waste water using the said catalyst

Country Status (1)

Country Link
KR (1) KR100220021B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914134B1 (en) 2008-02-21 2009-08-27 성균관대학교산학협력단 Method for manufacturing TiO2 photocatalyst as reducing agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430405B1 (en) * 1999-04-23 2004-05-03 주식회사 나노 manufacturing method of titanium dioxide powder for photocatalyst
KR102501315B1 (en) * 2022-09-20 2023-02-22 한국건설기술연구원 Method for manufacturing highly porous silica photo catalyst including iron oxide and manganese oxide, and method for removing synthetic organic chemicals in aqua using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914134B1 (en) 2008-02-21 2009-08-27 성균관대학교산학협력단 Method for manufacturing TiO2 photocatalyst as reducing agent

Also Published As

Publication number Publication date
KR980000684A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
Li et al. Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): Performance, mechanisms, and the role of sulfur species
Gao et al. Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation
US10421672B2 (en) Method of forming a photocatalyst and disinfecting a fluid
Zhou et al. Degradation of methylene blue by natural manganese oxides: kinetics and transformation products
Kondo et al. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst
Jain et al. Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater
Balcioglu et al. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes
Singh et al. Nanomaterials photocatalytic activities for waste water treatment: a review
Tian et al. Peroxymonosulfate assisted pesticide breakdown: Unveiling the potential of a novel S-scheme ZnO@ CoFe2O4 photo-catalyst, anchored on activated carbon
He et al. Enhanced removal of COD and color in paper-making wastewater by ozonation catalyzed by Fe supported on activated carbon
Li et al. Dual light-driven p-ZnFe2O4/n-TiO2 catalyst: Benzene-breaking reaction for malachite green
KR102456090B1 (en) Manufacturing method of cobalt manganese oxide catalyst and contaminant treatment method using thereof
KR100220021B1 (en) Photocatalyst for treating waste water and process of treating waste water using the said catalyst
Neppolian et al. Semiconductor assisted photodegradation of textile dye
Ali et al. Photodegradation of new methylene blue N in aqueous solution using zinc oxide and titanium dioxide as catalyst
Gupta et al. Catalytic wet peroxide oxidation (CWPO) of 2-hydroxybenzoic acid and contaminated industrial effluent using LnMO3 (Ln= La or Pr and M= Fe or Fe-Co)
US9403696B2 (en) Method of photocatalytic degradation of contaminant in water using visible light source
KR100394180B1 (en) Metal oxide catalysts for Fenton photo-oxidation, method for preparing the same and method for treating waste water using the same
Madhu et al. Photodegradation of methylene blue dye using UV/BaTiO₃, UV/H₂O₂ and UV/H₂O₂/BaTiO₃ oxidation processes
KR100326897B1 (en) Titanium Dioxide-anchored Titanosilicalite Photocatalyst and its Preparation
Hupka et al. UV/VIS light-enhanced photocatalysis for water treatment and protection
Kalal et al. Copper pyrovanadate as an effective photo-Fenton-like catalyst for degradation of methylene blue
KR20210119755A (en) A method for preparing magnetic organic catalyst based on biomass for oxidation of fenton, a magnetic organic catalyst therefrom, and use of the same
JPS5834080A (en) Treatment of acid-digested waste liquid
Roy et al. Unveiling the mechanism of visible light-assisted peroxymonosulfate activation and carbamazepine degradation using NH 2-MIL-125 (Ti)@ MIL-53 (Fe/Co) heterojunction photocatalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040614

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee