KR100219500B1 - Manufacturing method of thin-film transistor liquid crystal display device - Google Patents

Manufacturing method of thin-film transistor liquid crystal display device Download PDF

Info

Publication number
KR100219500B1
KR100219500B1 KR1019960051488A KR19960051488A KR100219500B1 KR 100219500 B1 KR100219500 B1 KR 100219500B1 KR 1019960051488 A KR1019960051488 A KR 1019960051488A KR 19960051488 A KR19960051488 A KR 19960051488A KR 100219500 B1 KR100219500 B1 KR 100219500B1
Authority
KR
South Korea
Prior art keywords
forming
film
insulating film
manufacturing
photosensitive
Prior art date
Application number
KR1019960051488A
Other languages
Korean (ko)
Other versions
KR19980031923A (en
Inventor
이정호
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019960051488A priority Critical patent/KR100219500B1/en
Publication of KR19980031923A publication Critical patent/KR19980031923A/en
Application granted granted Critical
Publication of KR100219500B1 publication Critical patent/KR100219500B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

박막트랜지스터-액정표시장치의 제조방법이 개시된다. 특히, 보호막으로 감광성 유기절연막을 사용하는 것을 그 특징으로 한다. 이에 따라 종래 사용하던 BCB에 가까운 절연효과 및 평탄화 등을 얻을 수 있음은 물론, 절연막이 감광성이기 때문에 사진공정만으로 패턴의 형성이 가능해져서, 공정을 단순화 시키는데 효과가 커 원가가 절감된다.A method of manufacturing a thin film transistor-liquid crystal display device is disclosed. In particular, the photosensitive organic insulating film is used as the protective film. As a result, insulation and planarization, etc., close to those of conventionally used BCB, can be obtained, and since the insulating film is photosensitive, a pattern can be formed only by a photo process, thereby simplifying the process and reducing costs.

Description

박막트랜지스터-액정표시장치의 제조방법Method of manufacturing thin film transistor-liquid crystal display device

본 발명은 박막트랜지스터(TFT:Thin Film Transistor)-액정표시장치(LCD: Liquid Crystal Display)의 제조방법에 관한 것으로, 특히 보호막의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor (TFT) -liquid crystal display (LCD), and more particularly, to a method of manufacturing a protective film.

화상정보시대에서 정보전달의 주 매개체인 표시장치의 퍼스널(personal)화, 스페이스(space) 절약화의 요구에 부응하여 지금까지 표시장치의 주종이었던 거대한 음극선관(CRT: Cathode-Ray Tube)을 대신하여, LCD, PDP(Plasma Display Panel), EL(Electro-Luminescence)등 각종 평판 표시장치가 개발되어 왔다. 그 중에서도 특히 LCD는, 전기장에 의하여 분자의 배열이 변화하는 액정의 광학적 성질을 이용하는 액정기술과 반도체기술을 융합한 표시장치로서 평판 표시장치의 대명사로 불리고 있다. 이러한 LCD의 스위칭소자로 사용되고 있는 TFT의 통상적인 제조방법은 5차의 사진식각공정을 기본으로하여 제작되는데, 이 제조방법에 대하여 도면을 참조하면서 설명하기로 한다.In response to the demand for personalization and space saving of display devices, which are the main media of information transmission in the image information age, instead of the huge Cathode-Ray Tube (CRT) Accordingly, various flat panel display devices such as LCD, plasma display panel (PDP), and electro-luminescence (EL) have been developed. Among them, LCD is particularly called as a synonym for flat panel display as a display device that combines liquid crystal technology and semiconductor technology using optical properties of liquid crystal whose molecules are changed by an electric field. A typical manufacturing method of the TFT used as the switching element of the LCD is manufactured based on the fifth photolithography process, which will be described with reference to the drawings.

도 1은 5차의 사진식각공정을 통하여 제작되는 종래 일반적인 TFT의 프로세스 구성을 나타낸 공정흐름도이고, 도 2는 종래 일반적인 TFT의 단면도를 나타낸다.FIG. 1 is a process flow diagram showing the process configuration of a conventional general TFT fabricated through a fifth photolithography process, and FIG. 2 is a sectional view of a conventional general TFT.

도 1, 및 도 2를 참조하면, 먼저 투광성 기판인 유리기판(100)상에 저저항의 제1 금속막을 소정두께 형성한 후 1차로 사진식각하여 게이트전극(10)을 형성하고(단계 101), 결과물 전면에 게이트절연막(12) 예컨대 질화막(SiNx) 혹은 산화막(SiOx)을 소정두께 형성한다. 연속해서 제1 반도체막 예컨대 비정질실리콘 및 오믹접촉(ohmic contact)을 위한 제2 반도체막 예컨대 불순물이 도핑된 비정질실리콘을 형성한 후, 2차의 사진식각공정을 통해 상기 제2 반도체막 및 제1 반도체막을 패터닝함으로써, TFT의 채널영역으로 사용되는 반도체패턴(14) 및 오믹층(16)을 형성한다(단계 102).Referring to FIGS. 1 and 2, first, a low-resistance first metal film is formed on a glass substrate 100, which is a light-transmissive substrate, and then the gate electrode 10 is formed by photolithography first (step 101). The gate insulating film 12, for example, a nitride film SiN x or an oxide film SiO x is formed on the entire surface of the resultant. After successively forming a first semiconductor film such as amorphous silicon and a second semiconductor film for ohmic contact such as amorphous silicon doped with impurities, the second semiconductor film and the first through a photolithography process By patterning the semiconductor film, the semiconductor pattern 14 and the ohmic layer 16 used as the channel region of the TFT are formed (step 102).

다음에, 결과물 전면에 제2 금속막을 소정두께로 형성한 후 3차로 사진식각하여 소오스전극(18A) 및 드레인전극(18B)을 형성하고, 채널영역으로 사용되는 소정부분의 반도체패턴 상부의 오믹층을 제거하며(단계 103), 결과물 전면에 소정두께의 보호막(20)을 형성한 후 4차의 사진식각공정을 통하여 상기 드레인전극(18B)의 일부분을 노출시킨다(단계 104).Next, after forming the second metal film to a predetermined thickness on the entire surface of the product, the source electrode 18A and the drain electrode 18B are formed by photolithography in the third order, and the ohmic layer on the semiconductor pattern of the predetermined portion used as the channel region. (Step 103), a protective film 20 having a predetermined thickness is formed on the entire surface of the resultant, and then a part of the drain electrode 18B is exposed through a fourth photolithography process (step 104).

이어서, 결과물 전면에 ITO(Indium Tin Oxide)막을 형성한 후 5차로 사진식각하여 화소전극(22)을 형성함으로써 TFT를 완성한다(단계 105). 여기서, 상기 보호막(20)은 개구율을 향상하기 위한 것으로, 절연효과가 높고 평탄화가 가능한 BCB(BenzoCycloButene)를 이용하여 고개구율을 얻는 경우도 있다.Subsequently, after forming an ITO (Indium Tin Oxide) film on the entire surface of the resultant, the TFT is completed by forming a pixel electrode 22 by photolithography 5th order (step 105). Here, the protective film 20 is for improving the aperture ratio, and in some cases, a high opening ratio may be obtained using BCB (BenzoCycloButene) having high insulation effect and planarization.

도 3은 상기 BCB로 이루어진 보호막의 형성을 구체적으로 나타낸 공정흐름도로, 상기 도 2를 참조하면서 설명하기로 한다.FIG. 3 is a process flow diagram specifically illustrating the formation of the protective film made of BCB, and will be described with reference to FIG. 2.

도 3을 참조하면, 먼저 상기 소오스전극(18A) 및 드레인전극(18B)의 형성 후 상기 보호막을 형성하기 전에 세정하고(단계 301), 결과물 전면에 대하여 소정두께의 보호막(20) 예컨대 BCB를 형성한다(단계 302).Referring to FIG. 3, first, the source electrode 18A and the drain electrode 18B are formed and then cleaned before forming the protective film (step 301), and a protective film 20, for example, BCB, having a predetermined thickness is formed on the entire surface of the resultant. (Step 302).

이어서, 상기 보호막(20)에 대하여 4차의 사진식각공정을 실시하기 전에 세정하고(단계 303), 상기 보호막(20)위에 포토레지스트를 코팅하며(단계 304), 상기 포토레지스트에 대하여 마스크 노광하고(단계 305), 현상하여(단계 306) 소정 크기의 포토레지스트 패턴을 형성한 후, 이 포토레지스트 패턴을 적용하여 상기 보호막(20)을 식각함으로써 상기 드레인전극(18B)의 일부분을 노출시킨다(단계 307). 그리고, 상기 포토레지스트 패턴을 제거한다(단계 308).Subsequently, the protective film 20 is cleaned before performing the fourth photolithography process (step 303), the photoresist is coated on the protective film 20 (step 304), and the mask is exposed to the photoresist. (Step 305) and developing (step 306) to form a photoresist pattern having a predetermined size, and then applying a photoresist pattern to etch the protective film 20 to expose a portion of the drain electrode 18B (step 307). The photoresist pattern is then removed (step 308).

상술한 바와 같은 종래의 TFT 제조방법은, 초기 8차 혹은 9차의 사진식각공정을 통해 제작되던 TFT의 제조방법에 비하면 많은 공정의 단순화가 이루어졌다. 그러나, 상기 도 3을 참조하여 설명한 종래 보호막의 형성공정이 성막공정, 포토레지스트 패턴 형성공정, 식각공정, 포토레지스트 패턴 제거공정 등 복잡한 여러가지의 공정을 진행하여야 하는 단점이 있다.In the conventional TFT manufacturing method as described above, many processes have been simplified compared to the TFT manufacturing method which was manufactured through the initial 8th or 9th photolithography process. However, the conventional protective film forming process described with reference to FIG. 3 has a disadvantage in that various complex processes such as a film forming process, a photoresist pattern forming process, an etching process, and a photoresist pattern removing process must be performed.

따라서 본 발명이 이루고자 하는 기술적 과제는, 공정감소가 가능한 보호막을 구비하는 박막트랜지스터-액정 표시장치의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method of manufacturing a thin film transistor-liquid crystal display device having a protective film capable of reducing the process.

도 1은 5차의 사진식각공정을 통하여 제작되는 종래 일반적인 TFT의 프로세스 구성을 나타낸 공정흐름도이다.1 is a process flow diagram showing a process configuration of a conventional general TFT fabricated through a fifth photolithography process.

도 2는 종래 일반적인 TFT의 단면도를 나타낸다.2 shows a cross-sectional view of a conventional general TFT.

도 3은 BCB로 이루어진 보호막의 형성을 구체적으로 나타낸 공정흐름도이다.3 is a process flowchart showing in detail the formation of a protective film made of BCB.

도 4는 본 발명에 일 실시예에 의한 TFT 제조방법을 설명하기 위한 단면도이다.4 is a cross-sectional view for explaining a TFT manufacturing method according to an embodiment of the present invention.

도 5는 본 발명의 다른 실시예에 의한 TFT의 제조방법을 설명하기 위한 단면도이다.5 is a cross-sectional view illustrating a method of manufacturing a TFT according to another embodiment of the present invention.

도 6은 본 발명에 의한 보호막 형성을 구체적으로 나타낸 공정흐름도이다.6 is a flowchart illustrating the formation of a protective film according to the present invention in detail.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

100,200,300...유리기판 10, 30, 40...게이트전극100, 200, 300 ... Glass substrates 10, 30, 40 ... Gate electrodes

12, 32, 42 ...게이트절연막 14, 34, 44...반도체패턴12, 32, 42 ... gate insulating film 14, 34, 44 ... semiconductor pattern

16, 36, 46 ...오믹층 18A,38A,48A...소오스전극16, 36, 46 ... ohmic layers 18A, 38A, 48A ... source electrode

18B,38B,48B...드레인전극 20, 50...보호막18B, 38B, 48B ... Drain electrodes 20, 50

22, 52 ...화소전극22, 52 ... pixel electrode

상기 기술적 과제를 이루기 위하여 본 발명에 의한 제조방법은, 유리기판상에 게이트전극을 형성하는 단계와, 상기 게이트전극이 형성된 결과물 전면에 게이트절연막을 형성하는 단계와, 상기 게이트절연막위에 트랜지스터의 채널영역으로 사용되는 반도체패턴 및 오믹층을 형성하는 단계와, 상기 오믹층과 접촉되는 소오스전극 및 드레인전극을 형성하는 단계와, 상기 소오스전극 및 드레인전극이 형성된 결과물 전면에 소정두께의 보호막을 형성하는 단계와, 상기 드레인전극의 일부분과 연결되는 화소전극을 형성하는 단계를 구비하여 이루어진 박막트랜지스터-액정표시장치의 제조방법에 있어서, 상기 보호막은 감광성 유기절연막인 것을 특징으로 한다.In order to achieve the above technical problem, a manufacturing method according to the present invention includes the steps of forming a gate electrode on a glass substrate, forming a gate insulating film on the entire surface of the product on which the gate electrode is formed, and as a channel region of a transistor on the gate insulating film. Forming a semiconductor pattern and an ohmic layer to be used, forming a source electrode and a drain electrode in contact with the ohmic layer, and forming a protective film having a predetermined thickness on the entire surface of the resultant source and drain electrode; And forming a pixel electrode connected to a portion of the drain electrode, wherein the passivation layer is a photosensitive organic insulating layer.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

본 발명은 층간절연막 또는 보호막으로 종래의 질화막 또는 산화막 대신에 열경화성의 아크릴 수지 계통의 감광성 오버코트(overcoat)를 사용하거나, 감광성 폴리이미드(polyimide)를 사용하는 것이 특징이다.The present invention is characterized in that a photosensitive overcoat of a thermosetting acrylic resin system or a photosensitive polyimide is used in place of a conventional nitride film or an oxide film as an interlayer insulating film or a protective film.

도 4는 본 발명의 일 실시에로서, 감광성 오버코트 또는 폴리이미드를 게이트절연막을 대체하여 사용하는 경우를 나타낸 단면도이다.4 is a cross-sectional view showing a case in which a photosensitive overcoat or polyimide is used in place of a gate insulating film according to one embodiment of the present invention.

먼저, 투광성 기판(200) 상에 알루미늄, 알루미늄 합금 또는 내화성금속 중의 어느 하나 또는 그 적층막을 사용하여 게이트전극(30)을 형성한다. 이어서, 게이트전극이 형성된 결과물의 전면에, 스핀코팅(spin coating) 방법을 이용하여 감광성 폴리이미드 또는 감광성 오버코트를 수천Å ∼ 수㎛ 정도의 두께로 도포한 후 노광 및 현상을 실시하여 폴리이미드 또는 오버코트 패턴(32)을 형성한다. 상기 감광성 폴리이미드 또는 오버코트 패턴은 게이트절연막으로 사용된다. 그리고, 상기 감광성 폴리이미드 또는 오버코트는 스핀 코팅방법으로 균일하게 도포되므로 게이트절연막 형성 후 평탄화를 이룰 수 있다.First, the gate electrode 30 is formed on the light transmissive substrate 200 using any one of aluminum, an aluminum alloy, or a refractory metal or a laminated film thereof. Subsequently, a photosensitive polyimide or photosensitive overcoat is applied to the entire surface of the resultant gate electrode formed by spin coating to a thickness of several thousand micrometers to several micrometers, followed by exposure and development to perform polyimide or overcoat. The pattern 32 is formed. The photosensitive polyimide or overcoat pattern is used as a gate insulating film. In addition, since the photosensitive polyimide or overcoat is uniformly coated by a spin coating method, the photosensitive polyimide or overcoat may be planarized after the gate insulating film is formed.

이어서, 예컨대 비정질실리콘막 및 불순물이 도핑된 비정질실리콘막을 차례로 형성하여 제1 반도체막 및 오믹접촉을 위한 제2 반도체막을 형성한 후, 2차의 사진식각공정을 통해 상기 제2 반도체막 및 제1 반도체막을 패터닝함으로써, TFT의 채널영역으로 사용되는 반도체패턴(34) 및 오믹층(36)을 형성한다.Subsequently, for example, an amorphous silicon film and an amorphous silicon film doped with impurities are sequentially formed to form a first semiconductor film and a second semiconductor film for ohmic contact, and then the second semiconductor film and the first semiconductor film are subjected to a second photolithography process. By patterning the semiconductor film, the semiconductor pattern 34 and the ohmic layer 36 used as the channel region of the TFT are formed.

다음에, 결과물 전면에 제2 금속막을 소정두께로 형성한 후 3차로 사진식각하여 소오스전극(38A) 및 드레인전극(38B)을 형성하며, 채널영역으로 사용되는 소정부분의 반도체패턴 상부의 오믹층을 제거한다. 이후의 공정은 종래의 방법에서 설명한 바와 동일하게 진행된다.Next, a second metal film is formed on the entire surface of the resultant, and then photoetched to form a source electrode 38A and a drain electrode 38B. The ohmic layer is formed on the semiconductor pattern of the predetermined portion used as the channel region. Remove it. Subsequent processes proceed in the same manner as described in the conventional method.

도 5는 본 발명의 다른 실시예로서, 감광성 오버코트 또는 폴리이미드를 보호막을 대체하여 사용하는 경우를 도시한 단면도이다.FIG. 5 is a cross-sectional view illustrating a case in which a photosensitive overcoat or a polyimide is used in place of a protective film as another embodiment of the present invention.

먼저, 투광성 기판인 유리기판(300)상에 저저항의 제1 금속막을 소정두께 형성한 후 1차로 사진식각하여 게이트전극(40)을 형성하고, 결과물 전면에 예컨대 질화막(SiNx) 혹은 산화막(SiOx)을 소정두께 적층하여 게이트절연막(42)을 형성한다. 연속해서 제1 반도체막 예컨대 비정질실리콘 및 오믹접촉을 위한 제2 반도체막 예컨대 불순물이 도핑된 비정질실리콘을 형성한 후, 2차의 사진식각공정을 통해 상기 제2 반도체막 및 제1 반도체막을 패터닝함으로써, TFT의 채널영역으로 사용되는 반도체패턴(44) 및 오믹층(46)을 형성한다.First, a low-resistance first metal film is formed on a glass substrate 300 which is a light transmissive substrate, and the gate electrode 40 is formed by photolithography first, and then, for example, a nitride film (SiN x ) or an oxide film ( SiO x ) is laminated to a predetermined thickness to form a gate insulating film 42. Successively forming a first semiconductor film such as amorphous silicon and a second semiconductor film for ohmic contact such as amorphous silicon doped with impurities, and then patterning the second semiconductor film and the first semiconductor film through a secondary photolithography process The semiconductor pattern 44 and the ohmic layer 46 used as the channel region of the TFT are formed.

다음에, 결과물 전면에 제2 금속막을 소정두께로 형성한 후 3차로 사진식각하여 소오스전극(48A) 및 드레인전극(48B)을 형성하고, 채널영역으로 사용되는 소정부분의 반도체패턴 상부의 오믹층을 제거한다.Next, after forming the second metal film to a predetermined thickness on the entire surface of the resultant, the source electrode 48A and the drain electrode 48B are formed by photolithography in the third order, and the ohmic layer on the semiconductor pattern of the predetermined portion used as the channel region. Remove it.

다음에, 결과물 전면에 감광성 폴리이미드 또는 오버코트를 스핀코팅하여 보호막(50)을 형성한 후, 4차의 사진식각공정을 통하여 상기 드레인전극(48B)의 일부분을 노출시킨다. 이어서, 결과물 전면에 ITO막을 형성한 후 5차로 사진식각하여 화소전극(52)을 형성함으로써 TFT를 완성한다.Next, after forming a protective film 50 by spin-coating a photosensitive polyimide or overcoat on the entire surface of the resultant, a part of the drain electrode 48B is exposed through a fourth photolithography process. Subsequently, after forming the ITO film on the entire surface of the resultant, the TFT is completed by photolithography to form the pixel electrode 52.

도 6은 본 발명에 의한 보호막 형성공정을 구체적으로 나타낸 공정흐름도로서, 상기 도 5를 참조하여 설명하기로 한다.FIG. 6 is a flowchart illustrating a process of forming a protective film according to the present invention in detail, and will be described with reference to FIG. 5.

도 5 및 도 6을 참조하면, 먼저 상기 소오스전극(48A) 및 드레인전극(48B)의 형성 후, 상기 보호막을 형성하기 전에 세정하고(단계 401), 결과물 전면에 대하여 소정두께의 보호막으로 사용될 감광성 유기절연막, 예컨대 아크릴수지 계통의 감광성 오버코트(overcoat)를 사용하거나, 감광성 폴리이미드(polyimide)를 형성한다(단계 402).5 and 6, first, after forming the source electrode 48A and the drain electrode 48B, and before the protective film is formed (step 401), the photosensitive film to be used as a protective film having a predetermined thickness with respect to the entire surface of the resultant An organic insulating film such as an acrylic resin photosensitive overcoat is used, or a photosensitive polyimide is formed (step 402).

이어서, 상기 감광성 오버코트 혹은 감광성 폴리이미드로 형성된 보호막에 대하여 마스크 노광하고(단계 403), 현상한 후(단계 404), 베이킹(baking)을 실시하여(단계 405), 보호막을 형성한다. 여기서, 상기 감광성 유기물질로 이루어진 보호막은, 종래 BCB에 가까운 높은 절연효과를 얻을 수 있고, 평탄화 및 투과율도 종래에 비해 떨어지지 않는다. 또한, 상술한 감광성 유기물질은 상기 보호막의 사용에만 국한하지 않고, 이미 설명한 바와 같이 게이트전극을 보호하기 위한 게이트절연막으로 대체하여 사용할 수 있다.Subsequently, the protective film formed of the photosensitive overcoat or photosensitive polyimide is subjected to mask exposure (step 403), developed (step 404), and then baked (step 405) to form a protective film. Here, the protective film made of the photosensitive organic material can obtain a high insulation effect close to conventional BCB, and the planarization and transmittance are not inferior to those of the conventional art. In addition, the above-described photosensitive organic material is not limited to the use of the protective film, and may be used as a gate insulating film for protecting the gate electrode as described above.

본 발명은 상기 실시예에 한정되지 않으며, 많은 변형이 본 발명의 기술적 사상내에서 당분야에서 통상의 지식을 가진 자에 의하여 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by one of ordinary skill in the art within the technical idea of the present invention.

이상 설명된 바와 같이 본 발명에 의한 TFT의 제조방법에 의하면, 보호막으로 감광성 유기물질, 예컨대 아크릴수지 계통의 감광성 오버코트 혹은 감광성 폴리이미드를 사용함으로써, 종래 BCB를 사용한 보호막의 형성을 위하여 이루어지던 여러가지 공정들 중 포토레지스트 형성전 세정공정, 포토레지스트 도포공정, 식각공정, 및 포토레지스트 패턴 제거공정 등을 거치지 않고도 보호막을 형성할 수 있게 되어 TFT의 제조공정을 감소시킬 수 있게 된다. 즉, 보호막으로 사용된 절연막이 감광성이기 때문에 사진공정만으로 패턴의 형성이 가능해져서, 공정을 단순화 시키는데 매우 유리하다. 또한, 상기 감광성 유기물질은 스핀코팅 방식으로 기판상에 균일하게 성막할 수 있으므로, 평탄화가 용이하고, 게이트절연막으로 대체하여 사용할 수도 있다.As described above, according to the method for manufacturing a TFT according to the present invention, various processes that have been conventionally performed for forming a protective film using BCB by using a photosensitive organic material such as a photosensitive overcoat or a photosensitive polyimide of an acrylic resin system as a protective film. Among them, a protective film can be formed without undergoing a pre-photoresist cleaning process, a photoresist coating process, an etching process, and a photoresist pattern removing process, thereby reducing the manufacturing process of the TFT. That is, since the insulating film used as the protective film is photosensitive, the pattern can be formed only by a photographic process, which is very advantageous for simplifying the process. In addition, since the photosensitive organic material may be uniformly formed on a substrate by a spin coating method, the photosensitive organic material may be easily planarized and used as a gate insulating film.

Claims (3)

유리기판상에 게이트전극을 형성하는 단계와, 상기 게이트전극이 형성된 결과물 전면에 게이트절연막을 형성하는 단계와, 상기 게이트절연막위에 트랜지스터의 채널영역으로 사용되는 반도체패턴 및 오믹층을 형성하는 단계와, 상기 오믹층과 접촉되는 소오스전극 및 드레인전극을 형성하는 단계와, 상기 소오스전극 및 드레인전극이 형성된 결과물 전면에 소정두께의 보호막을 형성하는 단계와, 상기 드레인전극의 일부분과 연결되는 화소전극을 형성하는 단계를 구비하여 이루어진 박막트랜지스터-액정표시장치의 제조방법에 있어서,Forming a gate electrode on a glass substrate, forming a gate insulating film on the entire surface of the product on which the gate electrode is formed, and forming a semiconductor pattern and an ohmic layer to be used as a channel region of a transistor on the gate insulating film; Forming a source electrode and a drain electrode in contact with the ohmic layer, forming a protective film having a predetermined thickness on the entire surface of the resultant source on which the source electrode and the drain electrode are formed, and forming a pixel electrode connected to a portion of the drain electrode A method of manufacturing a thin film transistor-liquid crystal display device comprising the steps of: 상기 보호막은 감광성 유기절연막인 것을 특징으로 하는 박막트랜지스터-액정표시장치의 제조방법.And said protective film is a photosensitive organic insulating film. 제 1 항에 있어서, 상기 감광성 유기절연막은,The method of claim 1, wherein the photosensitive organic insulating film, 아크릴수지 계통의 감광성 오버코트, 혹은 감광성 폴리이미드인 것을 특징으로 하는 박막트랜지스터-액정표시장치의 제조방법.A method of manufacturing a thin film transistor-liquid crystal display device, characterized in that it is a photosensitive overcoat of acrylic resin or photosensitive polyimide. 제 1 항에 있어서, 상기 게이트절연막은,The method of claim 1, wherein the gate insulating film, 감광성 유기절연막인 것을 특징으로 하는 박막트랜지스터-액정표시장치의 제조방법.A method of manufacturing a thin film transistor-liquid crystal display device, which is a photosensitive organic insulating film.
KR1019960051488A 1996-10-31 1996-10-31 Manufacturing method of thin-film transistor liquid crystal display device KR100219500B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960051488A KR100219500B1 (en) 1996-10-31 1996-10-31 Manufacturing method of thin-film transistor liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960051488A KR100219500B1 (en) 1996-10-31 1996-10-31 Manufacturing method of thin-film transistor liquid crystal display device

Publications (2)

Publication Number Publication Date
KR19980031923A KR19980031923A (en) 1998-07-25
KR100219500B1 true KR100219500B1 (en) 1999-09-01

Family

ID=19480526

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960051488A KR100219500B1 (en) 1996-10-31 1996-10-31 Manufacturing method of thin-film transistor liquid crystal display device

Country Status (1)

Country Link
KR (1) KR100219500B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269504A (en) * 1999-03-16 2000-09-29 Hitachi Ltd Semiconductor device, its manufacture and liquid crystal display device
JP2001264810A (en) * 2000-03-21 2001-09-26 Nec Kagoshima Ltd Active matrix substrate and method of manufacturing the same
KR100783699B1 (en) * 2001-01-31 2007-12-07 삼성전자주식회사 manufacturing method of thin film transistor array panel for liquid crystal display
KR100480331B1 (en) * 2002-04-08 2005-04-06 엘지.필립스 엘시디 주식회사 Array Panel used for a Liquid Crystal Display and method for fabricating the same

Also Published As

Publication number Publication date
KR19980031923A (en) 1998-07-25

Similar Documents

Publication Publication Date Title
US5622814A (en) Method for fabricating active substrate
KR100190023B1 (en) Tft-lcd and fabrication method thereof
US7531372B2 (en) Method for manufacturing array substrate for liquid crystal display device
US6765270B2 (en) Thin film transistor array gate electrode for liquid crystal display device
US5441905A (en) Process of making self-aligned amorphous-silicon thin film transistors
US8199301B2 (en) Horizontal electric field switching liquid crystal display device
JP3022443B2 (en) Semiconductor device and method of manufacturing the same
US6717631B2 (en) Array substrate for use in LCD device
KR100653467B1 (en) Method for manufacturing tft-lcd
KR100487899B1 (en) Semi-transmission type liquid-crystal display and fabrication method thereof
JP2002250934A (en) Method for manufacturing matrix substrate for liquid crystal
KR100219500B1 (en) Manufacturing method of thin-film transistor liquid crystal display device
KR20040061292A (en) A method of fabricating liquid crystal display device
KR100336881B1 (en) Manufacturing Method of Thin Film Transistor Liquid Crystal Display Device
JP2002098994A (en) Matrix substrate for liquid crystal, and method for manufacturing the same and method of forming the contact hole
KR100590925B1 (en) method for manufacturing the TFT- LCD
KR100527086B1 (en) Method for manufacturing liquid crystal display device
KR19990046897A (en) Thin film transistor and method of manufacturing same
KR100507283B1 (en) A method for manufacturing of thin film transistor liquid crystal display
JPH07191323A (en) Substrate for liquid crystal panel and its manufacture
KR20010084330A (en) Liquid crystal display and method for fabricating the same
KR101030524B1 (en) Method For Fabricating The Array Substrate Of Thin Film Transistor
KR20020057032A (en) Method for manufacturing thin film transistor liquid crystal display device
KR20000004336A (en) Method of manufacturing liquid crystal display apparatus
KR100527080B1 (en) Method of manufacturing TFT array substrate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080528

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee