KR100205535B1 - Adsorbent preparation using powdered cokes - Google Patents

Adsorbent preparation using powdered cokes Download PDF

Info

Publication number
KR100205535B1
KR100205535B1 KR1019950059144A KR19950059144A KR100205535B1 KR 100205535 B1 KR100205535 B1 KR 100205535B1 KR 1019950059144 A KR1019950059144 A KR 1019950059144A KR 19950059144 A KR19950059144 A KR 19950059144A KR 100205535 B1 KR100205535 B1 KR 100205535B1
Authority
KR
South Korea
Prior art keywords
coke
powder coke
adsorbent
hydrofluoric acid
cdq
Prior art date
Application number
KR1019950059144A
Other languages
Korean (ko)
Other versions
KR970033019A (en
Inventor
이용국
이종렬
김재신
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950059144A priority Critical patent/KR100205535B1/en
Publication of KR970033019A publication Critical patent/KR970033019A/en
Application granted granted Critical
Publication of KR100205535B1 publication Critical patent/KR100205535B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 CDQ 분말코크스를 이용한 흡착제 제조방법에 있어서, CDQ 공정에서 발생하는 분말코크스 중, 50-170mesh의 입도를 갖는 것을 선별한 다음, 15-30% 농도의 불산으로 처리한 후, 충분히 수세하고 건조시키는 단계로 구성되는 것을 특징으로 하는 CDQ 분말 코크스를 이용한 흡착제 제조방법에 관한 것이다.In the present invention, in the method for preparing an adsorbent using CDQ powder coke, the powder coke generated in the CDQ process is selected to have a particle size of 50-170mesh, and then treated with hydrofluoric acid at a concentration of 15-30%. It relates to a method for producing an adsorbent using a CDQ powder coke, characterized in that the drying step.

Description

분말 코크스를 이용한 흡착제제조방법Adsorbent Manufacturing Method Using Powder Coke

제1도는 본 발명의 흡착제 제조방법의 공정순서를 개략적으로 나타내는 도면.1 is a view schematically showing the process sequence of the adsorbent production method of the present invention.

제2도는 분말 코크스의 발생공정을 나타내는 도면.2 is a view showing a step of generating powdered coke.

제3도는 불산과 염산으로 산처리 했을 때의 CDQ 분말 코크스의 흡착능을 비교하여 나타낸 그래프.3 is a graph comparing the adsorption capacity of CDQ powder coke when acid treated with hydrofluoric acid and hydrochloric acid.

제4도는 불산의 농도와 CDQ 분말 코크스의 흡착능의 관계를 나타내는 그래프.4 is a graph showing the relationship between the concentration of hydrofluoric acid and the adsorption capacity of the CDQ powder coke.

본 발명은 분말 코크스를 이용한 흡착제 제조방법에 관한 것으로, 더욱 상세하게는 제철소의 코크스 공장에서 발생하는 CDQ 분말 코크스를 불산으로 활성화시킴으로써 각종 산업장에서 발생하는 환경오염물질을 흡착 제거하는 흡착제를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an adsorbent using powder coke, and more particularly, to prepare an adsorbent for adsorbing and removing environmental pollutants generated in various industrial sites by activating CDQ powder coke generated in a coke plant of an ironworks with hydrofluoric acid. It is about a method.

기존에 폐수처리용 흡착제로 가장 많이 이용되고 있는 활성탄은 그 제조공장에서 많은 양의 공해물질을 발생시키는 것으로 알려져 있는데, 이것은 활성탄 제조공정에서 사용하는 원료인 나무, 석탄, 야자껍질 등을 1000℃에서 탄화시킬 때 발생하는 다량의 휘발성(揮發性) 공해물질(公害物質) 때문이다. 또한 활성탄을 폐수처리 공정에서 사용할 경우 발생하는 폐 흡착제는 처리 시(時)에 다량의 에너지를 요구하는 소각공정을 거쳐야 한다. 따라서 활성탄과 같은 기존의 흡착제를 사용할 경우, 제조시에 많은 공해물질이 배출되고, 페흡착제 처리 시에 소각(혹은 재처리)가 별도로 필요하며, 폐흡착제를 저장, 운송하는데 많은 비용이 소요될 뿐만 아니라, 활성탄 자체가 고가이므로 경제적인 부담이 크다. 이와 같은 이유로 해서 활성탄을 이용한 폐수처리는 특별히 고도 처리가 필요한 곳에서 실시된다.Activated carbon, which is the most widely used adsorbent for wastewater treatment, is known to generate a large amount of pollutants in its manufacturing plant. This is the raw material used in the manufacturing process of activated carbon, such as wood, coal, and coconut shell, at 1000 ℃. This is due to the large amount of volatile pollutants produced when carbonizing. In addition, the waste adsorbent generated when activated carbon is used in the wastewater treatment process must undergo an incineration process that requires a large amount of energy at the time of treatment. Therefore, when using the existing adsorbents such as activated carbon, a lot of pollutants are discharged during manufacture, incineration (or reprocessing) is required separately when treating the adsorbent, and it is not only expensive to store and transport the waste adsorbent. Because activated carbon itself is expensive, the economic burden is high. For this reason, wastewater treatment using activated charcoal is carried out especially where advanced treatment is required.

본 발명의 목적은 이와 같은 문제점을 해결하기 위한 것으로 제철소의 코크스 공장에서 발생하는 CDQ 분말 코크스를 이용하여 경제적인 흡착제를 제조하는 방법을 제공하는 것이다. 본 발명의 다른 목적은 CDQ 분말 코크스를 활성시키는데 사용한 폐불산을 재활용하여 공해가 없는 흡착제 제조방법을 제공하는 것이다.An object of the present invention is to solve the above problems and to provide a method for producing an economical adsorbent using CDQ powder coke generated in the coke plant of steel mills. Another object of the present invention is to provide a method for producing an adsorbent free of pollution by recycling waste hydrofluoric acid used to activate CDQ powder coke.

본 발명은 분말 코크스를 이용한 흡착제 제조방법에 있어서, CDQ 분말 코크스를 표준체를 사용하여 50-170mesh로 선별한 다음, 15-30% 농도의 불산으로 처리한 후, 충분히 수세하고 건조시켜 흡착제를 제조하는 단계로 구성되는 것을 특징으로 하는 CDQ 분말 코크스를 이용한 흡착제 제조방법에 관한 것이다.In the present invention, in the method for preparing adsorbent using powder coke, CDQ powder coke is selected to 50-170mesh using standard body, treated with hydrofluoric acid at 15-30% concentration, washed with water and dried sufficiently to produce adsorbent. It relates to a method for producing an adsorbent using CDQ powder coke, characterized in that consisting of steps.

상기의 불산 처리과정에서 생긴 폐불산은 증류, 응축시켜 회수하여 상기 15-30%의 농도로 조절하여 재활용한다.Waste hydrofluoric acid generated in the hydrofluoric acid treatment is recovered by distillation, condensation, and recycled after adjusting to the concentration of 15-30%.

현재 제철소에서 발생되고 있는 분말 코크스의 종류는 크게 3가지로 나뉠 수 있는데, 즉 코크스를 수송하는 과정에서 발생하는 것(이하 '낙광 분말 코크스'라 함), 가열된 코크스를 냉각하는 과정에서 발생하는 것((이하 '소화조 분말 코크스'라 함) 그리고 코크스를 건조냉각하는 과정에서 발생하는 것(이하 'CDQ(Coke Dry Quenching) 분말 코크스'라 함)이 있는데, 발생공정에 관한 개략도는 제2도와 같다.There are three types of powder coke generated in steel mills, namely, those produced during the transport of coke (hereinafter referred to as 'lightfall powder coke'), and those produced by cooling heated coke. (Hereinafter referred to as 'digestion tank coke') and those produced during dry cooling of coke (hereinafter referred to as 'CDQ (Coke Dry Quenching) powder coke'). same.

제2도에서 소화조 분말 코크스는 약 1,100℃부근의 열처리를 거친 코크스에 물을 살수(撒水)하여 급냉한 것이며, 낙광 분코크스는 제조된 코크스를 용광로로 이송(移送)하는 과정에서 발생하는 것이다. 따라서 이 두 분말 코크스의 물리화학적 특성은 서로 비슷한 것으로 판단된다.In FIG. 2, the digester powder coke is quenched by sprinkling water on the coke which has undergone heat treatment around 1,100 ° C., and the falling coke powder coke is generated in the process of transferring the manufactured coke to the furnace. Therefore, the physicochemical characteristics of these two powdered cokes are judged to be similar.

CDQ 분말 코크스는 질소가스를 이용하여 약 1,100℃ 부근의 코크스 21.6톤을 3-4시간에 걸쳐 180℃로 냉각하는 과정에 발생하는 것으로, 위 두 가지의 분 코크스와는 물성(物性)이 다를 것으로 판단된다.CDQ powder coke is produced by cooling 21.6 tons of coke near 1,100 ℃ to 180 ℃ over 3-4 hours by using nitrogen gas, and the physical properties are different from those of the above two powdered cokes. Judging.

이와 같은 분말코크스(혹은 분코크스)로부터 흡착용 재료를 선정하기 위해서는 다음과 같은 시험을 실시해야 한다. 이때 같은 입도의 분말코크스를 선정하여 표면적 분석기로 그 표면적을 측정해야 한다.In order to select materials for adsorption from such powdered coke (or powdered coke), the following tests should be carried out. At this time, powder coke of the same particle size should be selected and the surface area should be measured by the surface area analyzer.

70-170mesh 분말 코크스를 준비한 후, 질소에 대한 BET 표면적을 구한 결과 하기 표 1과 같은 결과를 얻었다.After preparing 70-170mesh powder coke, BET surface area for nitrogen was obtained, and the results as shown in Table 1 below were obtained.

상기의 표 1의 결과로부터 분말코크스의 BET 표면적은 낙광 분말코크스가 0.68㎥/g , 소화조 분말 코크스가 1.21㎥/g, CDQ 분말 코크스가 16.7㎥/g 이었다.From the results of Table 1, the BET surface area of powder coke was 0.68 m < 3 > / g, digester powder coke 1.21 m < 3 >

Gibbs isotherm 으로부터 흡착표면적과 흡착질의 부분압력과의 관계는 식(I)과 같다.From Gibbs isotherm, the relationship between the adsorption surface area and the partial pressure of adsorbate is shown in equation (I).

[일반식 1][Formula 1]

식(1)에서 p는 흡착질의 분압이고, A는 흡착제의 표면적이며, β는 흡착질분자의 면적 혹은 부피를 나타낸 것이다. 식(I)에서 B2A이고=2β/AIn Equation (1), p is the partial pressure of the adsorbate, A is the surface area of the adsorbent, and β is the area or volume of the adsorbate molecule. B2A in formula (I) = 2β / A

[일반식 2][Formula 2]

식(2)에서 b는 Langmuir 평형상수이다. 한편 Langmuir형으로 식((2)를 변화시키면 식(3)과 같이 된다.In equation (2), b is the Langmuir equilibrium constant. On the other hand, if you change the expression ((2) to Langmuir type, it becomes as (3)

[일반식 3][Formula 3]

식(3)에서 q와 qs는 각각 흡착분압 p에서의 흡착량과 포화 흡착량이다.In formula (3), q and qs are adsorption amount and saturated adsorption amount in adsorption partial pressure p, respectively.

따라서 윗 식들에서, 같은 종류의 흡착질이 같은 농도 혹은 같은 부분압에서 흡착된다면,가 클수록 qs도 커지는 것을 알 수 있다. 즉 이것은 표면적이 클수록 일반적으로 흡착량이 많아지는 것을 나타낸다.So in the above equations, if the same kind of adsorbate is adsorbed at the same concentration or at the same partial pressure, It can be seen that the larger qs also becomes larger. In other words, this indicates that the larger the surface area, the larger the amount of adsorption in general.

따라서 비표면적이 가장 큰 CDQ 분말 코크스를 흡착제로 사용하는 것이 가장 바람직하다.Therefore, it is most preferable to use the CDQ powder coke having the largest specific surface area as the adsorbent.

다음으로는 선정된 분말 코크스의 적정 입도 범위를 선정해야 한다.Next, the appropriate particle size range of the selected powder coke should be selected.

각 분말 코크스의 입도 분포를 파악하기 위해 5, 10, 20, 35, 50, 70, 100, 170 mesh의 표준망으로 분류하고, 각 표준망에 걸린 코크스의 무게를 측정하여 전체 코크스에 대한 비율을 구한 결과 하기 표 2와 같은 결과를 얻었다.In order to understand the particle size distribution of each powder coke, it is classified into 5, 10, 20, 35, 50, 70, 100, 170 mesh standard mesh, and the weight of coke in each standard mesh is measured to determine the ratio of the total coke. The obtained results were obtained as shown in Table 2 below.

상기 표 2에서 낙광 분말 코크스의 입도는 5mesh 보다 큰 것이 전체에 대해 41.9%, 5∼50mesh인 것이 43.5%, 50∼170mesh인 것이 8.6%, 170mesh보다 작은 것이 5.3%인 것으로 나타났다. 소화조 분말 코크스는 5mesh인 것이 19.7%, 170mesh보다 작은 것이 2.9%인 것으로 나타났다. CDQ 분말 코크스는 5mesh 보다 큰 것이 전체에 대해 0.005%, 5∼50mesh인 것이 23.42%, 50∼170mesh인 것이 45.4%, 170mesh보다 작은 것이 30.6%인 것으로 나타났다.In Table 2, the particle size of the light fall powder coke was 41.9% for the whole, 53.5 to 43.5% for the whole, 43.5% for the 50 to 170 mesh, 8.6% for the mesh and 5.3% for the smaller than 170mesh. The digester powder coke was 19.7% for 5mesh and 2.9% for smaller than 170mesh. CDQ powder coke was found to be 0.005% larger than 5mesh, 23.42% of 5-50mesh, 45.4% of 50 ~ 170mesh, and 30.6% of smaller than 170mesh.

즉, 입도의 크기는 낙광 소화조 CDQ 분말 코크스인 것으로 나타났는데, 특히 낙광은 5mesh 이상이, CDQ는 170mesh 이하가 많은 것으로 나타났다.That is, the size of the particle size was found to be CDK powder coke of the falling down digestion, in particular, the falling light is more than 5mesh, CDQ is more than 170mesh.

따라서, 본 발명에 사용하기 적합한 재료로 선정된 CDQ 분말 코크스의 입도분포 중 너무 미세하여 취급이 곤란한 170mesh 이하의 분말을 제외하고 또, 너무 조대하여 폐수처리시 유동층 흡착제로 사용하기 곤란한 50mesh 이상의 분말을 제외한 50-170mesh 범위의 입도분포를 갖는 분말을 선별하여 본 발명의 흡착제를 제조하는 것이 바람직하다.Therefore, except for powders of 170 mesh or less that are too fine and difficult to handle in the particle size distribution of CDQ powder coke selected as a suitable material for use in the present invention, powders of 50 mesh or more that are too coarse and difficult to use as fluidized bed adsorbents in wastewater treatment are used. It is preferable to prepare the adsorbent of the present invention by selecting a powder having a particle size distribution in the range of 50-170mesh.

CDQ 분말 코크스의 입도분포 중 50-170mesh 범위의 입도분포를 갖는 분말은 약 67%를 차지하고 있어 CDQ 분말 코크스의 대부분을 활용할 수 있다.Among the particle size distributions of the CDQ powder coke, powder having a particle size distribution in the range of 50-170mesh occupies about 67%, so that most of the CDQ powder coke can be utilized.

분 코크스에는 상당량의 회분(ash)이 포함되어 있다. 하기 표 3은 분말 코크스의 화학적 조성을 나타낸 것이다.The powder coke contains a significant amount of ash. Table 3 below shows the chemical composition of powder coke.

표 3에서 약 11.28% 정도의 무기물(에쉬)가 함유되있는 것으로 나타나, 이를 불산으로 용출할 경우 무기물이 없어진 자리에 세공이 발달하여 표면적이 증가하므로 상기 식(1) 내지 식(3)으로부터 알 수 있듯이 흡착능도 증가하게 된다.In Table 3, about 11.28% of inorganic matters (ash) were contained, and when eluted with hydrofluoric acid, pores were developed at the site where minerals disappeared, so that the surface area increased, and it was found from the above formulas (1) to (3). As can be seen, the adsorption capacity is also increased.

산처리에 사용되는 불산의 농도는 15-30%정도가 바람직한데, 왜냐하면, 15% 이하의 농도에서는 흡착능의 향상이 두드러지지 않았고 30% 이상의 농도에서는 농도를 증가시켜도 더 이상의 흡착능 향상이 일어나지 않기 때문이다.The concentration of hydrofluoric acid used in the acid treatment is preferably about 15-30%, since the improvement of adsorption capacity is not noticeable at concentrations of 15% or less, and the increase in concentration does not occur any further at concentrations above 30%. to be.

또, 산처리 과정에서 생긴 폐불산은 중류 및 응축시키고 불산의 농도를 분석하여 불산을 재투입함으로써 15-30% 농도로 맞추어 불산처리시 재활용하였다.In addition, waste hydrofluoric acid generated during the acid treatment was recycled during hydrofluoric acid treatment by adjusting the concentration of hydrofluoric acid, condensing the hydrofluoric acid, and reinjecting the hydrofluoric acid to 15-30%.

[실시예]EXAMPLE

CDQ 분말 코크스를 표준체를 사용하여 50-170mesh의 입도분포를 갖는 것만 선별하여 여러농도의 불산과 염산용액에 넣고 약 48시간 동안 교반하면서 반응을 시켰다. 여러번 수세하여 주화시키고 105℃오븐에 넣고 건조시킨 후 데시케이터에 보관하였다.CDQ powder coke was selected using only a standard having a particle size distribution of 50-170mesh, and put into various concentrations of hydrofluoric acid and hydrochloric acid solution and reacted with stirring for about 48 hours. Water was washed several times and coined, put in a 105 ℃ oven and stored in a desiccator.

데시케이터에 보관된 흡착제를 COD가 80ppm인 폐수 250ml에 일정량 투입하여 약 48시간 동안 교반하였다. 잔류 COD를 측정하여 산처리 분말 코크스의 흡착능을 산출하였다.A certain amount of the adsorbent stored in the desiccator was added to 250 ml of waste water having 80 ppm of COD, and stirred for about 48 hours. The residual COD was measured to calculate the adsorption capacity of the acid treated powder coke.

그 결과를 제3도 및 제4도에 나타내었다.The results are shown in FIGS. 3 and 4.

제3도의 결과로부터 4.8% 농도에서 염산은 미처리한 경우에 비해 거의 흡착능의 향상이 없는 반면 불산의 경우 상당히 흡착능이 향상되었다. 또, 9.6%농도에서도 염산의 흡착능 향상정도에 비해 불산의 경우는 현저하게 흡착능이 향상되었다.From the results of FIG. 3, hydrochloric acid showed little improvement in adsorption capacity at the concentration of 4.8%, whereas hydrofluoric acid was significantly improved in hydrofluoric acid. In addition, even at the concentration of 9.6%, the adsorption capacity was remarkably improved in the case of hydrofluoric acid compared to the degree of improvement in the adsorption capacity of hydrochloric acid.

또, 불산의 농도에 따른 흡착능의 향상정도를 제4도에 나타내었는데, 이 그래프로부터 적정한 불산의 농도는 15-30%임을 알 수 있다.Moreover, although the improvement degree of the adsorption capacity according to the concentration of hydrofluoric acid is shown in FIG. 4, it can be seen from the graph that an appropriate concentration of hydrofluoric acid is 15-30%.

본 발명의 방법에 의해 제조된 흡착제는 제조방법이 간단하고 재료의 가격이 저렴하다. 즉, 제철소 코크스 공장에서는 다량의 분말 코크스가 부산물로 발생되며, 현재 대부분 연료용으로 사용되고 있는데, 가격은 활성탄의 1/30-1/100 정도이다.The adsorbent produced by the method of the present invention is simple in manufacturing method and the material is inexpensive. That is, a large amount of powdered coke is generated as a by-product from the iron and steel coke plant, and is currently used mostly for fuel, and the price is about 1 / 30-1 / 100 of activated carbon.

또한, 폐불산은 재활용할 수 있으므로 경제적이다.In addition, waste hydrofluoric acid is economical because it can be recycled.

종래에 코크스는 이미 1100℃정도의 열처리를 거쳐, 결정화가 상당히 진행되어 거의 흡착력이 없는 것으로 알려져 있어, 상기에 열거한 장점에도 불구하고 거의 흡착제로 사용하려는 시도가 없었으나, 본 발명에서는 적절한 분말 코크스를 선택하고 적절한 조건으로 전처리를 행하는 방법으로써 분말 코크스로 성능이 우수한 흡착제를 제조할 수 있었다.Conventionally, coke has already undergone heat treatment at about 1100 ° C., and crystallization is considerably progressed, and it is known that there is almost no adsorption force. Despite the above-mentioned advantages, almost no attempt has been made to use it as an adsorbent. The adsorbent which was excellent in the performance of powder coke could be manufactured by the method of selecting and performing pretreatment on suitable conditions.

Claims (2)

분말코크스를 이용한 흡착제 제조방법에 있어서, CDQ 공정에서 발생하는 분말코크스 중, 50-170mesh 의 입도를 갖는 것을 선별한 다음, 15-30% 농도의 불산으로 처리한 후, 충분히 수세하고 건조시키는 단계로 구성되는 것을 특징으로 하는 CDQ 분말코크스를 이용한 흡착제 제조방법.In the method for preparing adsorbent using powder coke, the powder coke generated in the CDQ process is selected to have a particle size of 50-170mesh, and then treated with hydrofluoric acid at a concentration of 15-30%, followed by sufficiently washing with water and drying. Adsorbent production method using a CDQ powder coke, characterized in that configured. 제1항에 있어서, 상기의 불산 처리과정에서 생긴 폐불산은 증류, 응축시켜 회수하여 상기 15-30%의 농도로 조절하여 재활용하는 것을 특징으로 하는 CDQ 분말코크스를 이용한 흡착제 제조방법.The method of claim 1, wherein the waste hydrofluoric acid generated during the hydrofluoric acid treatment is recovered by distillation, condensation, and recycled by adjusting to a concentration of 15-30%.
KR1019950059144A 1995-12-27 1995-12-27 Adsorbent preparation using powdered cokes KR100205535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950059144A KR100205535B1 (en) 1995-12-27 1995-12-27 Adsorbent preparation using powdered cokes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950059144A KR100205535B1 (en) 1995-12-27 1995-12-27 Adsorbent preparation using powdered cokes

Publications (2)

Publication Number Publication Date
KR970033019A KR970033019A (en) 1997-07-22
KR100205535B1 true KR100205535B1 (en) 1999-07-01

Family

ID=19445158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950059144A KR100205535B1 (en) 1995-12-27 1995-12-27 Adsorbent preparation using powdered cokes

Country Status (1)

Country Link
KR (1) KR100205535B1 (en)

Also Published As

Publication number Publication date
KR970033019A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US6914034B2 (en) Adsorbents for removing heavy metals and methods for producing and using the same
Tsai et al. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob
Tsai et al. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation
US7429551B2 (en) Adsorbents for removing heavy metals
Kilpimaa et al. Removal of phosphate and nitrate over a modified carbon residue from biomass gasification
US20070254807A1 (en) Process for the manufacture of carbonaceous mercury sorbent from coal
Lucchesi et al. Semi-active carbon and aromatics produced by pyrolysis of scrap tires
CN108033448A (en) A kind of coconut husk-sludge composite activated carbon and its preparation method and application
CN101716491A (en) Method for preparing heavy metal adsorbent by carbonizing lakebed sludge
CN101125292A (en) Method for preparing filtering absorbing material used for water treatment
Januševičius et al. The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods
Van Truong et al. Study of biochar impregnated with Al recovered from water sludge for phosphate adsorption/desorption
WO2005061099A1 (en) Adsorbents for removing heavy metals and methods for producing and using the same
Isaac et al. Sequestration of Ni (II) and Cu (II) using FeSO4 modified Zea mays husk magnetic biochar: Isotherm, kinetics, thermodynamic studies and RSM
Ma et al. The adsorption removal of tannic acid by regenerated activated carbon from the spent catalyst of vinyl acetate synthesis
Nandi et al. Adsorption of dyes from aqueous solution by coals, chars, and active carbons
KR100205535B1 (en) Adsorbent preparation using powdered cokes
JPS6323125B2 (en)
RU1794061C (en) Method of excessive active slime treatment
KR100205534B1 (en) Absorbent preparation using byproducts of cokes plant
JP2006007186A (en) Scavenger for heavy metals and separation/removal method for heavy metals
US4288293A (en) Form coke production with recovery of medium BTU gas
KR20100038933A (en) Granulation activated carbon manufacturing method
US4144193A (en) Granular activated carbon manufacture from sub-bituminous coal treated with dilute inorganic acid
JPS6048140A (en) Production of hydrophobic adsorbent

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee