KR100204347B1 - Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof - Google Patents

Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof Download PDF

Info

Publication number
KR100204347B1
KR100204347B1 KR1019960054026A KR19960054026A KR100204347B1 KR 100204347 B1 KR100204347 B1 KR 100204347B1 KR 1019960054026 A KR1019960054026 A KR 1019960054026A KR 19960054026 A KR19960054026 A KR 19960054026A KR 100204347 B1 KR100204347 B1 KR 100204347B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
minutes
alignment material
cps
crystal orientation
Prior art date
Application number
KR1019960054026A
Other languages
Korean (ko)
Other versions
KR19980035624A (en
Inventor
박재근
김도윤
김주영
Original Assignee
유현식
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 제일모직주식회사 filed Critical 유현식
Priority to KR1019960054026A priority Critical patent/KR100204347B1/en
Publication of KR19980035624A publication Critical patent/KR19980035624A/en
Application granted granted Critical
Publication of KR100204347B1 publication Critical patent/KR100204347B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Abstract

본 발명은 신나메이트계 감광기를 갖는 하기 식(Ⅰ)의 광중합형 액정배향재 및 그를 이용한 액정 배향막의 제조방법에 관한 것으로, 본 발명의 액정배향재에 의해 제조되는 액정 디스플레이 디바이스는 고온에서의 전기광학특성 및 내열성이 우수하고 프리틸트 각이 크게 향상되어 우수한 디스플레이 화질을 제공할 수 있는 이점을 갖는다.The present invention relates to a photopolymerizable liquid crystal alignment material of the formula (I) having a cinnamate photoreceptor and a process for producing a liquid crystal alignment film using the same, and a liquid crystal display device manufactured by the liquid crystal alignment material of the present invention is characterized by comprising: Optical characteristics and heat resistance, and the pretilt angle is greatly improved, thereby providing an excellent display image quality.

상기 식에서, R은 벤젠환 1∼3개로 구성된 그룹이고, X는 -CN, -F, -CnF2n-1(n은 1∼6의 정수)인 할로겐 원소 또는 할로겐을 갖는 탄화수소 그룹이다.Wherein R is a group consisting of 1 to 3 benzene rings and X is a hydrocarbon group having a halogen element or halogen which is -CN, -F, -C n F 2n-1 (n is an integer of 1 to 6).

Description

광중합형 액정배향재(Photoinduced Liquid Crystal Alignment Film) 및 그를 이용한 액정 배향막의 제조방법.(Photoinduced Liquid Crystal Alignment Film) and a method for producing a liquid crystal alignment film using the same.

제1도는 일반적인 칼라 TFT-LCD 셀의 단면 개략도.1 is a schematic cross-sectional view of a typical color TFT-LCD cell.

제2도는 러빙 공정과 액정의 프리틸트 각을 설명도시한 개략도.FIG. 2 is a schematic view illustrating the pretilt angle of the rubbing process and the liquid crystal. FIG.

제3도는 종래의 광배향의 광중합반응 메카니즘을 도시한 설명도.FIG. 3 is an explanatory view showing a conventional photopolymerization reaction mechanism of photo-alignment. FIG.

제4도는 광중합 및 광투과도 평가장치의 개략도이다.FIG. 4 is a schematic view of an apparatus for evaluating light curing and light transmittance.

* 도면의 주요부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS

1, 1' : 유리기판 2 : ITO 투명전극1, 1 ': glass substrate 2: ITO transparent electrode

3 : 액정 재료 4 : 박막트랜지스터(TFT)구동소자3: liquid crystal material 4: thin film transistor (TFT) driving element

5 : 칼라필터 6 : 배향막5: Color filter 6: Orientation film

7 : 편광필름 8 : 스페이서7: polarizing film 8: spacer

11 : 러빙 천 12 : 액정 분자11: rubbing cloth 12: liquid crystal molecule

13 : 배향재 θ : 프리틸트 각13: alignment material?: Pretilt angle

14 : 러빙 로울러14: Loving Rollers

본발명은 광중합형 액정배향재 및 그를 이용한 액정 배향막의 제조방법에 관한 것으로, 더욱 상세하게는 벤젠환과 할로겐 원소를 도입하여 내열성과 배향력을 향상시킨 신규의 신나메이트계 감광성고분자(cinnamate-containing photopolymers)인 액정배향재 및 그를 이용한 액정 배향막의 제조방법에 관한 것이다.The present invention relates to a photopolymerizable liquid crystal alignment material and a process for producing a liquid crystal alignment film using the same. More particularly, the present invention relates to a novel cinnamate-containing photopolymer (hereinafter referred to as " cinnamate-containing photopolymer ") having improved heat resistance and orientation by introducing a benzene ring and a halogen element. ) And a method of manufacturing a liquid crystal alignment film using the liquid crystal alignment material.

일반적으로 액정 디스플레이는 가볍고 전력 소모가 적다는 장점을 지니고 있어서 브라운관을 대체할 수 있는 가장 경쟁력 있는 디스플에이로서 등장하고 있다. 특히 박막트랜지스터에 의해서 구동되는 박막트랜지스터 액정 디스플레이(TFT-LCD)는 개개의 화소를 독립적으로 구동시키기 때문에 액정의 응답속도가 매우 뛰어나 고화질의 동화상을 구현할 수 있으므로 현재 노트북 컴퓨터, 벽걸이형 TV 등에 점차 응용 범위를 확장해 가고 있다.Liquid crystal displays (LCDs) are generally considered to be the most competitive displays to replace CRTs because they are lightweight and have low power consumption. In particular, since a thin film transistor liquid crystal display (TFT-LCD) driven by a thin film transistor independently drives individual pixels, the response speed of the liquid crystal is very excellent and high-quality moving images can be realized. It is expanding its scope.

제1도는 일반적인 칼라TFT-LCD의 단면구조를 도시한 개략도이다.FIG. 1 is a schematic view showing a cross-sectional structure of a general color TFT-LCD.

일반적으로 칼라 박막트랜지스터-액정 디스플레이의 제조시에는 유리기판(1) 위에 박막트랜지스터 구동소자(4) 및 ITO 투명전극(2)을 적층하고 이어서 배향막(6)을 적층하여 기판(1)을 형성한다. 반대편의 기판(1')은 칼라화를 위해 칼라 필터(5)를 취부하고 그 위에 ITO 투명전극(2)을 형성시킨다. 두 매의 기판(1, 1')들의 내표면들은 그 사이에 액정 재료를 주입하기 위해 실런트에 의해 스페이서(8)를 형성하도록 부착되고, 유리기판들(1, 1')의 다른 표면에는 편광필름(7)이 취부되며, 최종적으로 이 두 매의 기판(1, 1')들 사이에 액정재료(3)가 주입 및 경화되어 액정 디스플레이 셀이 제조된다.In general, in manufacturing a color thin film transistor-liquid crystal display, a thin film transistor driving element 4 and an ITO transparent electrode 2 are laminated on a glass substrate 1, and then an alignment film 6 is laminated to form a substrate 1 . The opposite substrate 1 'is provided with a color filter 5 for colorization and forms an ITO transparent electrode 2 thereon. The inner surfaces of the two substrates 1 and 1 'are attached to form spacers 8 by a sealant to inject the liquid crystal material therebetween and the other surfaces of the glass substrates 1 and 1' The film 7 is mounted and finally the liquid crystal material 3 is injected and cured between the two substrates 1 and 1 'to produce a liquid crystal display cell.

이러한 TFT-LCD가 구동되기 위해서는, 즉 액정이 광스위치로서 사용될 수 있기 위해서는 기본적으로 디스플레이 셀의 가장 안쪽에 박막트랜지스터가 형성된 층위에 액정이 일정 방향으로 초기 배향되어야만 한다.In order for such a TFT-LCD to be driven, that is, for the liquid crystal to be used as an optical switch, the liquid crystal must be initially oriented in a predetermined direction on a layer where a thin film transistor is formed on the innermost side of the display cell.

이와 같은 액정의 배향 정도는 액정 디스플레이의 화질의 우수성을 결정짓는 가장 중요한 요소이다. 액정의 배향 정도는 프리틸트 각(θ : Pretilt Angle)에 의해서 평가 및 결정되는데, TFT-LCD의 경우에는 약 1∼5° 정도의 프리틸트 각이 요구되고, STN-LCD의 경우는 좀더 가파른 10° 정도의 프리틸트 각이 요구된다.The degree of orientation of the liquid crystal is the most important factor that determines the image quality of the liquid crystal display. The degree of alignment of the liquid crystal is evaluated and determined by a pretilt angle (θ: Pretilt Angle). In the case of a TFT-LCD, a pretilt angle of about 1 to 5 ° is required, and in the case of an STN- Degree pre-tilt angle is required.

액정분자(12)를 배향시키기 위해서는, 제2도에 도시된 바와 같이, 박막트랜지스터 층위에 배향재(13)를 도포하여 나일론, 레이욘 등의 러빙천(11)으로 문질러 주어야만 하는데, 이러한 공정을 러빙 공정(Rubbing Process)이라고 한다. 과거에는 무기 재료인 실리카(SiO2)를 일정 방향으로 경사지게 진공 증착하여 사용하였으나, 이러한 방법은 증착속도가 느려 생산수율이 저조하므로 대량 생산에는 부적합하였다. 따라서 폴리이미드(Polyimide)와 같은 내열성 고분자를 배향재로 사용하여 스핀코팅 또는 프린팅 방법 등에 의해 러빙하는 방법이 개발되었는데, 이러한 방법은 배향재를 빠르고 쉽게 도포할 수 있어 생산공정을 단순화하는 이점을 갖기 때문에 현재 대부분의 양산 공정에 적용되어 사용 중이다.In order to orient the liquid crystal molecules 12, as shown in FIG. 2, the alignment material 13 must be coated on the thin film transistor layer and rubbed with a rubbing cloth 11 such as nylon or rayon. It is called a rubbing process. In the past, silica (SiO 2 ), which is an inorganic material, was used by being vacuum-deposited in an inclined manner in a certain direction. However, this method was not suitable for mass production because of low deposition rate due to low deposition rate. Therefore, a method of rubbing by a spin coating or printing method using a heat resistant polymer such as polyimide as an alignment material has been developed. This method has advantages of simplifying the production process because the alignment material can be applied quickly and easily Therefore, it is applied to most of mass production process now and is being used.

그러나 이상과 같이 배향재를 나일론, 레이욘 등의 러빙 천(11)을 사용하여 고속 회전하는(약 1000RPM) 러빙 로울러(14)로 문질러 주게 되면 배향재 표면에서 발생되는 정전기로 인하여 박막트랜지스터가 손상을 입게 되고, 천에서 파생되는 먼지, 섬유 입자 등에 의해서 불량이 발생되므로 생산 수율이 급격히 저하되는 단점이 있다. 따라서 최근 문지르지 않고 액정을 배향시키고자 하는 연구가 매우 활발히 진행되고 있는데, 이를 넌-러빙 공정(Non-Rubbing Process)이라고 한다.However, if the rubbing roller 14 rubs the alignment material at a high speed (about 1000 RPM) using the rubbing cloth 11 such as nylon, rayon, etc., the static electricity generated on the surface of the alignment material damages the thin film transistor And dusts and fiber particles derived from the fabric are defective, so that the production yield is rapidly deteriorated. Therefore, studies for orienting liquid crystals without rubbing recently have been actively conducted, which is called a non-rubbing process.

또한 최근 액정 디스플레이가 대형화되면서 노트북 등의 사무용에서 점차 벽걸이 TV용으로의 용도가 확장됨에 따라 액정 디스플레이에 대해서는 고품위화 및 광시야각이 요구되고 있다. 액정 디스플레이의 광시야각을 달성하기 위한 방법의 하나로서 화소 한 개를 몇 개의 작은 화소로 각각 분할하는 멀티-도메인(Multi-Domain)기술이 있다. 이러한 멀티-도메인(Multi-Domain) 화소를 제작하기 위해 기존의 러빙 공정용 배향재를 사용할 경우, 감광성고분자를 사용한 복잡한 리소그래피 공정(Lithographic Process)이 요구되어 생산적인 측면에서 바람직하지 못하다.In recent years, as liquid crystal displays have become larger in size, applications for wall-mounted TVs are gradually expanded in office use such as notebook computers, and therefore, high-definition and wide viewing angles are required for liquid crystal displays. As a method for achieving a wide viewing angle of a liquid crystal display, there is a multi-domain technique in which one pixel is divided into several small pixels. When a conventional alignment material for a rubbing process is used for manufacturing such a multi-domain pixel, a complicated lithographic process using a photosensitive polymer is required, which is not preferable from a production standpoint.

이를 해결하기 위해서 광조사에 의해 광중합을 일으켜서 고분자의 배열을 유도하여 액정을 배향시키는 광중합형 배향재를 이용한 넌-러빙 공정에 의한 배향방법이 개발되었다. 이와 같은 넌-러빙 공정(Non-Rubbing Process)의 대표적인 예가 M. Schadt 등(Jpn. J. Appl.Phys.,Vol. 31, 1992, 2155), Dae S. kang 등(미국특허 제 5,464,689호), Yuriy Reznikov(Jpn. J. Appl. Phys. Vol. 34, 1995, L1000)에서 발표한 광중합에 의한 광배향이다. 광배향이란 선편광된 자외선에 의해서 고분자에 결합된 감광성 그룹이 광반응을 일으키고 이 과정에서 고분자의 주쇄가 일정 방향으로 배열을 하게 됨으로써 결국 액정이 배향되는 메카니즘을 말하다. 제3도는 자외선 조사 전후의 광중합반응 메카니즘을 도시한 것으로, 광배향 현상을 보여주는 것이다. 상기 특허 및 논문에서 사용된 광배향재는 폴리비닐알콜(Polyvinylalcohol)에 신나메이트(Cinnamate)가 결합된 배향재로서 조사된 자외선에 의해서 신나메이트의 이중결합이 고리화 첨가반응(Cycloaddition 반응을 일으키는 원리를 이용하였다. 편광 방향과 일치되는 신나메이트 그룹만이 고리화 첨가반응을 일으켜 고분자 주쇄가 일차원적으로 정열되어 액정의 배향을 유도하는 것이다. 제4도는 광중합 및 광투과도 평가장치를 도시한 것이다.In order to solve this problem, a non-rubbing alignment method using a photopolymerizable alignment material for aligning a liquid crystal by inducing photopolymerization by light irradiation has been developed. Representative examples of such a non-rubbing process are described in M. Schadt et al. (Jpn. J. Appl. Phys., Vol. 31, 1992, 2155), Dae S. Kang et al. (U.S. Patent No. 5,464,689) , Yuriy Reznikov (Jpn. J. Appl. Phys., Vol. 34, 1995, L1000). The photopolymerization of photopolymer by photoluminescence of linearly polarized ultraviolet light causes the photopolymerization reaction. In this process, the main chain of the polymer is arranged in a certain direction, and finally the liquid crystal is oriented. FIG. 3 shows a photopolymerization reaction mechanism before and after irradiation with ultraviolet light, and shows a photo-alignment phenomenon. The photo-alignment material used in the above patent and the paper is characterized in that the double bond of cinnamate is induced by ultraviolet light irradiated as an alignment agent having a cinnamate bonded to polyvinylalcohol, Only the cinnamate group coinciding with the polarization direction causes a cyclization addition reaction so that the polymer main chain is linearly aligned to induce the orientation of the liquid crystal. Fig. 4 shows an apparatus for evaluating light curing and light transmittance.

그러나 이와 같은 종래 기술상의 폴리비닐알콜(Polyvinylalcohol)에 기초한 신나메이트(Cinnamate)계 광배향재는 열적 안정성이 너무 떨어져서, 즉 Tg(유리전이온도) 이상에서는 고분자의 연화(Softening) 현상이 일어나서 고분자의 배열이 깨어지게 되어 액정 배향이 파괴되는 치명적인 단점을 지니고 있다. 액정 디스플레이의 제조 공정상 고온에서 상하 유리기판을 접착시키는 실링 공정(Sealing Process)이 진행되므로, 적어도 광배향재는 약 100℃ 까지는 주요 특성이 변하지 않아야만 한다. 또 다른 중요한 문제점으로서는 편광에 의해 중합이 일어나는 정도가 신나메이트 그룹에 대해서 완전히 대칭으로 진행되므로 프리틸트 각이 거의 없어 고품위의 화질을 얻을 수 없다.However, such a prior art Cinnamate based photo-alignment material based on polyvinyl alcohol has too low thermal stability, that is, softening phenomenon of polymer occurs at a temperature above Tg (glass transition temperature) And the liquid crystal alignment is destroyed. A sealing process for bonding the upper and lower glass substrates at a high temperature in the manufacturing process of the liquid crystal display proceeds, so that at least the optical alignment material should not change its main characteristics until about 100 캜. Another important problem is that the degree of polymerization caused by the polarization proceeds completely symmetrically with respect to the cinnamate group, so that there is almost no pretilt angle and high quality image quality can not be obtained.

본 발명의 목적은 상술한 바와 같은 종래 기술상의 문제점들을 극복하는 것으로, 고분자에 벤젠환을 도입하여 고온에서의 전기광학 특성을 안정화하고, 플루오로(Fluoro) 또는 시아노(Cyano) 등의 할로겐 원소를 치환시켜서 프리틸트 각을 크게 향상시키며, 가교제를 통해 그물구조를 형성시킴으로써 내열안전성을 크게 개선시킨 광중합형 액정배향재 및 그를 이용한 액정 배향막의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to overcome the problems in the prior art as described above, and it is an object of the present invention to provide a polymer electrolyte membrane which stabilizes electro-optical characteristics at a high temperature by introducing a benzene ring into a polymer, And a method for manufacturing a liquid crystal alignment layer using the same, and to provide a method for manufacturing a liquid crystal alignment layer using the same, and a photopolymerizable liquid crystal alignment material having a net structure formed by a cross-linking agent.

즉, 본 발명의 하나의 양상은 하기 식(Ⅰ)의 구조를 갖는 광중합형 액정배향재를 제공하는 것이다.That is, one aspect of the present invention is to provide a photopolymerizable liquid crystal alignment material having a structure represented by the following formula (I).

상기식에서, R은 1 내지 3개의 벤젠환으로 구성된 그룹이고, X는 -CN, -F -CnF2n-1(단, n은 1∼6의 정수)인 할로겐 원소 또는 할로겐을 갖는 탄화수소 그룹이다.Wherein, R is 1, and the group consisting of a benzene ring, to 3, X is -CN, -F -C n F 2n- 1 ( where, n is an integer from 1 to 6) is a halogen atom or a hydrocarbon group having a halogen to be.

본 발명의 다른 양상은 상기 식(Ⅰ)의 액정배향재와 하기 식(Ⅱ)의 가교제가 혼합된 광중합형 액정배향재를 제공하는 것이다.Another aspect of the present invention is to provide a photopolymerizable liquid crystal alignment material in which the liquid crystal alignment material of the formula (I) and the cross-linking agent of the following formula (II) are mixed.

상기 식에서, X는 -CN, -F, CnF2n-1(단, n은 1∼6의 정수)의 할로겐 원소이며, R은 하기 식(Ⅲ)으로 표시되는 유기물질들로 구성되는 군으로부터 선택된다.Wherein X is a halogen element of -CN, -F, C n F 2n-1 (wherein n is an integer of 1 to 6) and R is a group consisting of organic materials represented by the following formula (III) .

(단, n은 1∼10의 정수)(Provided that n is an integer of 1 to 10)

본 발명의 또 다른 양상은 상기 식(Ⅰ)의 액정배향재를 클로로벤젠, N-메틸피롤리돈, 디메틸설폭사이드, 디메틸포름아마이드, 톨루엔, 클로로포름, 감마부티로락톤, 메틸셀로솔부, 테트라히드로퓨란 등의 유기 용매에 0.5wt% ∼2wt%의 농도 및 30cps~50cps 의 점도로 용해시켜 ITO유기기판에 스핀코팅 또는 프린팅 방법에 의해 두께 500Å∼1,000Å으로 도포하여 배향막을 형성한 후, 약 140℃에서 30분간 건조시키고 1KW세기의 UV램프를 이용하여 폴라라이저를 이용해서 선편광시킨 편광 자외선을 배향막 표면에 약 10분∼20분간 조사하는 과정을 포함하는 액정 배향막의 제조방법을 제공하는 것이다.In another aspect of the present invention, there is provided a liquid crystal alignment material of the above formula (I), wherein the liquid crystal alignment material is at least one selected from the group consisting of chlorobenzene, N-methylpyrrolidone, dimethylsulfoxide, dimethylformamide, toluene, chloroform, gamma-butyrolactone, Is dissolved in an organic solvent such as tetrahydrofuran and the like at a concentration of 0.5 wt% to 2 wt% and a viscosity of 30 cps to 50 cps to form an alignment film on the ITO organic substrate by spin coating or printing to a thickness of 500 ANGSTROM to 1,000 ANGSTROM, And then irradiating polarized ultraviolet light, which has been dried at 140 占 폚 for 30 minutes and linearly polarized with a polarizer using a UV lamp of 1 KW intensity, to the surface of the alignment film for about 10 minutes to 20 minutes.

이하에서 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

상기 식(Ⅰ)의 광중합형 액정배향재는 신나메이트계 감광성 고분자로서, 그 분자량은 1000∼100,000의 범위인 것이 유용하며, 더욱 바람직하기로는 20,000∼30,000의 분자량을 갖는 것이 좋다. 상기 고분자의 분자량이 증가할수록 배향재의 내열성은 약간씩 증가하나 용해도가 감소하여 ITO유리기판에서의 도포성이 극도로 저하되므로, 상기 고분자의 선택시에는 내열성과 도포성을 동시에 고려해야만 하는데, 약 20,000∼30,000정도의 범위를 갖는 고분자가 상기 두 가지 성질을 모두 만족시키기 때문에 바람직하다.The photopolymerizable liquid crystal alignment material of the formula (I) is a cinnamate-based photosensitive polymer, and its molecular weight is in the range of 1,000 to 100,000, more preferably 20,000 to 30,000. As the molecular weight of the polymer increases, the heat resistance of the alignment material slightly increases, but the solubility decreases and the coating property on the ITO glass substrate is extremely lowered. Therefore, when selecting the polymer, heat resistance and coating property must be considered at the same time. To about 30,000 is preferable because it satisfies both of the above two properties.

일반적으로 고분자의 내열성을 향상시키기 위해서는 고분자주쇄 혹은 측쇄에 벤젠환을 도입하므로써 그 효과를 볼 수 있다. 또 다른 방법으로 고분자주쇄를 서로 그물처럼 연결하므로써 온도 상승에 따른 고분자주쇄의 열운동을 방지함에 의해서도 내열성을 향상시킬 수있다. 본 발명의 다른 양상은 신나메이트기를 양 말단에 결합시킨 상기 식(Ⅱ)의 가교제를 액정배향재와 혼합하여 중합하므로써 가교제와 고분자 주쇄간의 반응에 의해 그물 구조를 형성시켜 내열성을 향상시키는 것을 특징으로 한다.In general, in order to improve the heat resistance of the polymer, the effect can be obtained by introducing a benzene ring into the polymer main chain or side chain. Another method is to connect the polymer main chains to each other like a net, thereby improving the heat resistance by preventing the thermal movement of the polymer main chain due to the temperature rise. Another aspect of the present invention is characterized in that the cross-linking agent of the formula (II) in which a cinnamate group is bonded at both terminals is mixed with a liquid crystal alignment material and polymerized to form a net structure by a reaction between the cross-linking agent and the polymer main chain to improve heat resistance do.

본 발명의 광중합형 액정배향재를 액정배향재로 사용하여 액정 디스플레이 셀을 제조한 경우에 액정을 배향시키기 위해서는, 용매로 클로로벤젠, N-메틸피롤리돈, 디메틸설폭사이드, 디메틸포름아마이드, 톨루엔, 클로로포름, 감마부티로락톤, 메틸셀로솔부, 테트라히드로퓨란 등의 유기 용매를 사용한다. 이러한 용매들의 농도는 0.5wt%∼2wt%의 범위로 하고, 점도는 30cps∼50cps의 범위로 하며, 스핀 코팅 또는 프린팅 방법에 의해 두께 500Å∼1,000Å으로 도포한다. 도포후 약 140℃에서 30분간 건조시킨후 1KW 세기의 UV 램프를 이용하여 폴라라이저를 이용해서 선편광시킨 편광 자외선을 배향막 표면에 약 10분∼20분간 조사하면 광중합에 의해 고분자의 배열이 유도되어 액정이 배향된다.In order to orient the liquid crystal when the liquid crystal display cell is manufactured by using the photopolymerizable liquid crystal alignment material of the present invention as a liquid crystal alignment material, it is preferable to use a solvent such as chlorobenzene, N-methylpyrrolidone, dimethylsulfoxide, dimethylformamide, , Chloroform, gamma-butyrolactone, methyl cellosolve, and tetrahydrofuran. The concentration of such solvents is in the range of 0.5 wt% to 2 wt%, the viscosity is in the range of 30 cps to 50 cps, and is applied by spin coating or printing to a thickness of 500 ANGSTROM to 1,000 ANGSTROM. After the application, it is dried at about 140 ° C. for 30 minutes, and polarized ultraviolet rays, which are linearly polarized with a polarizer using a UV lamp of 1 KW intensity, are irradiated to the surface of the alignment layer for about 10 minutes to 20 minutes. .

또한 상기 구조식(Ⅰ)의 광중합형 액정배향재와 상기 구조식(Ⅱ)의 가교제를 혼합하여 중합한 것을 배향재로 사용하여 액정을 배향시키는 경우에는 가교제를 약 0.1wt%∼5wt%로 하는 것을 제외하고 용매의 선정, 도포, 건조 및 광조사 시간은 광중합형 액정배향재만을 사용하는 경우와 동일하다.When the liquid crystal alignment is carried out by using a polymer obtained by polymerization and polymerization of a photopolymerizable liquid crystal alignment material of the structural formula (I) and a cross-linking agent of the structural formula (II), the cross-linking agent is not limited to about 0.1 wt% to 5 wt% And the selection, application, drying and light irradiation time of the solvent are the same as those in the case of using only the light-polymerizable liquid crystal alignment material.

본 발명의 광중합형 액정배향재는 고온에서 프리틸트 각 및 전압유지율이 우수하고 시야각, 광투과도, 응답속도등이 크게 향상된 이점을 갖기 때문에, 본 발명의 액정배향재에 의해 제조되는 액정 디스플레이 디바이스는 고화질 및 고품위의 디스플레이가 된다.Since the photopolymerizable liquid crystal alignment material of the present invention has an excellent pretilt angle and voltage retention at a high temperature and has an advantage of greatly improving the viewing angle, light transmittance and response speed, the liquid crystal display device manufactured by the liquid crystal alignment material of the present invention has high quality And a high-quality display.

이하에서 본 발명을 실시예를 들어 상세히 설명하나, 하기 실시예는 본 발명의 구체적인 실시양태를 예시한 것뿐으로 본 발명의 보호범위를 제한하거나 한정하는 것으로 해석되어서는 안된다.The following examples illustrate the present invention in detail but are not to be construed as limiting or limiting the scope of protection of the present invention.

[실시예 1][Example 1]

폴리히드록시스티렌플루오로신나메이트(Polyhydroxystyrenylfluorocinnamate)를 이용한 넌-러빙 공정에 의한 액정 디스플레이 셀의 제작Fabrication of liquid crystal display cell by non-rubbing process using polyhydroxystyrenylfluorocinnamate

플루오로신나믹 애시드 10g(0.06 mole)을 디클로로메탄에 녹인후, 티오닐클로라이드 8.59g(0.07 mole)을 얼음 중탕하에서 적하시키면서 반응시킨다. 반응이 진행되면서 산이 녹아 투명한 용액이 되면 1시간동안 약 50℃에서 추가로 반응시킨다. 반응후 감압하에서 용매 및 미반응 티오닐클로라이드를 제거하고 고진공하에서 용매를 철저히 제거한다.10 g (0.06 mole) of fluorocinnamic acid was dissolved in dichloromethane, and then 8.59 g (0.07 mole) of thionyl chloride was added dropwise under ice bath. As the reaction progresses, the acid is dissolved and becomes a clear solution, and the reaction is further carried out at about 50 ° C for 1 hour. After the reaction, the solvent and unreacted thionyl chloride are removed under reduced pressure and the solvent is thoroughly removed under high vacuum.

수득된 플루오로신남모일 클로라이드(Fulorocinnamoyl chloride)를 건조된 디클로로메탄에 용해시킨다. 분자량 22,000의 폴리히드록시스티렌(Polyhydroxystyrene)과 트리에틸아민 6.07g(0.06mole)을 혼합하여 디클로메탄과 소량의 테트라히드로퓨란에 녹인다. 이 용액에 상기의 클로라이드 용액을 0℃ 하에서 적하하면서 반응시킨다. 약 1일을 방치한 후, 물로 세척하여 형성된 아민 염을 제거하고 용매를 제거하여 광배향재 인폴리히드록시스티레닐플루오로신나메이트(Polyhydroxystyrenylfluorocinnamate)를 얻는다. 이와 같이하여 수득된 폴리히드록시스티레닐플루오로신나메이트를 클로로벤젠에 1wt%로 녹인다. 녹인 용액을 4cm×4cm크기의 ITO유리기판에 스핀코팅한 후 140℃에서 약 30분간 건조하여 두께 500Å의 배향막을 도포한다. 도포된 상, 하 2매의 ITO유리기판에 약 1KW의 편광 자외선을 15분간 조사하여 광중합시킨다. 상기 상 하 2매의 광중합된 유리기판들을 자외선 경화형의 아크릴계 접착제를 이용하여 접착시킨다. 이어서 머크사의 MLC-6012, MLC-6043 액정을 진공 주입시켜 액정 디스플레이 셀을 제작하였다. 상기와 같이 넌-러빙 공정에 의해 수득된 액정 디스플레이 셀의 광투과도 10%, 50%, 90%에서 요구되는 인가 전압의 세기, 응답속도, 정면 콘트라스트비, 시야각, 전압유지율, 프리틸트 각을 측정하여 그 결과를 하기 표 1에 나타내었다.The obtained fluorocinnamoyl chloride is dissolved in dried dichloromethane. Polyhydroxystyrene having a molecular weight of 22,000 and 6.07 g (0.06 mole) of triethylamine are mixed and dissolved in dichloromethane and a small amount of tetrahydrofuran. To the solution, the above chloride solution is added dropwise at 0 占 폚. After standing for about 1 day, the amine salt formed by washing with water is removed and the solvent is removed to obtain polyhydroxystyrenylfluorocinnamate as a photo-alignment material. The polyhydroxystyrene fluorocinnamate thus obtained is dissolved in chlorobenzene at 1 wt%. The dissolved solution is spin-coated on a 4 cm x 4 cm ITO glass substrate and dried at 140 ° C for about 30 minutes to coat an orientation film having a thickness of 500 angstroms. Polarized ultraviolet rays of about 1 KW were irradiated to the coated two upper and lower ITO glass substrates for 15 minutes to be photopolymerized. The upper and lower two photopolymerized glass substrates are bonded together using an ultraviolet curable acrylic adhesive. Subsequently, MLC-6012 and MLC-6043 liquid crystals of Merck Co. were vacuum-injected to fabricate a liquid crystal display cell. The intensity of the applied voltage, the response speed, the front contrast ratio, the viewing angle, the voltage holding ratio, and the pretilt angle required for the light transmittance of 10%, 50%, and 90% of the liquid crystal display cell obtained by the non- The results are shown in Table 1 below.

[실시예 2][Example 2]

플루오로디신남모일 비스페놀-A를 혼합한 액정배향재를 이용한 넌-러빙 공정에 의한 액정 디스플레이 셀의 제작Fabrication of Liquid Crystal Display Cell by Non-rubbing Process Using Liquid Crystal Aligner Mixed with Fluorodicinamic Mole Bisphenol-A

상기와 동일한 조건으로 플루오로신남모일 클로라이드 10g(0.054mole)를 합성하여 디클로메탄에 녹인다. 비스페놀-A6.16g(0.027mole)를 트리에틸아민 5.46g(0.054mole)과 혼합한 후 디클로로메탄에 용해시켜 디클로로메탄에 녹인 상기의 클로라이드를 0℃ 하에서 적하시키면서 반응시킨다. 약 1일을 방치한 후 물로 세척하여 형성된 리에틸아민을 제거하고 감압하에서 용매를 제거하여 가교제 플루오로신남모일 비스페놀-A를 수득하였다. 이어서 플루오로신남모일 비스페놀-A를 1wt% 함량으로 상기 실시예 1의 광배향재와 혼합한 것을 배향재로 사용한 것을 제외하고는 실시예 1과 동일한 조건 및 방법에 의해 액정 디스플레이 셀을 제작하고 그 제반 물성을 측정한 결과를 하기 표 1에 함께 나타내었다.10 g (0.054 mole) of fluorosynnamoyl chloride was synthesized under the same conditions as above, and dissolved in dichloromethane. 6.6 g (0.027 mole) of bisphenol-A was mixed with 5.46 g (0.054 mole) of triethylamine, dissolved in dichloromethane, and the above chloride dissolved in dichloromethane was added dropwise at 0 캜. After standing for about 1 day, the reaction product was washed with water to remove the formed ethylamine, and the solvent was removed under reduced pressure to obtain a crosslinking agent fluorosynnamyl bisphenol-A. A liquid crystal display cell was fabricated by the same conditions and method as in Example 1, except that Fluorocinnamoylmolebisphenol-A was mixed with the photo-alignment material of Example 1 in an amount of 1 wt% The results of measuring the physical properties are shown together in Table 1 below.

[비교예 1][Comparative Example 1]

종래의 러빙 공정에 의한 액정 디스플레이 셀의 제작Production of a liquid crystal display cell by a conventional rubbing process

본 발명의 광중합형 액정배향재를 이용하여 넌-러빙 공정에 의해서 제작된 액정 디스플레이 셀과 특성을 비교하기 위해서 기존의 러빙 공정용 폴리이미드(일본합성고무사, JSR AL-3046)를 ITO 유리기판에 스핀 코팅하여 약 500Å 두께의 배향막을 도포한 후, 1,000 RPM으로 고속 회전하여 러빙하였다. 에폭시계 경화 실런트를 이용하여 상하 기판을 접착한 후 액정을 진공 주입하여 액정 디스플레이 셀을 제작하였다. 이와 같이 종래의 러빙 공정에 의해 제작된 액정 디스플레이 셀의 제물성을 평가하여 그 결과를 하기 표 1에 함께 나타내었다.In order to compare the characteristics of the liquid crystal display cell manufactured by the non-rubbing process using the photopolymerizable liquid crystal alignment material of the present invention, a conventional polyimide for a rubbing process (JSR AL-3046, manufactured by Japan Synthetic Rubber Co., Ltd.) , And then the substrate was rubbed at a high speed of 1,000 RPM for rubbing. The upper and lower substrates were adhered using an epoxy curing sealant, and liquid crystal was vacuum injected to fabricate a liquid crystal display cell. The physical properties of the liquid crystal display cell manufactured by the conventional rubbing process were evaluated and the results are shown in Table 1 below.

* Ton : 전압 인가시 액정이 일어서는 시간(rising time).* Ton: The rising time of the liquid crystal when the voltage is applied.

Claims (4)

신나메이트계 감광기를 갖는 하기 식(1)의 광중합형 액정배향제 :A photopolymerizable liquid crystal aligning agent of the following formula (1) having a cinnamate-based photosensitizer: 상기 식에서, R은 벤젠환 1∼2개로 구성된 그룹이고, X는 플루오르(F)이다.Wherein R is a group consisting of 1 to 2 benzene rings and X is fluorine (F). 제 1항에 있어서, 가교제로서 하기 식(11)의 화합물이 혼합된 광중합형 액정 배향제 :The photopolymerizable liquid crystal aligning agent according to claim 1, wherein a compound of the following formula (11) is mixed as a crosslinking agent: 단, X는 플루오르(F)이고, R은 하기 식(111)의 화합물들이다.Provided that X is fluorine (F) and R is a compound of the following formula (111). (단, n은 1∼10의 정수)(Provided that n is an integer of 1 to 10) 제1항의 액정배향제를 클로로벤젠, N-메틸피롤리돈, 디메틸설폭사이드 디메틸포름아마이드, 톨루엔, 클로로포름, 감마부티로락톤, 메틸셀로솔부, 테트라히드로퓨란 등의 유기용매에 0.5wt%∼2wt%의 농도 및 30cps∼50cps점도로 용해시켜 ITO 유기기판에 스핀코팅 또는 프린팅 방법에 의해 두께 500Å∼1,000Å으로 도포하여 배향막을 형성한 후 약 140℃에서 30분간 건조시키고 1KW세기의 UV램프를 이용하여 폴라라이저를 이용해서 선평광시킨 편광 자외선을 배향막 표면에 약 10분∼20분간 조사하는 과정을 포함하는 액정 배향막의 제조방법.The liquid crystal aligning agent of claim 1 is added to an organic solvent such as chlorobenzene, N-methylpyrrolidone, dimethylsulfoxide dimethylformamide, toluene, chloroform, gamma butyrolactone, methyl cellosolve, tetrahydrofuran, 2 wt% and a viscosity of 30 cps to 50 cps to form an orientation film on the ITO organic substrate by spin coating or printing to a thickness of 500 Å to 1,000 Å, followed by drying at about 140 ° C. for 30 minutes. And irradiating the surface of the alignment film for about 10 minutes to 20 minutes with linearly polarized ultraviolet rays using a polarizer. 제2항의 액정배향제를 클로로벤젠, N-메틸피롤리돈, 디메틸설폭사이드, 디메틸포름아마이드, 톨루엔, 클로로포름, 감마부티로락톤, 메틸셀로솔부, 테트라히드로퓨란 등의 유기용매에 0.1wt%∼5wt%의 농도 및 30cps∼50cps의 점도로 용해시켜 ITO 유기기판에 스핀코팅 또는 프린팅 방법에 의해 두께 500Å∼1,000Å으로 도포하여 배향막을 형성한 후 약 140℃에서 30분간 건조시키고 1KW세기의 UV램프를 이용하여 폴라라이저를 이용해서 선평광시킨 편광 자외선을 배향막 표면에 약 10분∼20분간 조사하는 과정을 포함하는 액정 배향막의 제조방법.The liquid crystal aligning agent of claim 2 is dissolved in an organic solvent such as chlorobenzene, N-methylpyrrolidone, dimethylsulfoxide, dimethylformamide, toluene, chloroform, gamma butyrolactone, methyl cellosolve, tetrahydrofuran, To 5 wt% and a viscosity of 30 cps to 50 cps to form an orientation film on the ITO organic substrate by spin coating or printing to form an orientation film, followed by drying at about 140 ° C. for 30 minutes, And irradiating the surface of the alignment layer with polarized ultraviolet light which has been linearly polarized using a polarizer using a lamp for about 10 minutes to 20 minutes.
KR1019960054026A 1996-11-14 1996-11-14 Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof KR100204347B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960054026A KR100204347B1 (en) 1996-11-14 1996-11-14 Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960054026A KR100204347B1 (en) 1996-11-14 1996-11-14 Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof

Publications (2)

Publication Number Publication Date
KR19980035624A KR19980035624A (en) 1998-08-05
KR100204347B1 true KR100204347B1 (en) 1999-06-15

Family

ID=19481818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960054026A KR100204347B1 (en) 1996-11-14 1996-11-14 Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof

Country Status (1)

Country Link
KR (1) KR100204347B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126731B2 (en) * 1997-03-13 2008-07-30 Jsr株式会社 Liquid crystal alignment agent
KR100468398B1 (en) * 2002-10-22 2005-01-27 엘지전선 주식회사 Polyacrylate polymers composition for photoinduced liquid crystal alignment through co-polymerization, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell using the film
KR20050094011A (en) 2004-03-17 2005-09-26 비오이 하이디스 테크놀로지 주식회사 Method for aligning polymer network liquid crystal
KR100762832B1 (en) * 2004-12-03 2007-10-02 주식회사 엘지화학 Photoreactive compounds, liquid crystal alignment layer using the same, method for manufacturing thereof, and liquid crystal display device containing the alignment layer
KR102382472B1 (en) 2018-11-20 2022-04-01 주식회사 엘지화학 Cross-linking agent compound, crystal alignment composition comprising the same, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same

Also Published As

Publication number Publication date
KR19980035624A (en) 1998-08-05

Similar Documents

Publication Publication Date Title
US5998101A (en) Cinnamate-containing photopolymer for orientation film of liquid crystal display (LCD) and method of forming the orientation film using the photopolymer
JPH08328005A (en) Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
KR100459491B1 (en) Triazine ring based polymers for photoinduced liquid crystal alignment, liquid crystal alignment layer containing the same, liquid crystal element using the alignment layer and method of manufacturing the same
US6174649B1 (en) Cinnamate-containing photopolymer for orientation film of liquid crystal display (LCD) and method for using the photopolymer to form an orientation film
TWI586712B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film and method for manufacturing the same
KR100204347B1 (en) Light-curing liquid crystal orientation material and process for the preparation of liquid crystal orientation layer thereof
KR100508102B1 (en) Composition for liquid crystal alignment composed of compounds of photosensitive polymers and non-photosensitive polymers, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell comprising the film
KR102196239B1 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and polymer
KR100208974B1 (en) Cinnamate which is photo-polymerization material for lc orientation and method thereof
KR100819973B1 (en) Composition for photoinduced liquid crystal alignment comprising crown ether, the film for photoinduced liquid crystal alignment thereby and manufacturing method of the same
KR100516157B1 (en) Triazine ring with one more photoactive groups based polyester polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell comprising the film
KR100436575B1 (en) Triazine based polymeric composite material for photoinduced liquid crystal alignment, the method of making liquid crystal alignment layer comprising the same and a liquid crystal device
KR100205174B1 (en) Cinnamate which is photo-polymerization lc orientation material for va mode
KR100752471B1 (en) Polymer composition for photoinduced liquid crystal alignment using carbon nano-tube, the film for photoinduced liquid crystal alignment thereby, preparation method thereof and the liquid crystal cell comprising the film
KR100468399B1 (en) Triazine ring with one more photoactive groups based poly(ether-tioether) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100516159B1 (en) Triazine ring with one more photoactive groups based polythioether polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell composed of the film
KR100508103B1 (en) Triazine ring with one more photoactive groups based poly(amide-urea) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100508104B1 (en) Triazine ring with one more photoactive groups based poly(imide-urea) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100545256B1 (en) Composition for photoinduced liquid crystal alignment comprising silica, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100516158B1 (en) Triazine ring with one more photoactive groups based polyether polymers composition for photoinduced liquid crystal alignment, preparation method of the film for photoinduced liquid crystal thereby and the liguid crystal cell composed of the film
KR100468400B1 (en) Triazine ring with one more photoactive groups based poly(amide-ester) copolymers composition for photoinduced liquid crystal alignment, the film for photoinduced liquid crystal thereby, preparation method thereof and the liguid crystal cell comprising the film
KR100536122B1 (en) Composition for photoinduced liquid crystal alignment having porous structure, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100792939B1 (en) Composition for photoinduced liquid crystal alignment comprising silica, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film
KR100277284B1 (en) Cinamate type photopolymerization type liquid crystal aligning material and method for manufacturing liquid crystal aligning film using same
KR100545259B1 (en) Composition for photoinduced liquid crystal alignment comprising crown ether, the film for photoinduced liquid crystal alignment thereby, manufacturing method of the same and the liguid crystal cell comprising the film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee