KR100187524B1 - Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams - Google Patents

Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams Download PDF

Info

Publication number
KR100187524B1
KR100187524B1 KR1019980021333A KR19980021333A KR100187524B1 KR 100187524 B1 KR100187524 B1 KR 100187524B1 KR 1019980021333 A KR1019980021333 A KR 1019980021333A KR 19980021333 A KR19980021333 A KR 19980021333A KR 100187524 B1 KR100187524 B1 KR 100187524B1
Authority
KR
South Korea
Prior art keywords
polyol
polyoxyalkylene
weight
polymer
mol
Prior art date
Application number
KR1019980021333A
Other languages
Korean (ko)
Inventor
가즈히코 오오쿠보
츠쿠루 이즈카와
다모츠 구니히로
아리코 니시카와
Original Assignee
사또 아끼오
미쓰이 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06073250A external-priority patent/JP3034163B2/en
Priority claimed from JP10643294A external-priority patent/JP3344824B2/en
Priority claimed from JP07025150A external-priority patent/JP3083235B2/en
Priority claimed from KR1019950008414A external-priority patent/KR0173811B1/en
Application filed by 사또 아끼오, 미쓰이 가가쿠 가부시키가이샤 filed Critical 사또 아끼오
Application granted granted Critical
Publication of KR100187524B1 publication Critical patent/KR100187524B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Abstract

활성 수소화합물 1몰당 0.05∼0.5몰의 알칼리금속 수산화물 촉매의 존재하에, 프로필렌옥시드를 활성수소화합물에 가하여, 수산기가가 10∼35 mgKOH/g, 모노올 함유량이 15몰% 이하, 헤드-대-테일(Head-to-Tail) 결합선택율이 96% 이상인 저점도 폴리옥시알킬렌 폴리올을 제조한다.Propylene oxide was added to the active hydrogen compound in the presence of 0.05 to 0.5 mole alkali metal hydroxide catalyst per mole of active hydrogen compound, and the hydroxyl value was 10 to 35 mgKOH / g, the monool content was 15 mol% or less, head-to-band A low viscosity polyoxyalkylene polyol having a head-to-tail bond selectivity of 96% or more is prepared.

폴리머 폴리올은 폴리옥시알킬렌 폴리올중에서 에틸렌성 불포화모노머를 중합함으로써 제조된다. 연질 폴리우레탄 폼은 폴리옥시알킬렌 폴리올 또는 폴리머 폴리올을 발포제, 촉매, 계면활성제(정포제), 가교제 및 다른 첨가제들의 존재하에서 유기 폴리이소시아네이트 화합물과 반응시킴으로써 제조된다.Polymer polyols are prepared by polymerizing ethylenically unsaturated monomers in polyoxyalkylene polyols. Flexible polyurethane foams are prepared by reacting polyoxyalkylene polyols or polymer polyols with organic polyisocyanate compounds in the presence of blowing agents, catalysts, surfactants (foaming agents), crosslinkers and other additives.

이와같이 하여 얻어진 폴리우레탄 폼은 독립기포셀이 적으며, 경도, 습열내구성, 내충격성등의 물성이 보다 우수하다.The polyurethane foam obtained in this way has fewer independent bubble cells and has more excellent physical properties such as hardness, wet heat durability, and impact resistance.

Description

폴리머 폴리올 및 그의 제조방법Polymer Polyols and Methods for Making the Same

본 발명은 폴리옥시알킬렌 폴리올, 폴리머 폴리올 및 연질 폴리우레탄 폼의 제조방법에 관한 것이다. 상세하게는 본 발명은 알칼리 금속수산화물 촉매의 존재하에서 활성 수소화합물에 알킬렌 옥시드를 부가중합하여 얻어지는, 수산기가(水酸基價)가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합의 최저 선택율이 96%인 폴리옥시알킬렌 폴리올 및 그 제조방법, 그리고 이 폴리옥시알킬렌 폴리올과 유기폴리이소시아네이트 화합물을 발포제, 촉매, 정포제, 가교제 및 그 외의 보조제의 존재하에 반응시켜 내습열 내구성을 개량한 연질 폴리우레탄 폼의 제조방법, 또는 수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 프로필렌옥시드 부가 중합에 의한 헤드-대-테일(Head-to-Tail) 결합 최저선택율이 96%인 폴리옥시알킬렌 폴리올중에 폴리머입자가 5중량%이상 30중량% 미만 분산하여 되는 폴리머 폴리올, 그 폴리옥시알킬렌 폴리올 중에 유리전이온도가 90∼120℃인 폴리머 입자가 30중량% 이상 60중량% 이하 분산하여 되는 폴리머 폴리올, 그 제조방법 및 이들의 1종류 이상으로 되는 폴리머 폴리올을 함유하는 폴리올과 폴리이소시아네이트 화합물을 발포제, 촉매, 정포제, 가교제 및 그외의 보조제의 존재하에 반응시키는 것을 특징으로 하는 연질 폴리우레탄 폼의 제조방법에 관한 것이다.The present invention relates to a process for producing polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams. Specifically, the present invention has a hydroxyl value of 10 to 35 mgKOH / g and a monool maximum content of 15 mol% obtained by addition polymerization of alkylene oxide to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst. And polyoxyalkylene polyols having a minimum selectivity of 96% of head-to-tail bonds by propylene oxide addition polymerization, methods for producing the same, and polyoxyalkylene polyols and organic polyisocyanates Method for producing a flexible polyurethane foam having improved heat and moisture resistance by reacting the compound in the presence of a blowing agent, a catalyst, a foaming agent, a crosslinking agent and other auxiliaries, or having a hydroxyl value of 10 to 35 mgKOH / g and a maximum monool content of 15 The polymer particles are dispersed in an amount of 5% by weight or more and less than 30% by weight in a polyoxyalkylene polyol having a mol% of 96% of a head-to-tail bond minimum selectivity by propylene oxide addition polymerization. A polymer polyol comprising 30% by weight or more and 60% by weight or less of polymer particles having a glass transition temperature of 90 to 120 ° C in the polymer polyol and the polyoxyalkylene polyol, a method for producing the polymer polyol and one or more of these A method for producing a flexible polyurethane foam comprising reacting a polyol containing and a polyisocyanate compound in the presence of a blowing agent, a catalyst, a foam stabilizer, a crosslinking agent and other auxiliaries.

폴리우레탄 원료등에 사용되고 있는 폴리옥시알킬렌 폴리올의 제조에는 촉매로서 수산화칼륨이 주로 사용되고 있으며, 알킬렌 옥시드인 프로필렌 옥시드 부가에 의한 고분자량화시에는 부반응에 의해 모노올이 생성되어 분자량 증대와 함께 그 생성량이 증가하는 것은 잘 알려져 있다. 또, 폴리옥시알킬렌 폴리올중의 모노올 함유량이 높은 경우에는 유기 폴리이소시아네이트 화합물과의 우레탄화 반응시에 가교, 고분자량화를 방해하며, 연질 폴리우레탄 폼이나 엘라스토머의 기계물성을 저하시키는 것을 생각할 수 있다.Potassium hydroxide is mainly used as a catalyst for the production of polyoxyalkylene polyols used in polyurethane raw materials, and at the time of high molecular weight by addition of propylene oxide, which is an alkylene oxide, monool is formed by side reactions to increase molecular weight. It is well known that the production amount increases together. In addition, when the monool content in a polyoxyalkylene polyol is high, it will prevent crosslinking and high molecular weight at the time of urethanation reaction with an organic polyisocyanate compound, and it is thought that the mechanical property of a flexible polyurethane foam or an elastomer will fall. Can be.

수산화칼륨 촉매를 사용한 활성 수소화합물에의 프로필렌옥시드의 부가중합에 있어서, 종래기술에서는 수산기가가 35 mgKOH/g 이하인 고분자량 폴리옥시알킬렌 폴리올중의 모노올 함유량이 15 mol%를 넘고, 또 수산기가가 28 mgKOH/g 이하인 폴리옥시알킬렌 폴리올을 제조하는 것은 실질적으로 불가능하였다.In the addition polymerization of propylene oxide to an active hydrogen compound using a potassium hydroxide catalyst, in the prior art, the monool content in the high molecular weight polyoxyalkylene polyol having a hydroxyl value of 35 mgKOH / g or less exceeds 15 mol%, and It was practically impossible to produce polyoxyalkylene polyols having a hydroxyl value of 28 mgKOH / g or less.

이상의 문제점을 해결하기 위하여, 알킬렌 옥시드로서 프로필렌옥시드의 부가중합시의 촉매로서 알칼리 금속이외의 촉매, 예를들면 복금속(複金屬) 시안화물착체 촉매를 사용하는 방법(USP 3,829,505, 일본국 특개평 2-115211, 특개평 3-14812공보)이 제안되어 있다.In order to solve the above problems, a method using a catalyst other than an alkali metal, for example, a bimetal cyanide complex catalyst, as an alkylene oxide as a catalyst for the addition polymerization of propylene oxide (USP 3,829,505, Japan) JP-A 2-115211 and JP-A 3-14812) have been proposed.

특히 특개평 3-14812에서는 알칼리금속을 사용한 경우를 비교예로서 들어 복금속시안화물 착체촉매의 우위성을 강조하고 있다. 이들의 촉매는 대단히 고가이며 공업적으로 사용할 때 경제성이 나쁘고, 또 알킬렌옥시드로서 에틸렌옥시드를 부가중합하는 경우에는 촉매제거후에 알칼리금속 수산화물이나 그 알콕시드등을 사용하여 다시 중합할 필요가 있는 등의 문제점을 가진다.In particular, Japanese Patent Application Laid-Open No. 3-14812 emphasizes the superiority of the complex metal cyanide complex catalyst by using an alkali metal as a comparative example. These catalysts are extremely expensive and economically poor in industrial use, and in the case of addition polymerization of ethylene oxide as alkylene oxide, it is necessary to polymerize again using alkali metal hydroxide or its alkoxide after removal of the catalyst. And the like.

또 폴리옥시알킬렌 폴리올중의 모노올 함유량을 저감시킨 경우에는 폴리옥시알킬렌 폴리올의 점도가 상승하는 경향이 있으나, 촉매로서 복금속 시안화물 촉매를 사용한 경우에는 폴리옥시알킬렌 폴리올의 점도상승이 현저하며, 이것은 알킬렌옥시드로서 프로필렌옥시드 부가중합시의 헤드-대-테일(Head-to-Tail) 결합 선택율이 낮기 때문인 것으로 생각된다. 폴리올의 점도가 높은 경우에는, 연질 폴리우레탄 폼 제조시의 기계발포 성형시에 성형안정성이나 혼합성의 면에서 지장이 생긴다든지, 또는 고분자량화한 폴리옥시알킬렌 폴리올의 용도면에서도 제약을 받게 된다.When the monool content in the polyoxyalkylene polyol is reduced, the viscosity of the polyoxyalkylene polyol tends to increase, whereas when a bimetal cyanide catalyst is used as the catalyst, the viscosity increase of the polyoxyalkylene polyol is increased. This is considered to be due to the low selectivity of the head-to-tail bond in the propylene oxide addition polymerization as the alkylene oxide. If the viscosity of the polyol is high, there will be problems in terms of molding stability and mixing properties during mechanical foam molding in the production of flexible polyurethane foam, or in terms of the use of the high molecular weight polyoxyalkylene polyol. .

모노올 함유량이 높은 폴리옥시알킬렌 폴리올을 매트릭스로서 사용한 폴리머 폴리올에 대하여도 동일하게 폴리우레탄 폼등의 물성저하가 예상된다.Similarly with respect to the polymer polyol using a polyoxyalkylene polyol having a high monool content as a matrix, physical property degradation such as polyurethane foam is expected.

이상의 문제점을 해결하기 위하여, 알킬렌옥시드로서 프로필렌옥시드의 부가중합시의 촉매로서 알칼리금속이외의 촉매, 예를들면 복금속 시안화물착체 촉매를 사용하는 방법 (USP 3,829,505, 일본국 특개평 2-115211, 특개평 3-14812공보)이 제안되어 있으며, 이것을 매트릭스로 한 폴리머 폴리올에 대하여도 개시되어 있다. 폴리옥시알킬렌 폴리올중의 모노올 함유량을 저감시킨 경우에는 폴리옥시알킬렌 폴리올의 점도가 상승하는 경향이 있으나, 촉매로서 복금속 시안화물착체 촉매를 사용한 경우에는 폴리옥시알킬렌 폴리올의 점도상승이 현저하며, 이것은 알킬렌옥시드로서 프로필렌옥시드 부가중합시의 헤드-대-테일(Head-to-Tail) 결합선택율이 낮기 때문인 것으로 생각된다. 따라서, 이 폴리옥시알킬렌폴리올중에서 에틸렌성 불포화 단량체를 라디칼 중합하여 얻어진 폴리머 폴리올에 대하여도 점도상승이 현저할 것으로 여겨진다. 폴리머 폴리올의 점도가 높은 경우에는, 연질 폴리우레탄 폼제조시의 기계발포성형시에 성형안정성이나 혼합성의 면에서 지장이 생긴다든지, 또는 고분자량화한 폴리옥시알킬렌 폴리올을 매트릭스에 사용한 폴리머 폴리올의 용도면에서도 제약을 받게 된다.In order to solve the above problems, a method of using a catalyst other than an alkali metal, such as a complex metal cyanide complex catalyst, as a catalyst in the addition polymerization of propylene oxide as alkylene oxide (USP 3,829,505, Japanese Patent Laid-Open No. 2-) 115211, Japanese Patent Laid-Open No. 3-14812, has been proposed, and a polymer polyol having this as a matrix is also disclosed. When the monool content in the polyoxyalkylene polyol is reduced, the viscosity of the polyoxyalkylene polyol tends to increase, whereas when a bimetal cyanide complex catalyst is used as the catalyst, the viscosity increase of the polyoxyalkylene polyol is increased. It is remarkable, and it is considered that this is because the head-to-tail bond selectivity in propylene oxide addition polymerization as alkylene oxide is low. Therefore, it is considered that the viscosity increase will be remarkable also with respect to the polymer polyol obtained by radical polymerization of the ethylenically unsaturated monomer in this polyoxyalkylene polyol. When the viscosity of the polymer polyol is high, there is a problem in terms of molding stability and mixing properties during the mechanical foam molding during the production of the flexible polyurethane foam, or the polymer polyol using the high molecular weight polyoxyalkylene polyol in the matrix. There are also restrictions on use.

폴리머 폴리올은 일반적으로 분산안정성이 나쁘고 점도가 높다. 특히 폴리머 농도 30%이상의 경우는 이 경향이 현저해져서, 상술의 복금속 시안화물착체 촉매로 얻은 폴리옥시알킬렌 폴리올을 사용하여 폴리머 농도가 높은 폴리머 폴리올을 제조하는 것은 실질적으로 불가능하다.Polymeric polyols generally have poor dispersion stability and high viscosity. Especially in the case of a polymer concentration of 30% or more, this tendency becomes remarkable, and it is practically impossible to produce a polymer polyol having a high polymer concentration using the polyoxyalkylene polyol obtained with the above-mentioned bimetal cyanide complex catalyst.

고농도화했을 때의 분산안정성 악화 및 점도상승의 문제를 해결하기 위해 연쇄이동제를 사용하는 것도 공지되어 있다. 연쇄이동제로서 알킬머캡탄을 사용하여 저점도의 폴리머 폴리올을 얻는 방법이 제안되어 있다(미국특허 제3,953,393호 공보, 특개평 01-221403호 공보). 그러나 이들 방법으로 얻어진 폴리머 폴리올은 취기(臭氣)의 문제가 있으며, 또 폴리머 농도를 높게 한 경우의 급격한 점도상승을 억제할 수 없기 때문에 실용적인 폴리머 폴리올을 얻는 것은 곤란하다.It is also known to use a chain transfer agent to solve the problem of deterioration of dispersion stability and viscosity increase at high concentration. A method of obtaining a low viscosity polymer polyol using an alkylmercaptan as a chain transfer agent has been proposed (US Patent No. 3,953,393 and Japanese Patent Application Laid-Open No. 01-221403). However, the polymer polyols obtained by these methods have a problem of odor, and it is difficult to obtain a practical polymer polyol because the sudden increase in viscosity when the polymer concentration is made high cannot be suppressed.

또 연쇄이동제로서 머캡탄, 케톤, 알코올, 알데히드, 할로겐화합물, 벤젠유도체, 특히 이소프로필알코올을 사용하는 방법이 제안되어 있다(특개소 58-210917호 공보). 그러나, 이 방법으로는 고농도의 폴리머 폴리올을 저점도화하는 데는 불충분하다.In addition, a method of using mercaptan, ketone, alcohol, aldehyde, halogen compound, benzene derivative, especially isopropyl alcohol as a chain transfer agent has been proposed (Japanese Patent Application Laid-Open No. 58-210917). However, this method is insufficient for low viscosity of high concentration of polymer polyols.

또, 반응조절제로서 모르포린등의 아민류를 사용하는 방법이 제안되어 있으나(특개소 63-146912호 공보), 특정의 폴리올을 사용하므로 본 발명과는 다르다.Moreover, although the method of using amines, such as morpholine, as a reaction regulator is proposed (it is Unexamined-Japanese-Patent No. 63-146912), since it uses a specific polyol, it differs from this invention.

연질 폴리우레탄 폼은 적당한 탄성을 가지며, 충격흡수성능이 우수하기 때문에, 침구, 가구, 자동차의 시트, 가구의 쿠션 등에 널리 사용되고 있다. 연질 폴리우레탄 폼은 통상 슬래브 발포 또는 핫몰드 발포에 의해 제조되고 있다. 그러나 이들 폼은 유연성이 없고, 탄성도 낮기 때문에 고무라택스 폼에 앉았을 때 느껴지는 것과 같은 기분좋음이 느껴지지 않는 결점이 있다. 이 결점을 개량하기 위하여 고탄성 폴리우레탄 폼이 개발되었다. 이 폼은 폴리옥시알킬렌 폴리올중에서 아크릴로니트릴, 스틸렌 등의 에틸렌성 불포화 단량체를 중합시켜 얻은 폴리머 폴리올을 폴리옥시알킬렌 폴리올의 일부로서 사용하여, 폴리이소시아네이트와 반응시켜, 발포종료후 실온 ∼ 100℃로 단시간 방치하여 제조한다. 이 고탄성 폴리우레탄 폼은 앉았을 때의 촉감이 대단히 양호하기 때문에 승용차의 쿠션등에 널리 사용되고 있다.Soft polyurethane foams are widely used in bedding, furniture, automobile seats, furniture cushions, and the like because they have moderate elasticity and excellent shock absorption performance. Flexible polyurethane foams are usually produced by slab foaming or hot mold foaming. However, since these foams are inflexible and have low elasticity, they have the drawback that they do not feel the same as they would when sitting on a rubber latex foam. In order to remedy this drawback, highly elastic polyurethane foams have been developed. This foam is a polymer polyol obtained by polymerizing ethylenically unsaturated monomers such as acrylonitrile and styrene in a polyoxyalkylene polyol as a part of the polyoxyalkylene polyol, and reacted with polyisocyanate to terminate the foaming. It is prepared by leaving it for a short time at ℃. This highly elastic polyurethane foam is widely used for cushions of passenger cars because of its excellent feel when sitting.

폴리우레탄 폼은 승용차의 쿠션에 많이 사용하기 위하여 탄력성, 즉 경도 및 기계강도가 필요하지만, 특히 종래제품의 문제점은 내습열내구성(통상 습열잔류 변형치(Wet Set)로 표시된다)이 뒤떨어지는 것이다.Polyurethane foam requires elasticity, i.e. hardness and mechanical strength, for use in many cushions in passenger cars, but the problem with conventional products is that it is inferior to the moisture resistance and durability (usually expressed as wet set). .

폴리우레탄 폼의 내습열내구성을 개량하기 위한 방법으로서, 예를들면 특개소 63-75021, 특개평 02-115211, 특개평 03-068620, 특개평 03-014812 등을 들 수 있다. 그러나 특개소 63-75021과 같이 특수가교제를 병용함으로써 내습열내구성을 어느정도 개량할 수 있으나, 사용부수가 너무 많으면 신율, 인열강도(引裂强度)등의 기계 강도가 저하하며, 내습열내구성의 개량에는 한계가 있다. 또 특개평 02-115211, 특개평 03-068620, 특개평 03-014812등에는 총불포화도가 낮은 폴리옥시알킬렌 폴리올을 사용함으로써 내습열 내구성을 향상시키는 내용이 기재되어 있다.As a method for improving the moisture-resistant heat resistance of a polyurethane foam, Unexamined-Japanese-Patent No. 63-75021, Unexamined-Japanese-Patent No. 02-115211, Unexamined-Japanese-Patent No. 03-068620, 03-014812, etc. are mentioned, for example. However, the use of special crosslinking agents, such as Japanese Patent Application No. 63-75021, can improve the heat and moisture resistance to some extent.However, if the number of used parts is too high, the mechanical strength such as elongation and tear strength is lowered. There is a limit. In addition, Japanese Patent Application Laid-Open No. 02-115211, Japanese Patent Laid-Open No. 03-068620, Japanese Patent Laid-Open No. 03-014812 and the like disclose a content of improving the heat and moisture resistance by using a polyoxyalkylene polyol having a low total unsaturated.

이들 폴리옥시알킬렌 폴리올은 상기 특허 공보에 명기되어 있는 바와 같이 디에틸아연, 금속포르피린, 복금속 시안화물착체 촉매 등을 사용하여 제조된다. 그러나 본 발명자들이 추가시험한 바에 따르면, 상기 복합시안화물착체 촉매 등을 사용한 폴리옥시알킬렌 폴리올에 의해 제조된 연질 폴리우레탄 폼으로는 본 발명자들이 기대하는 것과 같은 내습열내구성이 향상하는 결과는 얻을 수 없었다.These polyoxyalkylene polyols are prepared using diethyl zinc, metal porphyrins, bimetal cyanide complex catalysts, and the like, as specified in the above patent publications. However, according to the present inventors further testing, the soft polyurethane foam produced by the polyoxyalkylene polyol using the complex cyanide complex catalyst or the like results in the improved moisture and heat resistance as expected by the present inventors. Could not.

본 발명의 목적은 활성 수소화합물에 알킬렌옥시드를 부가중합하여 고분자량화한 경우에도 모노올 함유량이 낮으며, 헤드-대-테일(Head-to-Tail) 결합선택율이 높은 폴리옥시알킬렌폴리올과 저점도이며 분산안정성이 좋은 폴리머 폴리올 및 이들의 제조방법, 그리고 이들을 사용하여 제조되는, 발포시의 독립기포성이 낮고 경도, 습열시영구변형, 반발탄성등의 물성이 우수한 연질 폴리우레탄 폼의 제조방법을 제공하는 데 있다.An object of the present invention is a polyoxyalkylene polyol having a low monool content and a high head-to-tail bond selectivity even when high molecular weight is obtained by addition polymerization of alkylene oxide to an active hydrogen compound. Polymer polyols with low viscosity and good dispersion stability, and methods for their preparation, and the production of flexible polyurethane foams prepared using the same, having low independent foaming properties during foaming and excellent physical properties such as hardness, permanent deformation upon deformation, and repulsive elasticity To provide a way.

본 발명자들은 상기 목적을 달성하기 위하여 예의 검토한 결과, 알칼리금속수산화물 촉매농도, 반응온도, 반응압력을 특정하여 특정의 폴리옥시알킬렌 폴리올을 제조하는 것에 의하여, 또한 이 폴리옥시알킬렌 폴리올을 사용하여 특정의 폴리머 농도를 유지하면서 폴리머 농도가 높은 경우에는 폴리머의 유리전이온도를 특정의 범위로 유지함으로써 상기 목적을 달성할 수 있는 것을 발견하였다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said objective, the present inventors used this polyoxyalkylene polyol by manufacturing specific polyoxyalkylene polyol by specifying alkali metal hydroxide catalyst concentration, reaction temperature, and reaction pressure. When the polymer concentration is high while maintaining the specific polymer concentration, it was found that the above object can be achieved by maintaining the glass transition temperature of the polymer in a specific range.

즉, 본 발명의 첫째 목적은 활성수소 화합물 1몰에 대하여 0.05∼0.5몰의 알칼리금속 수산화물촉매의 존재하에 반응온도가 60∼98℃, 반응최대압력이 4Kg/cm2의 조건하에서 프로필렌 옥시드를 부가중합하는 것을 특징으로 하는 폴리옥시알킬렌 폴리올의 제조방법이며,That is, the first object of the present invention is to produce propylene oxide under the conditions of reaction temperature of 60-98 ° C. and reaction maximum pressure of 4Kg / cm 2 in the presence of 0.05-0.5 mole alkali metal hydroxide catalyst per mole of active hydrogen compound. A method of producing a polyoxyalkylene polyol, characterized in that the addition polymerization,

본 발명의 둘째 목적은 수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 것을 특징으로 하는 폴리옥시알킬렌 폴리올이며,The second object of the present invention is a hydroxyl value of 10 to 35 mgKOH / g, monool maximum content of 15 mol%, and the head-to-tail binding minimum selectivity by propylene oxide addition polymerization Polyoxyalkylene polyol, characterized in that 96%,

본 발명의 셋째 목적은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량이 15mol%이며, 또 프로필렌 옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올과 폴리이소시아네이트 화합물을 촉매, 정포제, 발포제, 가교제, 그외의 보조제의 존재하에 반응시키는 것을 특징으로 하는 연질 폴리우레탄 폼의 제조방법이며,The third object of the present invention is the hydroxyl value of 10 to 35 mgKOH / g, the monool maximum content of 15 mol%, the head-to-tail binding minimum selectivity by propylene oxide addition polymerization is 96% It is a method for producing a flexible polyurethane foam, characterized in that the polyoxyalkylene polyol and the polyisocyanate compound are reacted in the presence of a catalyst, foam stabilizer, foaming agent, crosslinking agent, and other auxiliaries,

본 발명의 넷째 목적은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에, 폴리머 입자가 5중량% 이상 30중량% 미만 분산하여 되는 것을 특징으로 하는 폴리머 폴리올이며,The fourth object of the present invention is a hydroxyl value of 10 to 35 mgKOH / g, the monool maximum content of 15 mol%, the head-to-tail binding minimum selectivity by propylene oxide addition polymerization is 96 It is a polymer polyol characterized by dispersing 5% by weight or more and less than 30% by weight of the polymer particles in the polyoxyalkylene polyol which is%,

다섯째 목적은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에, 유리전이온도가 90∼120℃인 폴리머입자가 30중량% 이상 60중량% 이하 분산하여 되는 것을 특징으로 하는 폴리머 폴리올이고,Fifth objective is polyoxy with a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail bond minimum selectivity of 96% by propylene oxide addition polymerization. A polymer polyol characterized by dispersing 30% by weight or more and 60% by weight or less of polymer particles having a glass transition temperature of 90 to 120 ° C in the alkylene polyol,

여섯째 목적은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에서 에틸렌성 불포화단량체의 중합을 행하는 것을 특징으로 하는 폴리머 폴리올의 제조방법이며,The sixth object is polyoxy with a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail binding minimum selectivity by propylene oxide addition polymerization of 96%. A method for producing a polymer polyol, characterized in that the polymerization of ethylenically unsaturated monomers in an alkylene polyol,

일곱째 목적은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올 중에서, 연쇄이동제의 존재하에 에틸렌성 불포화단량체의 중합을 행하는 것을 특징으로 하는 폴리머 폴리올의 제조방법이며,The seventh object is polyoxy with a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail binding minimum selectivity of 96% by propylene oxide addition polymerization. A method of producing a polymer polyol, wherein the alkylene polyol is polymerized with an ethylenically unsaturated monomer in the presence of a chain transfer agent.

여덟째 목적은 상기한 폴리머 폴리올을 함유하는 폴리올과 유기폴리이소시아네이트 화합물을 발포제, 촉매, 정포제, 가교제 및 그외의 보조제 존재하에 반응시키는 것을 특징으로 하는 연질 폴리우레탄 폼의 제조방법이다.Eighth object is a method for producing a flexible polyurethane foam, characterized in that the polyol containing the polymer polyol and the organopolyisocyanate compound are reacted in the presence of a blowing agent, a catalyst, a foam stabilizer, a crosslinking agent and other auxiliaries.

폴리옥시알킬렌 폴리올의 제조방법Process for preparing polyoxyalkylene polyol

활성 수소화합물로서는 수산기수 2∼8, 바람직하게는 3∼8의 다가알코올류, 당류, 지방족아민화합물, 알카놀아민류, 폴리아민류, 방향족아민화합물, 다가페놀화합물 및 이들 화합물을 개시제로 하는 분자량 250∼1000의 폴리옥시알킬렌 폴리올등을 들수 있다. 바람직하게는, 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜, 1,4-부틸렌글리콜, 글리세린, 디글리세린, 헥산트리올, 트리메틸롤프로판, 펜타에리트리톨, 솔비톨, 덱스트로스, 슈크로스, 메틸글리콕시드, 비스페놀A, 비스페놀F, 디히드록시디페닐에테르, 디히드록시비페닐, 하이드로퀴논, 레조르신, 플로로글리신, 나프탈린디올, 아미노페놀, 아미노나프톨, 페놀포름알데히드축합물, 메틸디에탄올아민, 에틸디이소프로판올아민, 모노에탄올아민, 디에탄올아민, 트리에탄올아민, 에틸렌디아민, 프로필렌디아민, 헥사메틸렌디아민, 비스(p-아미노시클로헥실)메탄, 아닐린, 톨루이딘, 토릴렌디아민, 디페닐메탄디아민, 나프탈린디아민 등의 화합물중에서 1종 또는 2종 이상의 화합물 등을 들 수 있다.Examples of the active hydrogen compound include polyhydric alcohols, sugars, aliphatic amine compounds, alkanolamines, polyamines, aromatic amine compounds, polyhydric phenol compounds having a hydroxyl group of 2 to 8, preferably 3 to 8, and a molecular weight of 250 containing these compounds as initiators. And polyoxyalkylene polyols of -1000 and the like. Preferably, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butylene glycol, glycerin, diglycerin, hexanetriol, trimethylolpropane, pentaerythritol, sorbitol, dextrose, sucrose , Methylglycoside, bisphenol A, bisphenol F, dihydroxydiphenyl ether, dihydroxybiphenyl, hydroquinone, resorcin, fluoroglycine, naphthalin diol, aminophenol, aminonaphthol, phenolformaldehyde condensate , Methyldiethanolamine, ethyldiisopropanolamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, propylenediamine, hexamethylenediamine, bis (p-aminocyclohexyl) methane, aniline, toluidine, torrylenediamine, 1 type, 2 or more types of compound, etc. are mentioned among compounds, such as diphenylmethanediamine and naphthalin diamine.

알칼리금속 수산화물 촉매로서는, 예를들면 수산화칼륨, 수산화나트륨, 수산화리튬, 수산화루비듐, 수산화세슘 등을 들 수 있으며, 그중에서도 90중량% 이상의 순도로 수산화세슘, 수산화루비듐에서 선택되는 화합물이 적어도 1종류가 포함된 촉매가 특히 바람직하다.Examples of the alkali metal hydroxide catalyst include potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and the like. Among them, at least one compound selected from cesium hydroxide and rubidium hydroxide with a purity of 90% by weight or more is used. Particular preference is given to the catalysts involved.

알킬렌옥시드로서는 프로필렌옥시드와 함께 에틸렌옥시드, 1,2-부틸렌옥시드, 2,3-부틸렌옥시드, 스틸렌옥시드, 그외의 탄소수 3이상의 알킬렌옥시드에서 선택되는 화합물의 1종이상을 병용한 알킬렌옥시드를 들 수 있으며, 프로필렌옥시드 부가중합에 의해 옥시프로필렌기를, 바람직하게는 70중량% 이상, 보다 바람직하게는 80중량% 이상 함유하도록 하여 사용한다. 이상의 활성 수소화합물에, 알칼리금속 수산화물촉매의 존재하에서, 알킬렌옥시드를 부가중합하여 얻어지는 폴리옥시알킬렌 폴리올은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 또 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 특징을 갖는다. 수산기가가 10 mgKOH/g 미만에서는 폴리옥시알킬렌 폴리올이나 이것을 매트릭스로 하여 비닐폴리머입자가 분산된 폴리머 폴리올의 점도가 너무 높게 되어, 연질폴리우레탄 폼용도에는 실질적으로 사용할 수가 없으며, 또 유기 폴리이소시아네이트와의 반응에 의해 프리폴리머화한 경우에도 고점도이기 때문에 사용불가능하다.As the alkylene oxide, one or more kinds of compounds selected from ethylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, and other alkylene oxide having 3 or more carbon atoms together with propylene oxide may be used. The alkylene oxide used together is mentioned, It is used to contain an oxypropylene group, Preferably it is 70 weight% or more, More preferably, 80 weight% or more by propylene oxide addition polymerization. The polyoxyalkylene polyol obtained by addition polymerization of alkylene oxide to the above active hydrogen compound in the presence of an alkali metal hydroxide catalyst has a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and propylene jade. Head-to-Tail coupling minimum selectivity by seed addition polymerization is characterized by 96%. If the hydroxyl value is less than 10 mgKOH / g, the viscosity of the polyoxyalkylene polyol or the polymer polyol in which the vinyl polymer particles are dispersed using this as a matrix becomes too high, and it is practically impossible to use for flexible polyurethane foam applications. Even when prepolymerized by reaction with, it is impossible to use because of its high viscosity.

한편, 이와 같은 저수산기가의 폴리옥시알킬렌 폴리올에서는 고분자량화에 따라 모노올 함유량이 증가하며, 연질 폴리우레탄 폼에 있어서의 습열시의 압축영구변형이나 반발탄성 혹은 폴리우레탄 엘라스토머의 기계물성이 저하하므로, 모노올 함유량은 15 mol% 이하로 유지할 필요가 있다. 또 수산기가가 35 mgKOH/g을 초과하는 경우에는, 기존의 폴리올에 있어서도 모노올 함유량이 15 mol% 정도의 것도 존재하지만, 이와같이 분자량이 낮은 경우에도 연질 폴리우레탄 폼등에서의 상기 특성의 향상이 확인되지 않는다.On the other hand, in the polyoxyalkylene polyol having such a low hydroxyl value, the monool content increases as the molecular weight is increased, and the mechanical properties of compressive permanent deformation, rebound elasticity or polyurethane elastomer during wet heat in a flexible polyurethane foam are increased. Since it falls, it is necessary to maintain monool content at 15 mol% or less. In addition, when the hydroxyl value exceeds 35 mgKOH / g, the monool content of about 15 mol% also exists in the existing polyol, but even if the molecular weight is low in this way, the improvement of the said characteristic in a flexible polyurethane foam etc. is confirmed. It doesn't work.

또, 이와같은 저모노올 함유량의 폴리옥시알킬렌 폴리올에서의 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합선택율이 96% 미만인 경우에는 헤드-대-테일(Head-to- Tail) 결합선택율 저하에 따른 폴리옥시알킬렌 폴리올의 점도상승이 현저하게 되며, 연질 폴리우레탄 폼 성형시나 유기폴리이소시아네이트 화합물과의 반응에 의해 프리폴리머화하여 사용하는 용도에서는 문제가 발생한다.Also, when the head-to-tail bond selectivity by propylene oxide addition polymerization in such low monool polyoxyalkylene polyol is less than 96%, the head-to-tail -to-Tail) The viscosity increase of the polyoxyalkylene polyol due to the decrease in the bond selectivity becomes remarkable, and a problem occurs in the use of prepolymerized by forming a flexible polyurethane foam or by reaction with an organic polyisocyanate compound.

이상의 구조제어된 고분자량 폴리옥시알킬렌 폴리올의 제조에 있어서는 이하의 조건을 선택하여 행할 필요가 있다. 즉, 활성 수소화합물에의 프로필렌옥시드 부가중합시의 알칼리금속수산화물 촉매농도는 활성 수소화합물 1몰에 대하여 바람직하게는 0.05∼0.5몰, 특히 바람직하게는 0.1∼0.3 몰의 범위이다. 또, 반응온도는 바람직하게는 60∼98℃, 특히 바람직하게는 70∼90℃의 범위이다. 활성 수소화합물 1몰에 대한 알칼리금속수산화물 촉매농도가 0.5몰을 넘을 경우에는, 반응온도 60∼98℃에서 프로필렌옥시드 부가중합을 행하여도 모노올 함유량이 15 mol%를 넘는 경향이 있고, 또 헤드-대-테일(Head-to-Tail) 결합선택율이 96% 미만이 되는 경우도 있기 때문에 바람직하지 못하다. 또, 활성 수소화합물 1몰에 대한 알칼리금속수산화물 촉매농도가 0.05몰 미만의 경우에는 프로필렌옥시드 부가중합반응속도가 느리게 되며, 수산기가 10∼35 mgKOH/g까지 고분자량화하는 것이 곤란하다. 또, 알칼리금속수산화물 촉매의 존재하에서 활성 수소화합물에의 프로필렌옥시드 부가반응에 의해 얻은 중간체 폴리머에 알칼리금속수산화물 촉매를 추가하여 프로필렌옥시드 부가중합하는 경우에도 알칼리 금속수산화물 촉매농도의 합계가 상기 범위내에 들어가도록 하는 조건하에서 행한다.In the production of the above structure-controlled high molecular weight polyoxyalkylene polyol, it is necessary to select and carry out the following conditions. That is, the alkali metal hydroxide catalyst concentration at the time of the propylene oxide addition polymerization to the active hydrogen compound is preferably 0.05 to 0.5 mol, particularly preferably 0.1 to 0.3 mol with respect to 1 mol of the active hydrogen compound. Moreover, reaction temperature becomes like this. Preferably it is 60-98 degreeC, Especially preferably, it is the range of 70-90 degreeC. When the alkali metal hydroxide catalyst concentration per mole of active hydrogen compound exceeds 0.5 mole, the monool content tends to exceed 15 mol% even when propylene oxide addition polymerization is carried out at a reaction temperature of 60 to 98 ° C. It is not preferable because the head-to-tail coupling selectivity may be less than 96%. When the alkali metal hydroxide catalyst concentration per mole of active hydrogen compound is less than 0.05 mole, the propylene oxide addition polymerization reaction rate is slow, and it is difficult to increase the molecular weight to 10 to 35 mgKOH / g hydroxyl group. Also, in the case where an alkali metal hydroxide catalyst is added to an intermediate polymer obtained by the propylene oxide addition reaction to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst and the propylene oxide addition polymerization is carried out, the sum of the alkali metal hydroxide catalyst concentrations is in the above range. It is performed under the conditions which make it enter inside.

알칼리금속수산화물 촉매의 존재하에서, 활성 수소화합물에의 프로필렌옥시드 부가중합시의 반응최대압력은 4Kg/cm2(490 KPa) 이하가 바람직하다. 반응압력이 4Kg/cm2(490 KPa)을 넘는 경우에는 폴리옥시알킬렌 폴리올중의 모노올 함유량이 증가하여, 저수산기가가 되면 15 mol%를 초과하게 되기 때문에 바람직하지 못하다.In the presence of an alkali metal hydroxide catalyst, the reaction maximum pressure at the time of propylene oxide addition polymerization to the active hydrogen compound is preferably 4 Kg / cm 2 (490 KPa) or less. When the reaction pressure exceeds 4 Kg / cm 2 (490 KPa), the monool content in the polyoxyalkylene polyol increases, which is not preferable because it becomes more than 15 mol% when it becomes a low hydroxyl group.

활성 수소화합물에, 알칼리금속수산화물 촉매의 존재하에서, 프로필렌옥시드이외의 알킬렌옥시드, 예를들면 에틸렌옥시드, 1,2-부틸렌옥시드등을 단독으로 혹은 프로필렌옥시드와 병용하여 부가중합하는 경우의 반응조건은 상기의 반응조건의 범위외나 범위내라도 된다.In the presence of an alkali metal hydroxide catalyst, the active hydrogen compound is additionally polymerized with alkylene oxides other than propylene oxide, for example, ethylene oxide, 1,2-butylene oxide, etc., alone or in combination with propylene oxide. The reaction conditions in this case may be outside or within the range of the above reaction conditions.

알칼리금속수산화물 촉매의 존재하에서 활성 수소화합물에 알킬렌옥시드를 부가중합하여 얻은 조폴리옥시알킬렌 폴리올중의 촉매는 염산등의 광산, 인산, 초산등의 유기산, 탄산가스등에 의한 중화법, 흡착제에 의한 흡착제거법, 물 혹은 물/유기용매를 사용한 수세법, 혹은 이온교환수지에 의한 이온교환법등의 방법에 의해 제거함으로써 제품을 얻을 수가 있다.The catalyst in the crude polyoxyalkylene polyol obtained by addition polymerization of alkylene oxide to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst is used for neutralization by an acidic acid such as hydrochloric acid, organic acid such as phosphoric acid, acetic acid, carbon dioxide, etc. The product can be obtained by removal by a method such as removal by adsorption, washing with water or water / organic solvent, or ion exchange with ion exchange resin.

폴리머 폴리올의 제조방법Manufacturing method of polymer polyol

폴리옥시알킬렌 폴리올에 대하여 설명한다.A polyoxyalkylene polyol is demonstrated.

사용하는 폴리옥시알킬렌 폴리올은 수산기가 10∼35 mgKOH/g, 모노올 최대함유량 15 mol% 이며, 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올이며, 상기한 방법에 의하여 얻어진다. 이 폴리옥시알킬렌 폴리올의 1종 또는 2종 이상의 혼합물을 사용할 수가 있다.The polyoxyalkylene polyol used has a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail bond minimum selectivity by propylene oxide addition polymerization of 96. It is a polyoxyalkylene polyol which is% and is obtained by the above-mentioned method. One kind or a mixture of two or more kinds of these polyoxyalkylene polyols can be used.

수산기가가 10 mgKOH/g 미만에서는 폴리옥시알킬렌 폴리올이나 이것을 매트릭스로 하여 비닐폴리머 입자가 분산된 폴리머 폴리올의 점도가 너무 높게 되어, 연질 폴리우레탄 폼 용도에는 실용적으로 사용할 수 없다. 한편 이와같은 저수산기가의 폴리옥시알킬렌 폴리올로는 고분자량화에 따라 모노올 함유량이 증가하며, 연질 폴리우레탄 폼에서의 습열시의 압축영구변형이나 반발탄성이 저하하므로, 모노올 함유량을 15 mol% 이하로 유지할 필요가 있다. 또, 수산기가가 35 mgKOH/g을 넘는 경우에는 기존의 폴리올에 있어서도 모노올 함유량이 15 mol% 정도의 것도 존재하지만, 이와같이 분자량이 낮은 경우에도 연질 폴리우레탄 폼등에서의 상기 특성의 향상을 확인할 수 없다.If the hydroxyl value is less than 10 mgKOH / g, the viscosity of the polyoxyalkylene polyol or the polymer polyol in which the vinyl polymer particles are dispersed using this as a matrix becomes too high and cannot be used practically for flexible polyurethane foam applications. On the other hand, the polyoxyalkylene polyol having such a low hydroxyl value increases the monool content as the molecular weight is increased, and the compressive permanent deformation and the rebound elasticity at the time of wet heat in the flexible polyurethane foam are lowered. It is necessary to keep it in mol% or less. When the hydroxyl value is more than 35 mgKOH / g, the monool content of about 15 mol% is also present in existing polyols. However, even when the molecular weight is low, the improvement of the above characteristics in the flexible polyurethane foam or the like can be confirmed. none.

또, 이와같은 저모노올 함유량의 폴리옥시알킬렌 폴리올에서의 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96% 미만의 경우에는 헤드-대-테일(Head-to-Tail) 결합선택율저하에 따른 폴리옥시알킬렌 폴리올의 점도상승이 현저하게 되며, 연질 폴리우레탄 폼 성형시 문제가 발생한다.Also, when the head-to-tail bond minimum selectivity by propylene oxide addition polymerization in such low monool polyoxyalkylene polyol is less than 96%, the head-to-tail (Head-to-Tail) The viscosity increase of the polyoxyalkylene polyol due to the decrease in the bond selectivity is remarkable, and a problem occurs in forming a flexible polyurethane foam.

폴리머 폴리올에 대하여 설명한다.A polymer polyol is demonstrated.

에틸렌성 불포화 단량체는 중합할 수 있는 에틸렌성 불포화기를 적어도 1개 갖는 것이 적당하다. 예를들면, 아크릴로니트릴, 메타크릴로니트릴, 아크릴산, 아크릴산페놀, 메타크릴산메틸, 무수메타크릴산, 아크릴아미드, 스틸렌, 메틸스틸렌, 페닐스틸렌, 클로로스틸렌, 부타디엔, 1,4-펜타디엔, 초산비닐 중에서 1종 또는 2종이상의 혼합물을 들 수 있다. 바람직하게는 아크릴로니트릴 단독, 또는 아크릴로니트릴과 스틸렌의 혼합물이다.It is suitable that an ethylenically unsaturated monomer has at least 1 ethylenically unsaturated group which can superpose | polymerize. For example, acrylonitrile, methacrylonitrile, acrylic acid, phenol acrylate, methyl methacrylate, methacrylic anhydride, acrylamide, styrene, methylstyrene, phenylstyrene, chlorostyrene, butadiene, 1,4-pentadiene 1 type, or 2 or more types of mixtures are mentioned among vinyl acetate. Preferably acrylonitrile alone or a mixture of acrylonitrile and styrene.

아크릴로니트릴/스틸렌의 비율은 중량비로 100/0∼10/90이 바람직하다. 폴리머농도가 30% 이상인 경우에는 점도상승이 적은 90/10∼30/70이 바람직하다.The ratio of acrylonitrile / styrene is preferably 100/0 to 10/90 by weight. In the case where the polymer concentration is 30% or more, 90/10 to 30/70 having a small increase in viscosity is preferable.

에틸렌성 불포화 단량체의 사용량은 통상 폴리옥시알킬렌 폴리올과 그 단량체의 전량에 대하여 5∼60중량%이며, 이것에 의해 폴리머 농도가 5∼60중량%로 유지된다. 폴리머는 통상직경 0.1∼10μm의 미립자상으로 분산된다.The use amount of the ethylenically unsaturated monomer is usually 5 to 60% by weight based on the total amount of the polyoxyalkylene polyol and the monomer, thereby maintaining the polymer concentration at 5 to 60% by weight. The polymer is usually dispersed in fine particles having a diameter of 0.1 to 10 m.

폴리머농도가 5중량% 이상 30중량% 미만인 경우에는 종래 공지의 제조법에 의해 폴리머 폴리올을 제조할 수 있다. 이 경우의 조건은 연쇄이동제를 사용하는 경우와 같아도 된다. 에틸렌성 불포화 단량체가 아크릴로니트릴 단독인 경우 일반적인 열분석에 의한 유리전이온도는 불명확하여 측정할 수 없으나, 아크릴로니트릴 및 스틸렌의 경우는 폴리머의 유리전이온도가 105∼130℃로 된다. 폴리머농도가 30중량% 이상 60중량% 이하인 경우도 연쇄이동제를 사용한다.When the polymer concentration is 5% by weight or more and less than 30% by weight, the polymer polyol can be produced by a conventionally known production method. The conditions in this case may be the same as in the case of using a chain transfer agent. When the ethylenically unsaturated monomer is acrylonitrile alone, the glass transition temperature by general thermal analysis is unclear and cannot be measured. In the case of acrylonitrile and styrene, the glass transition temperature of the polymer is 105 to 130 ° C. A chain transfer agent is also used when the polymer concentration is 30% by weight to 60% by weight.

연쇄이동제는 통상아민화합물이다. 아민화합물은 일반식(1)로 표시되는 아민화합물,Chain transfer agents are usually amine compounds. The amine compound is an amine compound represented by the general formula (1),

(식중의 R1, R2및 R3는 H, 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타내며, 이들은 서로 동일하거나 달라도 되나, 동시에 이들 전부가 H인 것은 아니다.)(In formula, R <1> , R <2> and R <3> represent H, a C1-C10 alkyl group, and a C2-C10 hydroxyalkyl group, These may mutually be same or different, but they are not all H at the same time.)

또는, 일반식(2)로 표시되는 화합물이다.Or it is a compound represented by General formula (2).

(식중의 X는 0, NR2를 나타내며, R1은 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타내며, R2는 H, 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타낸다.)(Wherein X represents 0 and NR 2 , R 1 represents an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 2 to 10 carbon atoms, R 2 represents H, an alkyl group having 1 to 10 carbon atoms, and a carbon group having 2 to 10 carbon atoms). Hydroxyalkyl group.)

구체예로서 예를들면, 트리에틸아민, 트리프로필아민, 트리부틸아민, N,N-디에틸에탄올아민, N-메틸모르포린, N-에틸모르포린등의 아민류를 들 수 있다.Specific examples include amines such as triethylamine, tripropylamine, tributylamine, N, N-diethylethanolamine, N-methylmorpholine, and N-ethylmorpholine.

연쇄이동제의 사용량은 연쇄이동제에 의하여 조절되는 폴리머의 유리전이온도에 따라 정하여지며, 유리전이온도가 90∼120℃, 바람직하게는 95∼115℃로 조절될 정도의 양의 연쇄이동제가 사용된다. 유리전이온도가 90℃ 미만인 경우는 폴리우레탄 폼으로 한 경우에 경도등의 물성이 저하하며, 유리전이온도가 120℃를 넘는 경우에는 목적으로 하는 저점도에서 분산안정성이 좋은 폴리머 폴리올을 얻을 수 없다. 이와같은 유리전이온도를 얻기 위한 연쇄이동제의 양은 폴리머의 분자량을 30,000∼140,000으로 조절하는 양이며, 에틸렌성 불포화단량체 100중량부에 대하여 0.5∼30중량부이며, 바람직하게는 1∼20중량부이다.The amount of the chain transfer agent is determined according to the glass transition temperature of the polymer controlled by the chain transfer agent, and an amount of the chain transfer agent is used so that the glass transition temperature is controlled to 90 to 120 ° C, preferably 95 to 115 ° C. If the glass transition temperature is lower than 90 ° C., the physical properties such as hardness are lowered when the polyurethane foam is used. If the glass transition temperature is higher than 120 ° C., a polymer polyol having good dispersion stability at low viscosity cannot be obtained. . The amount of the chain transfer agent for obtaining such a glass transition temperature is an amount for adjusting the molecular weight of the polymer to 30,000 to 140,000, 0.5 to 30 parts by weight, preferably 1 to 20 parts by weight based on 100 parts by weight of the ethylenically unsaturated monomer. .

촉매로서는 주지의 비닐중합반응용 촉매가 사용된다. 예를들면, 과산화수소, 벤조일퍼옥시드, 아세틸퍼옥시드, t-부틸퍼옥시드, 디-t-부틸퍼옥시드와 같은 과산화물, 아조비스이소부틸로니트릴과 같은 아조화합물, 혹은 과황산염, 과호박산, 디-이소프로필퍼옥시·디카보네이트와 같은 과산화화합물을 들 수 있다.As a catalyst, a well-known catalyst for vinyl polymerization reaction is used. For example, hydrogen peroxide, benzoyl peroxide, acetyl peroxide, t-butyl peroxide, peroxides such as di-t-butyl peroxide, azo compounds such as azobisisobutylonitrile, or persulfates, peric acid, di Peroxide compounds, such as isopropyl peroxy dicarbonate, are mentioned.

촉매는 폴리옥시알킬렌 폴리올과 에틸렌성 불포화 단량체의 합계중량에 대하여 0.01∼5중량%, 바람직하게는 0.1∼2.0중량%가 첨가된다.The catalyst is added in an amount of 0.01 to 5% by weight, preferably 0.1 to 2.0% by weight, based on the total weight of the polyoxyalkylene polyol and the ethylenically unsaturated monomer.

폴리머입자를 안정하게 분산시키는 목적으로 분산안정화제의 존재하에 중합을 행하는 것도 가능하다. 이와같은 분산안정화제로서, 특공소 49-46556호 공보에 기재되어 있는 것과 같은 탄소-탄소 불포화 결합함유 폴리에테르에스테르 폴리올이나 아크릴기, 메타크릴기, 아릴기 등을 말단에 가진 변성 폴리올등을 들 수 있다.It is also possible to carry out polymerization in the presence of a dispersion stabilizer for the purpose of stably dispersing the polymer particles. Examples of such dispersion stabilizers include carbon-carbon unsaturated bond-containing polyether ester polyols, such as those described in Japanese Patent Application Publication No. 49-46556, and modified polyols having an acryl group, methacryl group, aryl group, and the like at their ends. Can be.

폴리머 폴리올의 제조는 상기 폴리옥시알킬렌 폴리올, 에틸렌성불포화단량체, 연쇄이동제, 촉매를 사용하여 중합반응을 행하여 이루어진다.The polymer polyol is produced by carrying out a polymerization reaction using the polyoxyalkylene polyol, ethylenically unsaturated monomer, a chain transfer agent, and a catalyst.

중합반응은 배치식이나 연속식으로 행할 수가 있다. 중합온도는 촉매의 종류에 따라 정하여지나, 촉매의 분해온도이상, 바람직하게는 60∼200℃, 더욱 바람직하게는 90∼160℃에서 행한다. 중합반응은 가압계나, 상압계라도 행할 수가 있다.The polymerization reaction can be carried out batchwise or continuously. The polymerization temperature is determined according to the type of catalyst, but is carried out at a decomposition temperature of the catalyst, preferably at 60 to 200 ° C, more preferably at 90 to 160 ° C. The polymerization reaction can be performed by a pressure gauge or an atmospheric pressure gauge.

중합반응종료후, 얻어진 폴리머 폴리올은 그대로 폴리우레탄의 원료로서 사용할 수 있으나, 미반응단량체나 촉매의 분해생성물이나 연쇄이동제등을 감압처리하여 제거한 후에 사용하는 것이 바람직하다.After the completion of the polymerization reaction, the obtained polymer polyol can be used as a raw material of polyurethane as it is, but it is preferable to use it after removing the unreacted monomer, the decomposition product of the catalyst, the chain transfer agent, and the like under reduced pressure.

폴리우레탄 폼의 제조방법Method of manufacturing polyurethane foam

폴리옥시알킬렌 폴리올로서는 상술한 폴리옥시알킬렌 폴리올을 사용할 수 있다.The polyoxyalkylene polyol mentioned above can be used as a polyoxyalkylene polyol.

폴리머 폴리올로서는 상술한 것 모두를 그대로 적용할 수 있다. 폴리머 폴리올을 함유하는 폴리올이란 상기 폴리머 폴리올 또는 상기 폴리머 폴리올과 그외의 폴리옥시알킬렌 폴리올과의 혼합물을 말하며, 점도가 3000 cps 이하인 것이 바람직하다. 그외의 폴리옥시알킬렌 폴리올로서는 특히 한정되지는 않으나, 당해분야에서 종래부터 사용되고 있는 것을 사용할 수 있다.As the polymer polyol, all of the foregoing can be applied as it is. The polyol containing a polymer polyol refers to the polymer polyol or a mixture of the polymer polyol and other polyoxyalkylene polyols, and preferably has a viscosity of 3000 cps or less. Although it does not specifically limit as other polyoxyalkylene polyol, What is conventionally used in the art can be used.

또, 폴리머 폴리올의 제조에 사용한 폴리옥시알킬렌 폴리올을 필요에 따라 사용하는 것도 가능하다.Moreover, it is also possible to use the polyoxyalkylene polyol used for manufacture of a polymer polyol as needed.

본 발명에서 사용하는 유기 폴리이소시아네이트 화합물은 예를들면, 2,4-토릴렌디이소시아네이트, 2,6-토릴렌디이소시아네이트, 이들 이소시아네이트의 80/20중량비(80/20-TDI) 또는 65/35중량비(65/35-TDI)의 혼합물, 조제(粗製)토릴렌디이소시아네이트(조제 TDI), 4,4'-디페닐메탄디이소시아네이트(4,4'-MDI), 2,4'-디페닐메탄디이소시아네이트(2,4'-MDI), 2,2'-디페닐메탄디이소시아네이트(2,2'-MDI), 디페닐메탄디이소시아네이트의 이성체 혼합물(MDI), 폴리메틸렌폴리페닐이소시아네이트(조제 MDI), 톨루이딘디이소시아네이트, 크실렌디이소시아네이트, 헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 디시클로헥실메탄디이소시아네이트 및 이들 이소시아네이트의 카르보디이미드 변성체, 뷰렛변성체, 2량체, 3량체 또는 이들의 프리폴리머이다. 유기폴리이소시아네이트 화합물은 1종 또는 2종 이상 혼합하여 사용한다.The organic polyisocyanate compound used in the present invention may be, for example, 2,4-torylene diisocyanate, 2,6-torylene diisocyanate, 80/20 weight ratio (80 / 20-TDI) or 65/35 weight ratio of these isocyanates ( 65 / 35-TDI), crude toylene diisocyanate (prepared TDI), 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 2,2'-diphenylmethane diisocyanate (2,2'-MDI), an isomer mixture of diphenylmethane diisocyanate (MDI), polymethylene polyphenylisocyanate (prepared MDI), Toluidine diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexyl methane diisocyanate and carbodiimide modified, biuret modified, dimer, trimer or prepolymer thereof. An organopolyisocyanate compound is used 1 type or in mixture of 2 or more types.

발포제는 물, 트리클로로모노플루오로메탄, 디클로로디플루오로메탄, 2,2-디클로로-1, 1,1-트리플루오로에탄, 1,1-디클로로-1-플루오로에탄, 메틸렌클로라이드, 트리클로로트리플루오로에탄, 디브로모테트라플루오로에탄, 트리클로로에탄, 펜탄, n-헥산등의 1종 또는 2종 이상의 혼합물이지만, 환경보호의 관점에서 물을 단독으로 사용하는 것이 바람직하다. 발포제의 사용량은 폴리옥시알킬렌 폴리올 100중량부에 대하여 0.01∼10중량부이다.Blowing agents include water, trichloromonofluoromethane, dichlorodifluoromethane, 2,2-dichloro-1, 1,1-trifluoroethane, 1,1-dichloro-1-fluoroethane, methylene chloride, trichloro Although it is 1 type, or 2 or more types of mixtures, such as rotrifluoroethane, dibromotetrafluoroethane, trichloroethane, pentane, and n-hexane, it is preferable to use water independently from a viewpoint of environmental protection. The use amount of blowing agent is 0.01-10 weight part with respect to 100 weight part of polyoxyalkylene polyols.

본 발명에서 사용하는 우레탄화 반응촉매로서는 종래 공지의 것으로 특별한 제한은 없다. 예를들면, 아민계 촉매로서는, 트리에틸아민, 트리프로필아민, 폴리이소프로판올아민, 트리부틸아민, 트리옥틸아민, 헥사메틸디메틸아민, N-메틸모르포린, N-에틸모르포린, N-옥타데실모르포린, 모노에탄올아민, 디에탄올아민, 트리에탄올아민, N-메틸디에탄올아민, N,N-디메틸에탄올아민, 디에틸렌트리아민, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메틸프로필렌디아민, N,N,N',N'-테트라메틸부탄디아민, N,N,N',N'-테트라메틸-1,3-부탄디아민, N,N,N',N'-테트라메틸헥사메틸렌디아민, 비스{2-(N,N-디메틸아미노)에틸}에테르, N,N-디메틸벤질아민, N,N-디메틸시클로헥실아민, N,N,N',N'-펜타메틸디에틸렌트리아민, 트리에틸렌디아민, 트리에틸렌디아민의 개미산염 및 다른 염, 제1 및 제2아민의 아미노기의 옥시알킬렌부가물, N,N-디알킬피페라진류와 같은 아자환 화합물, 여러가지의 N,N',N-트리알킬아미노알킬헥사히드로트리아진류, 특공소 52-43517호 공보의 β-아미노카르보닐촉매, 특공소 53-14278호 공보의 β-아미노니트릴 촉매등을 들 수 있다. 또, 유기금속계 촉매로서는 초산주석, 옥틸산주석, 올레인산주석, 라우릴산주석, 디부틸주석디아세테이트, 디부틸주석디라우레이트, 디부틸주석디클로라이드, 옥탄산아연, 나프텐산아연, 나프텐산니켈, 나프텐산코발트 등을 들 수 있다. 이들 촉매는 1종 또는 2종이상 혼합하여 사용하며, 그 사용량은 활성수소를 가진 화합물 100중량부에 대하여 0.0001∼10.0중량부이다.The urethanation reaction catalyst used in the present invention is conventionally known and there is no particular limitation. For example, as an amine catalyst, triethylamine, tripropylamine, polyisopropanolamine, tributylamine, trioctylamine, hexamethyldimethylamine, N-methylmorpholine, N-ethylmorpholine, and N-octadecyl Morpholine, monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, diethylenetriamine, N, N, N ', N'-tetramethylethylenediamine, N , N, N ', N'-tetramethylpropylenediamine, N, N, N', N'-tetramethylbutanediamine, N, N, N ', N'-tetramethyl-1,3-butanediamine, N , N, N ', N'-tetramethylhexamethylenediamine, bis {2- (N, N-dimethylamino) ethyl} ether, N, N-dimethylbenzylamine, N, N-dimethylcyclohexylamine, N, N, N ', N'-pentamethyldiethylenetriamine, triethylenediamine, formate and other salts of triethylenediamine, oxyalkylene adducts of amino groups of the first and second amines, N, N-dialkyl Aza ring, such as piperazine Compounds, various N, N ', N-trialkylaminoalkylhexahydrotriazines, β-aminocarbonyl catalyst of JP 52-43517, β-amino nitrile catalyst of JP 53-14278, etc. Can be mentioned. Further, as the organometallic catalyst, tin acetate, octylate tin, oleate tin, lauryl acid tin, dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dichloride, zinc octanoate, zinc naphthenate, naphthenic acid Nickel, cobalt naphthenate, etc. are mentioned. These catalysts are used 1 type or in mixture of 2 or more types, and the use amount is 0.0001-10.0 weight part with respect to 100 weight part of compounds which have active hydrogen.

정포제는 종래 공지의 유기규소 계면활성제이며, 예를들면 닛뽕유니카사제의 L-520, L-532, L-540, L-544, L-550, L-3550, L-5305, L-3600, L-3601, L-5305, L-5307, L-5309, L-5710, L-5720, L-5740M, L-6202등, 토오레·실리콘사제의 SH-190, SH-194, SH-200, SPX-253, PX-274C, SF-2961, SF-2962, SPX-280A, SPX-294A등, 신에츠실리콘사제의 F-114, F-121, F-122, F-220, F-230, F-258, F-260B, F-317, F-341, F-601, F-606, X-20-200, X-20-201등, 도시바실리콘사제의 TFA-4200, TFA-4202등, 골드슈밋트사제의 B-4113, 토오레·다우코닝사제의 SRX-253, SRX-274C, SF-2961, SF-2962등을 들 수 있다. 이들 정포제의 사용량은 활성수소를 가진 화합물과 폴리이소시아네이트와의 총량 100중량부에 대하여 0.1∼10중량부, 바람직하게는 0.1∼5중량부이다.A foam stabilizer is a conventionally well-known organosilicon surfactant, for example, L-520, L-532, L-540, L-544, L-550, L-3550, L-5305, and L-3600 made by Nippon Unicas Co., Ltd. , L-3601, L-5305, L-5307, L-5309, L-5710, L-5720, L-5740M, L-6202, SH-190, SH-194, SH- made by Toray Silicon Corporation 200, SPX-253, PX-274C, SF-2961, SF-2962, SPX-280A, SPX-294A, F-114, F-121, F-122, F-220, F-230 made by Shin-Etsu Silicone , F-258, F-260B, F-317, F-341, F-601, F-606, X-20-200, X-20-201, TFA-4200, TFA-4202 made by Toshiba Silicone Co., Ltd. And B-4113 manufactured by Gold Schmidt, SRX-253 manufactured by Toray Dow Corning, SRX-274C, SF-2961, SF-2962 and the like. The use amount of these foam stabilizers is 0.1-10 weight part with respect to 100 weight part of total amounts of the compound which has active hydrogen, and a polyisocyanate, Preferably it is 0.1-5 weight part.

가교제는 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜 및 1,3-부탄디올등의 단량체 폴리올, 트리에탄올아민, 디에탄올아민등의 알칸올아민류, 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민등의 지방족 폴리아민, 메틸렌오르소클로로아민, 4,4'-디페닐메탄디아민, 아닐린, 2,4'-토릴렌디아민, 2,6'-토릴렌디아민 등의 방향족 폴리아민 및 이들의 활성수소화합물에 에틸렌옥시드, 프로필렌옥시드등을 부가하여 얻어지는 수산기가 200 mgKOH/g 이상인 화합물이다. 그외, 하이드로퀴논, 레조르신, 아닐린등에 에틸렌옥시드, 프로필렌옥시드등을 부가하여 얻어지는 수산기가 200 mgKOH/g 이상의 화합물도 사용할 수 있다. 사용량은 폴리옥시알킬렌 폴리올 100중량부에 대하여 0.1∼10중량부이다.Crosslinking agents Alkenolamines, such as monomer polyols, such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and 1, 3- butanediol, triethanolamine, and diethanolamine, ethylenediamine, diethylenetriamine, and triethylenetetramine Aromatic polyamines such as aliphatic polyamines, methyleneorthochloroamine, 4,4'-diphenylmethanediamine, aniline, 2,4'-torylenediamine, 2,6'-torylenediamine, and active hydrogen compounds thereof It is a compound whose hydroxyl group obtained by adding ethylene oxide, propylene oxide, etc. to 200 mgKOH / g or more. In addition, a compound having a hydroxyl value of 200 mgKOH / g or more obtained by adding ethylene oxide, propylene oxide or the like to hydroquinone, resorcin, aniline, or the like can also be used. The usage-amount is 0.1-10 weight part with respect to 100 weight part of polyoxyalkylene polyols.

본 발명에는 상기한 것외에 필요에 따라 안정제, 충전제, 착색제, 난연제등을 사용할 수가 있다.In the present invention, stabilizers, fillers, colorants, flame retardants and the like may be used as necessary in addition to the above.

폴리우레탄 폼의 제조방법은 아래와 같다.The manufacturing method of the polyurethane foam is as follows.

폴리옥시알킬렌 폴리올, 발포제, 촉매, 정포제, 가교제 및 그외의 보조제의 소정량을 혼합하여 레진액을 만든다. 유기폴리이소시아네이트 화합물중의 NCO기와 레진액중의 활성수소와의 당량비(NCO/H)가 0.7∼1.4가 되도록 유기폴리이소시아네이트화합물, 폴리옥시알킬렌 폴리올 및 가교제의 사용량을 정한다. 레진액과 유기폴리이소시아네이트 화합물을 소정온도, 예를들면 20∼25℃로 조정한 후 급속히 혼합하여 소정온도, 예를들면 30∼70℃로 온도조절된 형틀에 흘려 넣는다. 반응혼합액이 형틀내에 발포충전된 후, 소정온도, 예를들면 실온∼100℃의 분위기하에 5∼30분 방치하여 경화시킨 후, 폼을 탈형하여 연질 폴리우레탄 폼을 얻는다.A resin solution is prepared by mixing a predetermined amount of a polyoxyalkylene polyol, a blowing agent, a catalyst, a foam stabilizer, a crosslinking agent, and other auxiliaries. The amount of the organic polyisocyanate compound, the polyoxyalkylene polyol and the crosslinking agent is determined so that the equivalent ratio (NCO / H) between the NCO in the organic polyisocyanate compound and the active hydrogen in the resin solution is 0.7 to 1.4. The resin solution and the organic polyisocyanate compound are adjusted to a predetermined temperature, for example, 20 to 25 ° C, and then rapidly mixed, and poured into a mold temperature-controlled at a predetermined temperature, for example, 30 to 70 ° C. After the reaction mixture is foam-filled into the mold, the mixture is left to cure for 5 to 30 minutes in a predetermined temperature, for example, at room temperature to 100 ° C, and then the foam is demolded to obtain a flexible polyurethane foam.

실시예Example

이하, 실시예 및 비교예를 들어 본 발명에 대하여 설명한다.Hereinafter, an Example and a comparative example are given and this invention is demonstrated.

수산기가 : 무수프탈산의 피리딘 용액으로 에스테르화하여, 과잉의 무수프탈산을 수산화나트륨 용액으로 적정한다(JIS K 1557의 방법에 준한다).The hydroxyl value is esterified with a pyridine solution of phthalic anhydride, and excess phthalic anhydride is titrated with a sodium hydroxide solution (according to the method of JIS K 1557).

모노올 함유량 : 일본분광제 고속액체크로마토그래프(HPLC)장치로, 아미노프로필기 화합결합형 실리카계 분리칼럼을 사용하여, 헥산/2-프로판올의 혼합액을 용리액(유속 1ml/min)으로 하여 폴리옥시알킬렌 폴리올의 액체크로마토그람을 얻어 시차굴절계로 검지한 피크면적강도로부터 트리올과 모노올의 면적비를 구하였다. 또, 이와 동일조건으로 얻은 분자량이 다른 트리올과 모노올의 액체크로마토그람의 용출피크 시간으로부터 작성한 교정곡선에 의하여 폴리옥시알킬렌 폴리올중의 트리올과 모노올의 분자량의 값을 구하였다. 이상의 트리올과 모노올에 관한 면적비와 분자량의 값에서 모노올함유량(몰%)을 산출하였다. 폴리옥시알킬렌 폴리올중의 디올성분은 거의 검출되지 않았으므로, 모노올 함유량의 산출시에는 무시하였다.Monool content: A high-performance liquid chromatography (HPLC) device using a Japanese spectroscopy, using an aminopropyl group-bonded silica-based separation column, using a mixed solution of hexane / 2-propanol as an eluent (flow rate of 1 ml / min) A liquid chromatogram of alkylene polyol was obtained, and the area ratio of triol and monool was determined from the peak area intensity detected by the differential refraction system. The molecular weight values of the triol and monool in the polyoxyalkylene polyol were determined by a calibration curve prepared from the elution peak times of the liquid chromatograms of triols and monools having different molecular weights obtained under the same conditions. Monool content (mol%) was computed from the value of the area ratio and molecular weight with respect to the above triol and monool. Since the diol component in polyoxyalkylene polyol was hardly detected, it was ignored at the time of calculating monool content.

헤드-대-테일(Head-to-Tail) 결합선택율 : 일본전자제 40MHz C13핵자기공명(NMR) 장치를 사용하여, 중클로로포름을 용매로 하여, 이 폴리옥시알킬렌 폴리올의 C13NMR 스펙트럼을 얻어, 헤드-대-테일(Head-to-Tail)결합의 옥시프로필렌세그멘트의 메틸기의 시그널(16.9∼17.4ppm)과 헤드-대-헤드(Head-to-Head)결합의 옥시프로필렌세그멘트의 메틸기의 시그널(17.7∼18.5ppm)의 비로부터 구하였다.Head-to-Tail Bond Selectivity: C 13 NMR spectrum of this polyoxyalkylene polyol using heavy chloroform as a solvent using a 40 MHz C 13 nuclear magnetic resonance (NMR) device manufactured by Nippon Electronics To obtain a signal of the methyl group of the oxypropylene segment of the head-to-tail bond (16.9 to 17.4 ppm) and the methyl group of the oxypropylene segment of the head-to-head bond. It calculated | required from ratio of the signal of (17.7-18.5 ppm).

계산식 F는Calculation F is

A = 헤드-대-헤드 결합의 메틸기의 적분치A = integral of the methyl groups of the head-to-head bond

B = 헤드-대-테일 결합의 메틸기의 적분치B = integral of the methyl groups of the head-to-tail bond

F = (0.5A/(0.5A + B)) × 100F = (0.5 A / (0.5 A + B)) × 100

또 각 시그널의 귀속은 Macromolecules 19. 1337-1343(1986). F.C.Schilling, A.E. Jonelli의 문헌에 기재된 값을 참고로 하였다.In addition, each signal is attributed to Macromolecules 19. 1337-1343 (1986). F.C.Schilling, A.E. Reference is made to the values described in Jonelli's literature.

점도 : 회전식 점도계를 사용한 25℃에서의 측정치(JIS K 1557에 준하여 측정).Viscosity: Measured value at 25 ° C. using a rotary viscometer (measured according to JIS K 1557).

폴리머농도 : 폴리머 폴리올에 메탄올을 가하여 잘 분산시킨 후에 원심분리하여 메탄올 불용분의 중량을 측정하여 구한다. 단, 아크릴로니트릴 단독으로 된 폴리머 폴리올에 대하여는 원소분석에 의한 질소분으로 부터 구하였다.Polymer Concentration: After dispersing well by adding methanol to the polymer polyol, centrifugation is performed to determine the weight of methanol insoluble content. However, the polymer polyol which consists of acrylonitrile alone was calculated | required from the nitrogen content by elemental analysis.

Tg(유리전이온도) : 파킨엘머사제 DSC-7을 사용하여 질소분위기하, 승온속도 20K/min의 조건하에서 열분석에 의하여 구하였다.Tg (glass transition temperature): It was calculated | required by the thermal analysis using the DSC-7 by Parkin Elmer company under nitrogen atmosphere and the temperature increase rate of 20 K / min.

폴리옥시알킬렌 폴리올의 평가Evaluation of Polyoxyalkylene Polyols

1. 폴리옥시알킬렌 폴리올의 제조1. Preparation of Polyoxyalkylene Polyols

실시예 1Example 1

폴리올 A : 글리세린 1mol에 대하여 0.13mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 95℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대해 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 28 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 점도는 1140cps/25℃ 였다.Polyol A: cesium hydroxide was added to a 0.13mol relative to 1mol of glycerin, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 95 ℃, maximum reaction pressure 3.5kg / cm 2 (440 KPa) , a hydroxyl 33 mgKOH / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 28 mgKOH / g. The viscosity was 1140 cps / 25 degreeC.

상술의 트리올과 모노올에 관한 면적비와 분자량의 값에서 모노올 함유량(몰%)을 산출하였더니 13.0mol% 였다. 또, 폴리옥시알킬렌 폴리올중의 디올성분은 거의 검출되지 않았으므로, 모노올 함유량의 산출시에는 무시하였다. H-T 결합선택율은 96.7mol% 였다. 결과를 표1에 나타낸다.It was 13.0 mol% when the monool content (mol%) was computed from the value of the area ratio and molecular weight with respect to above-mentioned triol and monool. In addition, since the diol component in polyoxyalkylene polyol was hardly detected, it was ignored at the time of calculating monool content. H-T bond selectivity was 96.7 mol%. The results are shown in Table 1.

실시예 2Example 2

폴리올 B : 글리세린 1mol에 0.43mol의 수산화세슘을 가하고 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 65℃, 반응최대압력 2.0kg/cm2(300 KPa)에서 부가중합하여, 수산기가 50 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 75℃, 반응최대압력 3kg/cm2(400 KPa)에서 부가중합하여, 수산기가 28 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 실시예 1과 같은 방법에 의해 얻은 모노올 함유량은 11.9mol%, 점도는 1250cps/25℃, H-T 결합선택율은 96.2mol%였다. 결과를 표1에 나타낸다.Polyol B: After putting the cesium hydroxide to a 0.43mol glycerin 1mol dehydrated at 100 ℃ 6-hour reaction of propylene oxide the temperature 65 ℃, the combined addition of the reaction at a maximum pressure 2.0kg / cm 2 (300 KPa) , a hydroxyl value of 50 mgKOH / g polyoxypropylene polyol was obtained. The propylene oxide was further polymerized at a reaction temperature of 75 ° C. and a reaction maximum pressure of 3 kg / cm 2 (400 KPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 28 mgKOH / g. The monool content obtained by the method similar to Example 1 was 11.9 mol%, the viscosity was 1250 cps / 25 degreeC, and HT bond selectivity was 96.2 mol%. The results are shown in Table 1.

실시예 3Example 3

폴리올 C : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5Kg/cm2(440 KPa)에서 부가중합하여, 수산기가 28 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 24 mgKOH/g의 폴리옥시알킬렌폴리올을 얻었다. 실시예 1과 같은 방법에 의해 얻은 모노올 함유량은 8.0mol%, 점도는 1650 cps/25℃, H-T 결합선택율은 96.3mol%였다. 결과를 표1에 나타낸다.Polyol C: cesium hydroxide was added to a 0.23mol glycerin 1mol, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 80 ℃, maximum reaction pressure 3.5Kg / cm 2 (440 KPa) , a hydroxyl value of 28 A mgKOH / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C. to obtain a polyoxyalkylene polyol having a hydroxyl value of 24 mgKOH / g. The monool content obtained by the method similar to Example 1 was 8.0 mol%, the viscosity was 1650 cps / 25 degreeC, and HT bond selectivity was 96.3 mol%. The results are shown in Table 1.

실시예 4Example 4

폴리올 D : 글리세린 1mol에 0.23mol의 수산화 칼륨을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 70℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 29 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 13.7mol%, 점도는 1100 cps/25℃, H-T 결합선택율은 96.5mol% 였다. 결과를 표1에 나타낸다.Polyol D: 0.23 mol of potassium hydroxide was added to 1 mol of glycerin, and dehydrated at 100 DEG C for 6 hours, after which the propylene oxide was polymerized by addition at a reaction temperature of 70 DEG C and a maximum pressure of 3.5 kg / cm 2 (440 KPa). A mgKOH / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 29 mgKOH / g. The monool content obtained by the method similar to Example 1 was 13.7 mol%, the viscosity was 1100 cps / 25 degreeC, and HT bond selectivity was 96.5 mol%. The results are shown in Table 1.

실시예 5Example 5

폴리올 E : 수산기가 450 mgKOH/g인 펜타에리트리톨의 프로필렌옥시드부가물 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 50 mgKOH/g의 폴리옥시프로필렌폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 90℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 29 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 25 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 14.3mol%, 점도는 1800cps/25℃, H-T 결합선택율은 96.4mol%였다. 결과를 표1에 나타낸다.Polyol E: 0.23 mol of cesium hydroxide was added to 1 mol of propylene oxide adduct of pentaerythritol having a hydroxyl value of 450 mgKOH / g, and dehydrated at 100 DEG C for 6 hours. addition polymerization at / cm 2 (440 KPa) afforded a polyoxypropylene polyol having a hydroxyl value of 50 mgKOH / g. The propylene oxide was further polymerized at a reaction temperature of 90 ° C. and a reaction maximum pressure of 3.5 kg / cm 2 (440 KPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 29 mgKOH / g. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 25 mgKOH / g. The monool content obtained by the method similar to Example 1 was 14.3 mol%, the viscosity was 1800 cps / 25 degreeC, and HT bond selectivity was 96.4 mol%. The results are shown in Table 1.

실시예 6Example 6

폴리올 F : 글리세린 1mol에 0.13mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 60℃, 반응최대압력 2.0kg/cm2(300 KPa)에서 부가중합하여, 수산기가 50 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 60℃, 반응최대압력 2.0kg/cm2(300 KPa)에서 부가중합하여, 수산기가 16mg KOH/g의 폴리옥시프로필렌폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 14.6mol%, 점도는 2300cps/25℃, H-T 결합선택율은 97.0mol%이었다. 결과를 표1에 나타낸다.Polyol F: cesium hydroxide was added to a 0.13mol glycerin 1mol, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 60 ℃, maximum reaction pressure 2.0kg / cm 2 (300 KPa) , a hydroxyl value of 50 A mgKOH / g polyoxypropylene polyol was obtained. The propylene oxide was further polymerized at a reaction temperature of 60 ° C. and a reaction maximum pressure of 2.0 kg / cm 2 (300 KPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 16 mg KOH / g. The monool content obtained by the method similar to Example 1 was 14.6 mol%, the viscosity was 2300 cps / 25 degreeC, and HT bond selectivity was 97.0 mol%. The results are shown in Table 1.

실시예 7Example 7

폴리올 G : 글리세린 1 mol에 0.23 mol의 수산화세슘과 0.10mol의 수산화 루비듐을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 2.5kg/cm2(350 KPa)에서 부가중합하여, 수산기가 50 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 80℃, 반응최대압력 2.5kg/cm2(350 KPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 실시예 1과 같은 방법에 의해 얻은 모노올 함유량은 10.5mol%, 점도 950cps/25℃, H-T 결합선택율 96.3mol%였다. 결과를 표2에 나타낸다.Polyol G: 0.23 mol of cesium hydroxide and 0.10 mol of rubidium hydroxide are added to 1 mol of glycerin, and dehydrated at 100 ° C. for 6 hours at a reaction temperature of 80 ° C. and a maximum reaction pressure of 2.5 kg / cm 2 (350 KPa). The addition polymerization yielded a polyoxypropylene polyol having a hydroxyl value of 50 mgKOH / g. The propylene oxide was further polymerized at a reaction temperature of 80 ° C. and a reaction maximum pressure of 2.5 kg / cm 2 (350 KPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 33 mgKOH / g. Monool content obtained by the method similar to Example 1 was 10.5 mol%, the viscosity 950cps / 25 degreeC, and HT bond selectivity 96.3mol%. The results are shown in Table 2.

실시예 8Example 8

폴리올 H : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 28 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 7.2mol%, 점도는 1290cps/25℃, H-T 결합선택율은 96.4mol%이었다. 결과를 표2에 나타낸다.Polyol H: cesium hydroxide was added to a 0.23mol glycerin 1mol, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 80 ℃, maximum reaction pressure 3.5kg / cm 2 (440 KPa) , a hydroxyl value of 33 A mgKOH / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 28 mgKOH / g. The monool content obtained by the method similar to Example 1 was 7.2 mol%, the viscosity was 1290 cps / 25 degreeC, and HT bond selectivity was 96.4 mol%. The results are shown in Table 2.

실시예 9Example 9

폴리올 I : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 Kpa)에서 부가중합하여, 수산기가 25 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 21 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 10.5mol%, 점도는 1950cps/25℃, H-T 결합선택율은 97.0mol%이었다. 결과를 표2에 나타낸다.Polyol I: cesium hydroxide was added to a 0.23mol glycerin 1mol, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 80 ℃, maximum reaction pressure 3.5kg / cm 2 (440 Kpa) , a hydroxyl value of 25 A mgKOH / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 21 mgKOH / g. The monool content obtained by the method similar to Example 1 was 10.5 mol%, the viscosity was 1950 cps / 25 degreeC, and HT bond selectivity was 97.0 mol%. The results are shown in Table 2.

실시예 10Example 10

폴리올 J : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 20 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 17 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 14.0mol%, 점도는 2380cps/25℃, H-T 결합선택율은 97.2mol%이었다. 결과를 표2에 나타낸다.Polyol J: 0.23 mol of cesium hydroxide was added to 1 mol of glycerin, and dehydrated at 100 ° C. for 6 hours. The propylene oxide was added and polymerized at a reaction temperature of 80 ° C. and a maximum pressure of 3.5 kg / cm 2 (440 KPa). / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 17 mgKOH / g. The monool content obtained by the method similar to Example 1 was 14.0 mol%, the viscosity was 2380 cps / 25 degreeC, and HT bond selectivity was 97.2 mol%. The results are shown in Table 2.

실시예 11Example 11

폴리올 K : 펜타에리트리톨 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 이 폴리옥시프로필렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 100℃에서 부가하여 수산기가 28 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 9.5mol%, 점도는 1420 cps/25℃, H-T 결합선택율은 96.5mol%이었다. 결과를 표2에 나타낸다.Polyol K: combined in 1mol of pentaerythritol was added to a 0.23mol cesium hydroxide, in addition to 100 ℃ 6 hours after dehydration of propylene oxide at a reaction temperature of 80 ℃, maximum reaction pressure 3.5kg / cm 2 (440 KPa) , a hydroxyl group 33 mgKOH / g of polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol at 100 ° C to obtain a polyoxyalkylene polyol having a hydroxyl value of 28 mgKOH / g. Monool content obtained by the method similar to Example 1 was 9.5 mol%, the viscosity was 1420 cps / 25 degreeC, and HT bond selectivity was 96.5 mol%. The results are shown in Table 2.

비교예 1Comparative Example 1

폴리올 L : 글리세린 1mol에 0.37mol의 수산화칼륨을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 115℃, 반응최대압력 5kg/cm2(590 kPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 이어, 에틸렌옥시드를 이 폴리옥시프로필렌 폴리올에 대하여 15wt% 부가하여, 수산기가 28 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 29.3mol%, 점도는 1150cps/25℃, H-T 결합선택율은 96.3mol%이었다. 결과를 표3에 나타낸다.Polyol L: 0.37 mol of potassium hydroxide was added to 1 mol of glycerin, and dehydrated at 100 ° C. for 6 hours. The propylene oxide was added and polymerized at a reaction temperature of 115 ° C. and a reaction maximum pressure of 5 kg / cm 2 (590 kPa). / g polyoxypropylene polyol was obtained. Subsequently, 15 wt% of ethylene oxide was added to this polyoxypropylene polyol to obtain a polyoxyalkylene polyol having a hydroxyl value of 28 mgKOH / g. Monool content obtained by the method similar to Example 1 was 29.3 mol%, the viscosity was 1150 cps / 25 degreeC, and HT bond selectivity was 96.3 mol%. The results are shown in Table 3.

비교예 2Comparative Example 2

폴리올 M : 글리세린 1mol에 아연·코발트시안화물과 염화아연, 물, 디메톡시에탄올로 되는 소위 복합금속시아노화착체 촉매(DMC 촉매)를 6.93g 가하고, 프로필렌옥시드를 반응온도 90℃, 반응최대압력 4kg/cm2(490 kPa)에서 부가중합하여, 수산기가 33 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. DMC촉매를 암모니아수로 추출하여 수세한 후, 폴리옥시프로필렌 폴리올에 함유되는 글리세린 1mol에 대하여 0.23몰의 수산화칼륨을 가하고, 100℃에서 6시간 탈수후, 에틸렌옥시드를 이 폴리옥시프로필렌 폴리올에 대하여 15wt% 부가중합하여 수산기가 28 mgKOH/g의 폴리옥시알킬렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 9.6mol%, 점도는 3080 cps/25℃, H-T 결합선택율은 85.4mol%이었다. 결과를 표3에 나타낸다.Polyol M: 6.93 g of a so-called complex metal cyanocomplex catalyst (DMC catalyst) consisting of zinc cobalt cyanide, zinc chloride, water, and dimethoxyethanol is added to 1 mol of glycerine, and propylene oxide is reacted at a reaction temperature of 90 캜 and a maximum pressure of the reaction. Addition polymerization at 4 kg / cm 2 (490 kPa) yielded a polyoxypropylene polyol having a hydroxyl value of 33 mgKOH / g. The DMC catalyst was extracted with ammonia water, washed with water, 0.23 mol of potassium hydroxide was added to 1 mol of glycerin contained in the polyoxypropylene polyol, and dehydrated at 100 DEG C for 6 hours. % Addition polymerization was performed to obtain a polyoxyalkylene polyol having a hydroxyl value of 28 mgKOH / g. Monool content obtained by the method similar to Example 1 was 9.6 mol%, the viscosity was 3080 cps / 25 degreeC, and HT bond selectivity was 85.4 mol%. The results are shown in Table 3.

비교예 3Comparative Example 3

폴리올 N : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 80℃, 반응최대압력 3.5kg/cm2(440 kPa)에서 부가중합하여, 수산기가 50 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 100℃, 반응최대압력 3.5kg/cm2(440 kPa)에서 부가중합하여, 수산기가 28 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 22.9mol%, 점도는 1200cps/25℃, H-T 결합선택율은 97.5mol%이었다. 결과를 표3에 나타낸다.Polyol N: cesium hydroxide was added to a 0.23mol glycerin 1mol, the combined addition of from 100 ℃ 6 sigan dehydration after propylene oxide and the reaction temperature 80 ℃, maximum reaction pressure 3.5kg / cm 2 (440 kPa) , a hydroxyl value of 50 A mgKOH / g polyoxypropylene polyol was obtained. The propylene oxide was further polymerized at a reaction temperature of 100 ° C. and a reaction maximum pressure of 3.5 kg / cm 2 (440 kPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 28 mgKOH / g. Monool content obtained by the method similar to Example 1 was 22.9 mol%, the viscosity was 1200 cps / 25 degreeC, and HT bond selectivity was 97.5 mol%. The results are shown in Table 3.

비교예 4Comparative Example 4

폴리올 O : 글리세린 1mol에 0.53mol의 수산화세슘을 가하고 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 90℃, 반응최대압력 3.5kg/cm2(440 kPa)에서 부가중합하여, 수산기가 117 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌 옥시드를 반응온도 90℃, 반응최대압력 3.5kg/cm2(440 KPa)에서 부가중합하여 수산기가 31 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 22.7mol%, 점도는 1160cps/25℃, H-T 결합선택율은 95.4mol%였다. 결과를 표3에 나타낸다.Polyol O: after putting the cesium hydroxide of 0.53mol dehydrated at 100 ℃ 6 hours in glycerol 1mol reaction of propylene oxide the temperature 90 ℃, the combined addition of the reaction at a maximum pressure 3.5kg / cm 2 (440 kPa) , a hydroxyl value of 117 mgKOH / g polyoxypropylene polyol was obtained. The propylene oxide was further polymerized at a reaction temperature of 90 ° C. and a reaction maximum pressure of 3.5 kg / cm 2 (440 KPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 31 mgKOH / g. Monool content obtained by the method similar to Example 1 was 22.7 mol%, the viscosity was 1160 cps / 25 degreeC, and HT bond selectivity was 95.4 mol%. The results are shown in Table 3.

비교예 5Comparative Example 5

폴리올 P : 글리세린 1mol에 0.23mol의 수산화세슘을 가하고, 100℃에서 6시간 탈수후 프로필렌옥시드를 반응온도 95℃, 반응최대압력 4kg/cm2(490 kPa)에서 부가중합하여, 수산기가 117 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 또 프로필렌옥시드를 반응온도 95℃, 반응최대압력 4.5kg/cm2(540 kPa)에서 부가중합하여, 수산기가 28 mgKOH/g의 폴리옥시프로필렌 폴리올을 얻었다. 실시예1과 같은 방법에 의해 얻은 모노올 함유량은 17.7mol%, 점도는 1110cps/25℃, H-T 결합선택율은 96.9mol%이었다. 결과를 표3에 나타낸다.Polyol P: cesium hydroxide was added to a 0.23mol 1mol the glycerin, adding the sum of 6 hours at 100 ℃ dehydrated propylene oxide at a reaction temperature of 95 ℃, maximum reaction pressure 4kg / cm 2 (490 kPa) , a hydroxyl value of 117 mgKOH / g polyoxypropylene polyol was obtained. The propylene oxide was further polymerized at a reaction temperature of 95 ° C. and a reaction maximum pressure of 4.5 kg / cm 2 (540 kPa) to obtain a polyoxypropylene polyol having a hydroxyl value of 28 mgKOH / g. The monool content obtained by the method similar to Example 1 was 17.7 mol%, the viscosity was 1110 cps / 25 degreeC, and HT bond selectivity was 96.9 mol%. The results are shown in Table 3.

실시예 및 비교예의 폴리옥시알킬렌 폴리올은 모두 반응종료후에 물과 인산을 가하여 중화후 감압건조하여, 생성된 알칼리금속인산염의 결정을 여과에 의해 제거한 후, 상술한 방법에 의해 수산기가, 점도, 모노올함량, H-T 결합선택율을 측정하였다.The polyoxyalkylene polyols of Examples and Comparative Examples were all neutralized by adding water and phosphoric acid after the completion of the reaction, and then dried under reduced pressure. The crystals of the resulting alkali metal phosphate were removed by filtration, and the hydroxyl value, viscosity, Monool content and HT binding selectivity were measured.

실시예 및 비교예를 표1 내지 표3에 정리하여 나타내었으나, 표중의 개시제 A는 글리세린, 개시제 B는 펜타에리트리톨의 프로필렌옥시드부가물(수산기가 450 mgKOH/g)이다. 촉매 A는 수산화세슘, 촉매 B는 수산화칼륨, 촉매 C는 수산화루비듐을 나타내며, 촉매 D는 아연·코발트시안화물과 염화아연, 물, 디메톡시에탄올로 되는 소위 복합금속시아노화착체(DMC 촉매)이다.Examples and Comparative Examples are summarized in Tables 1 to 3, but Initiator A in the table is glycerin and Initiator B are propylene oxide adducts (450 mgKOH / g hydroxyl value of pentaerythritol). Catalyst A represents cesium hydroxide, catalyst B represents potassium hydroxide, catalyst C represents rubidium hydroxide, and catalyst D is a so-called complex metal cyanocomplex (DMC catalyst) consisting of zinc cobalt cyanide, zinc chloride, water and dimethoxyethanol. .

또 PO는 프로필렌옥시드, EO는 에틸렌옥시드의 약자이다.PO stands for propylene oxide and EO stands for ethylene oxide.

표 1Table 1

폴리올Polyol 실시예1 2 3 4 5 6A B C D E FExample 1 2 3 4 5 6 A B C D E F 개시제 A (mol)개시제 B (mol)촉매 A (mol)촉매 B (mol)촉매 C (mol)촉매 D (g)Initiator A (mol) Initiator B (mol) Catalyst A (mol) Catalyst B (mol) Catalyst C (mol) Catalyst D (g) 1 1 1 1 - 1- - - - 1 -0.13 0.43 0.23 - 0.23 0.13- - - 0.23 - -- - - - - -- - - - - -1 1 1 1-1----1 -0.13 0.43 0.23-0.23 0.13---0.23------------- PO 부가중합온도 반응전반(℃) 반응후반최대압력 반응전반(kgf/㎠)반응후반PO 부가후의 수산기가 (mgKOH/g)PO addition polymerization temperature First half reaction (℃) Maximum half pressure after reaction (kgf / cm2) Second half reaction After hydroxyl addition (mgKOH / g) 95 65 80 70 80 6095 75 80 70 90 603.5 2.0 3.5 3.5 3.5 2.03.5 3.0 3.5 3.5 3.5 2.033 28 28 33 29 1695 65 80 70 80 60 95 75 80 70 90 60 3.5 2.0 3.5 3.5 3.5 2.0 3.5 3.0 3.5 3.5 3.5 2.033 28 28 33 29 16 EO 부가중합온도(℃)최대압력(kgf/㎠)EO addition polymerization temperature (℃) Maximum pressure (kgf / ㎠) 100 - 80 100 100 -3.5 - 3.5 3.5 3.5 -100-80 100 100 -3.5-3.5 3.5 3.5- 수산기가(mgKOH/g)점도(cps/25℃)모노올함량(mol%)H-T 결합선택율(mol%)Hydroxyl value (mgKOH / g) viscosity (cps / 25 ℃) monool content (mol%) H-T bond selectivity (mol%) 28 28 24 29 25 171140 1250 1650 1100 1800 230013.0 11.9 8.0 13.7 14.3 14.696.7 96.2 96.3 96.5 96.4 97.028 28 24 29 25 171 140 1250 1650 1100 1800 230013.0 11.9 8.0 13.7 14.3 14.696.7 96.2 96.3 96.5 96.4 97.0

표 2TABLE 2

폴리올Polyol 실시예7 8 9 10 11G H I J KExample 7 8 9 10 11 G H I J K 개시제 A (mol)개시제 B (mol)촉매 A (mol)촉매 B (mol)촉매 C (mol)촉매 D (g)Initiator A (mol) Initiator B (mol) Catalyst A (mol) Catalyst B (mol) Catalyst C (mol) Catalyst D (g) 1 1 1 1 -- - - - -0.23 0.23 0.23 0.23 0.23- - - - -0.10 - - - -- - - - -1 1 1 1-----0.23 0.23 0.23 0.23 0.23-----0.10-------- PO 부가중합온도 반응전반(℃) 반응후반최대압력 반응전반(kgf/㎠) 반응후반PO 부가후의 수산기가 (mgKOH/g)PO addition polymerization temperature Overall reaction (℃) Maximum pressure after reaction Maximum reaction (kgf / ㎠) Hydroxyl value after addition of PO (mgKOH / g) 80 80 80 80 8080 80 80 80 802.5 3.5 3.5 3.5 3.52.5 3.5 3.5 3.5 3.533 33 25 20 3380 80 80 80 80 80 80 80 80 802.5 3.5 3.5 3.5 3.52.5 3.5 3.5 3.5 3.533 33 25 20 33 EO 부가중합온도(℃)최대압력(kgf/㎠)EO addition polymerization temperature (℃) Maximum pressure (kgf / ㎠) - 100 100 100 100- 3.5 3.5 3.5 3.5-100 100 100 100- 3.5 3.5 3.5 3.5 수산기가(mgKOH/g)점도(cps/25℃)모노올함량(mol%)H-T 결합선택율(mol%)Hydroxyl value (mgKOH / g) viscosity (cps / 25 ℃) monool content (mol%) H-T bond selectivity (mol%) 34 28 21 17 28950 1290 1950 2380 142010.5 7.2 10.5 14.0 9.596.3 96.4 97.0 97.2 96.534 28 21 17 28950 1290 1950 2380 142010.5 7.2 10.5 14.0 9.596.3 96.4 97.0 97.2 96.5

표 3TABLE 3

폴리올Polyol 비교예1 2 3 4 5L M N O PComparative Example 1 2 3 4 5L M N O P 개시제 A (mol)개시제 B (mol)촉매 A (mol)촉매 B (mol)촉매 C (mol)촉매 D (g)Initiator A (mol) Initiator B (mol) Catalyst A (mol) Catalyst B (mol) Catalyst C (mol) Catalyst D (g) 1 1 1 1 1- - - - -- - 0.23 0.53 0.230.37 - - - -- - - - -- 6.93 - - -1 1 1 1 1------0.23 0.53 0.230.37--------6.93--- PO 부가중합온도 반응전반(℃) 반응후반최대압력 반응전반(kgf/㎠) 반응후반PO 부가후의 수산기가 (mgKOH/g)PO addition polymerization temperature Overall reaction (℃) Maximum pressure after reaction Maximum reaction (kgf / ㎠) Hydroxyl value after addition of PO (mgKOH / g) 115 90 80 90 95115 90 100 90 955.0 4.0 3.5 3.5 4.05.0 4.0 3.5 3.5 4.533 33 28 31 28115 90 80 90 95 115 90 100 90 955.0 4.0 3.5 3.5 4.05.0 4.0 3.5 3.5 4.533 33 28 31 28 EO 부가중합온도(℃)최대압력(kgf/㎠)EO addition polymerization temperature (℃) Maximum pressure (kgf / ㎠) 100 100 - - -5.0 4.0 - - -100 100---5.0 4.0--- 수산기가(mgKOH/g)점도(cps/25℃)모노올함량(mol%)H-T 결합선택율(mol%)Hydroxyl value (mgKOH / g) viscosity (cps / 25 ℃) monool content (mol%) H-T bond selectivity (mol%) 28 28 28 31 281150 3080 1200 1160 111029.3 9.6 22.9 22.7 17.796.3 85.4 97.5 95.4 96.928 28 28 31 281150 3080 1200 1160 11 1029.3 9.6 22.9 22.7 17.796.3 85.4 97.5 95.4 96.9

2. 폴리머폴리올의 제조2. Preparation of Polymer Polyols

제조예 1Preparation Example 1

폴리머 폴리올(C) : 온도계, 교반장치, 송액(送液) 장치가 부착된 1리터 오토클레이브에 실시예 3에서 얻은 폴리올 C를 만액상태로 채워 교반하면서 120℃까지 승온하였다. 표4에 나타낸 비율로 미리 혼합한 폴리올C, 아조비스이소부틸로니트릴, 아크릴로니트릴의 혼합액을 연속적으로 장입하여 배출구에서 연속적으로 폴리머 폴리올을 얻었다. 이때 반응압력은 3.5kg/cm2, 체류시간은 50분이었다. 정상상태에 도달한 후, 얻은 반응액을 120℃, 20mmHg에서 4시간 감압흡인처리하여 미반응단량체를 제거하여 폴리머 폴리올을 얻었다. 결과를 표4에 나타낸다.Polymer polyol (C): The polyol C obtained in Example 3 was filled in liquid state in a 1 liter autoclave with a thermometer, a stirring device, and a liquid feeding device, and the temperature was raised to 120 ° C while stirring. A mixture of polyol C, azobisisobutylonitrile, and acrylonitrile mixed in advance in the ratio shown in Table 4 was continuously charged to obtain a polymer polyol continuously at the outlet. At this time, the reaction pressure was 3.5kg / cm 2 , and the residence time was 50 minutes. After reaching the steady state, the obtained reaction solution was aspirated under reduced pressure at 120 ° C. at 20 mmHg for 4 hours to remove unreacted monomer to obtain a polymer polyol. The results are shown in Table 4.

제조예 2Preparation Example 2

폴리머 폴리올 L : 온도계, 교반장치, 송액장치가 부착된 1리터 오토클레이브에 비교예 1에서 얻은 폴리올 L을 만액상태로 채워, 교반하면서 120℃까지 승온하였다. 표4에 나타낸 비율로 미리 혼합한 폴리올 L, 아조비스이소부틸로니트릴, 아크릴로니트릴의 혼합액을 연속적으로 장입하여, 배출구에서 연속적으로 폴리머 폴리올을 얻었다. 이때 반응압력은 3.5kg/cm2, 체류시간은 50분이었다. 정상상태에 도달한 후, 얻은 반응액을 120℃, 20mmHg에서 4시간 감압흡인처리하여 미반응단량체를 제거하여 폴리머 폴리올을 얻었다. 결과를 표4에 나타낸다.Polymer polyol L: The polyol L obtained in the comparative example 1 was filled in the liquid state in 1 liter autoclave with a thermometer, a stirring apparatus, and a liquid feeding apparatus, and it heated up to 120 degreeC, stirring. A mixture of polyol L, azobisisobutyronitrile and acrylonitrile mixed in advance in the ratio shown in Table 4 was continuously charged to obtain a polymer polyol continuously at the outlet. At this time, the reaction pressure was 3.5kg / cm 2 , and the residence time was 50 minutes. After reaching the steady state, the obtained reaction solution was aspirated under reduced pressure at 120 ° C. at 20 mmHg for 4 hours to remove unreacted monomer to obtain a polymer polyol. The results are shown in Table 4.

제조예3Preparation Example 3

폴리머 폴리올 M : 온도계, 교반장치, 송액장치가 부착된 1리터 오토클레이브에 비교예 2에서 얻은 폴리올 M을 만액상태로 채우고, 교반하면서 120℃까지 승온하였다. 표4에 나타낸 비율로 미리 혼합한 폴리올 M, 아조비스이소부틸로니트릴, 아크릴로니트릴의 혼합액을 연속적으로 장입하여, 배출구에서 연속적으로 폴리머 폴리올을 얻었다. 이때 반응압력은 3.5kg/cm2, 체류시간은 50분이었다. 정상상태로 도달한 후, 얻은 반응액을 120℃, 20mmHg에서 4시간 감압흡인처리하여 미반응단량체를 제거하여 폴리머 폴리올을 얻었다. 결과를 표4에 나타낸다.Polymer polyol M: The polyol M obtained by the comparative example 2 was filled in the liquid state in 1 liter autoclave with a thermometer, a stirring apparatus, and a liquid feeding apparatus, and it heated up to 120 degreeC, stirring. The mixed liquid of polyol M, azobisisobutylonitrile, and acrylonitrile previously mixed in the ratio shown in Table 4 was continuously charged to obtain a polymer polyol continuously at the outlet. At this time, the reaction pressure was 3.5kg / cm 2 , and the residence time was 50 minutes. After reaching the steady state, the resultant reaction solution was aspirated under reduced pressure at 120 ° C. and 20 mmHg for 4 hours to remove unreacted monomer to obtain a polymer polyol. The results are shown in Table 4.

제조예 1∼3에서 얻은 폴리머 폴리올에 대해 상술한 방법으로 수산기가와 점도를 측정하였다. 또, 원소분석에 의한 질소함량으로부터 폴리머농도를 구하였다. 표준 AIBN은 아조비스이소부틸로니트릴, AN은 아크릴로니트릴의 약자이다.The hydroxyl value and viscosity were measured by the method mentioned above about the polymer polyol obtained by manufacture examples 1-3. The polymer concentration was also determined from the nitrogen content by elemental analysis. Standard AIBN stands for azobisisobutylonitrile and AN stands for acrylonitrile.

표 4Table 4

폴리머폴리올Polymer polyol 제조예1 2 3C L MPreparation Example 1 2 3C L M 폴리올(중량부)폴리올(중량부)폴리올(중량부)AIBN (중량부)AN (중량부)Polyol (part by weight) Polyol (part by weight) Polyol (part by weight) AIBN (part by weight) AN (part by weight) 77.6 - -- 77.6 -- - 77.60.35 0.35 0.3522.4 22.4 22.477.6--77.6--77.60.35 0.35 0.3522.4 22.4 22.4 수산기가(mg KOH/g)점도(cps/25℃)폴리머농도(중량%)Hydroxyl value (mg KOH / g) viscosity (cps / 25 ℃) polymer concentration (wt%) 19.5 22.8 22.84800 3600 954021.0 20.6 20.919.5 22.8 22.84 800 3600 954021.0 20.6 20.9

3. 폴리우레탄 폼의 제조3. Preparation of Polyurethane Foam

상기 폴리옥시알킬렌 폴리올 및 폴리머 폴리올 이외에 아래에 나타내는 원료를 사용하였다.In addition to the polyoxyalkylene polyol and polymer polyol, the raw materials shown below were used.

(촉매-1) Minico L-1020 : 활재(活材)케미칼 사제의 아민계 촉매(Catalyst-1) Minico L-1020: amine catalyst made from lubricant chemical company

(트리에틸렌디아민의 33% 디에틸렌글리콜용 액)(33% diethylene glycol solution of triethylenediamine)

(촉매-2) Niax A-1 : ARCO 사제의 아민계 촉매(Catalyst-2) Niax A-1: Amine catalyst made by ARCO

(가교제-1) KL-210 : 미쓰이도오아쓰화학사제로 수산기가 830 mgKOH/g의 아민계 가교제(Crosslinker-1) KL-210: An amine crosslinking agent with a hydroxyl value of 830 mgKOH / g, manufactured by Mitsui Oatsu Chemical Co., Ltd.

(정포제-1) SRX-274C : 토오레·다우코닝·실리콘사제의 정포제(Foaming agent-1) SRX-274C: foaming agent made by Toray Dow Corning Silicone Co., Ltd.

(이소시아네이트-1) 코스모네이트 TM-20 : 미쓰이도오아쓰화학사제로 TD1-80과 폴리머릭 MDI와의 80:20 중량비의 혼합물(Isocyanate-1) Cosmonate TM-20: A mixture of 80:20 weight ratio of TD1-80 and polymeric MDI, manufactured by Mitsui Otsu Chemical Co., Ltd.

물성측정은 JIS K-6301 및 JIS K-6401에 의해 행하였다. 실시예 및 비교예중의 밀도는 오버올 밀도를 나타낸다.Physical properties were measured according to JIS K-6301 and JIS K-6401. The density in an Example and a comparative example shows an overall density.

실시예 12Example 12

아래에 나타내는 7성분을 혼합하여 레진액을 만들었다.The 7 components shown below were mixed and the resin liquid was created.

폴리올 C 60 중량부Polyol C 60 parts by weight

폴리머폴리올 C 40 중량부Polymer polyol C 40 parts by weight

물 3.0 중량부3.0 parts by weight of water

촉매 -1 0.5 중량부0.5 parts by weight of catalyst -1

촉매 -2 0.1 중량부0.1 parts by weight of catalyst -2

가교제 -1 3.0 중량부Crosslinking agent -1 3.0 parts by weight

정포제 -1 1.0 중량부Foam stabilizer -1 1.0 parts by weight

상기 레진액 107.6 중량부에 이소시아네이트-1 39중량부를 혼합하고, 즉시 미리 60℃로 조정한 내부치수 400×400×100mm의 금형에 주입하여, 뚜껑을 닫고 발포시켰다. 100℃의 열풍오븐 중에서 7분간 가열경화한 후, 폼을 금형에서 꺼내었다. 얻어진 폼의 물성을 표5에 나타낸다.39 parts by weight of isocyanate-1 was mixed with 107.6 parts by weight of the resin solution, and immediately injected into a mold having an internal dimension of 400 × 400 × 100 mm previously adjusted to 60 ° C., and the lid was closed and foamed. After 7 minutes of heat curing in a hot air oven at 100 ° C., the foam was taken out of the mold. The physical properties of the obtained foam are shown in Table 5.

이소시아네이트와 레진액의 활성수소와의 당량비(NCO/H)는 1.00이었다.The equivalent ratio (NCO / H) of the isocyanate and the active hydrogen of the resin solution was 1.00.

실시예 13∼17Examples 13-17

실시예 12에서의 폴리올 C를 폴리올 E, H, I, J, K로 변경하는 것 이외에는 실시예 12와 같은 방법으로 행하였다.The same procedure as in Example 12 was carried out except that the polyol C in Example 12 was changed to polyols E, H, I, J, and K.

이소시아네이트와 레진액의 활성수소와의 당량비(NCO/H)는 1.00으로 하였다. 얻어진 폼의 물성을 표5에 나타낸다.The equivalent ratio (NCO / H) of the isocyanate and the active hydrogen of the resin solution was set to 1.00. The physical properties of the obtained foam are shown in Table 5.

비교예 6Comparative Example 6

실시예 12에서의 폴리올 C를 폴리올 L로 변경하고, 폴리머 폴리올 C를 폴리머 폴리올 L로 변경한 것 이외에는 실시예 12와 같은 방법으로 행하였다.The same procedure as in Example 12 was carried out except that the polyol C in Example 12 was changed to polyol L and the polymer polyol C was changed to polymer polyol L.

이소시아네이트와 레진액의 활성수소와의 당량비(NCO/H)는 1.00으로 하였다. 얻어진 폼의 물성을 표5에 나타낸다.The equivalent ratio (NCO / H) of the isocyanate and the active hydrogen of the resin solution was set to 1.00. The physical properties of the obtained foam are shown in Table 5.

비교예 7Comparative Example 7

실시예 12에서의 폴리올 C를 폴리올 M으로 변경하고, 폴리머 폴리올 C를 폴리머 폴리올 M으로 변경한 것 이외에는 실시예 12와 같은 방법으로 행하였다.It carried out by the same method as Example 12 except having changed the polyol C in Example 12 into polyol M, and the polymer polyol C into polymer polyol M.

이소시아네이트와 레진액의 활성수소와의 당량비(NCO/H)는 1.00으로 하였다. 얻어진 폼의 물성을 표5에 나타낸다.The equivalent ratio (NCO / H) of the isocyanate and the active hydrogen of the resin solution was set to 1.00. The physical properties of the obtained foam are shown in Table 5.

비교에 7에서 얻은 폼(복합금속시아노화착체 촉매사용)은 실시예에서 얻은 폼에 비하여 독립기포성이 매우 강하며, 폼의 셀도 조대하였다.Compared to the foam obtained in Example, the foam obtained in Comparative 7 (using a composite metal cyanocomplex catalyst) was very strong in terms of independent foaming, and the cell of the foam was also coarse.

표 5Table 5

실시예12 13 14 15 16 17Example 12 13 14 15 16 17 비교예6 7Comparative Example 6 7 폴리올폴리머폴리올Polyol Polymer Polyol C E H I J KC C C C C CC E H I J K C C C C C C L ML ML ML M (물성)밀도(㎏/㎥)경도 25% ILD(㎏/314㎠)습열내구성50% 웨트세트(Wet Set)%(Physical Properties) Density (kg / ㎥) Hardness 25% ILD (kg / 314㎠) Wet Heat Durability 50% Wet Set% 54.0 54.5 54.1 54.3 54.2 54.318.0 18.5 19.1 17.5 16.4 19.27.5 7.7 8.0 7.4 7.4 7.954.0 54.5 54.1 54.3 54.2 54.318.0 18.5 19.1 17.5 16.4 19.27.5 7.7 8.0 7.4 7.4 7.9 54.4 54.918.6 18.214.1 18.054.4 54.918.6 18.214.1 18.0

실시예 12∼14, 17에서는 폼밀도=54∼55kg/m3, 25% ILD=18∼29kg/314cm2에 있어서 50%웨트세트가 7∼8% 이다. 이에 비하여 비교예 6∼7에서는 거의 동등한 밀도, 경도에 있어서 50% 웨트세트가 14∼18%를 나타내었다. 본 결과로부터, 본 실시예에 나타낸 연질 폴리우레탄 폼은 내습열내구성 개량에 효과적인 것을 알 수 있다.In Examples 12 to 14 and 17, the 50% wet set was 7 to 8% at a foam density of 54 to 55 kg / m 3 and 25% ILD of 18 to 29 kg / 314 cm 2 . On the other hand, in Comparative Examples 6-7, 50% wet set showed 14-18% in almost the same density and hardness. From this result, it is understood that the flexible polyurethane foam shown in this example is effective for improving the moisture resistance and heat resistance.

폴리머폴리올의 평가Evaluation of Polymer Polyols

실시예, 비교예에 사용한 원료, 약어 및 분석법을 아래에 설명한다.The raw material, abbreviation, and analysis method which were used for the Example and the comparative example are demonstrated below.

폴리올 A∼E : 제조예 1∼5에서 얻은 폴리옥시알킬렌 폴리올.Polyols A to E: Polyoxyalkylene polyols obtained in Production Examples 1 to 5.

촉매 (가) : 수산화세슘.Catalyst (a): Cesium hydroxide.

촉매 (나) ; 수산화칼륨.Catalyst (b); Potassium hydroxide.

촉매 (다) ; 아연·코발트시안화합물과 염화아연, 물, 디메톡시에탄올로 되는, 소위 복합금속시아노화착체 촉매.Catalyst (C); A so-called complex metal cyanocomplex catalyst comprising a zinc cobalt cyanide compound, zinc chloride, water, and dimethoxyethanol.

PO ; 프로필렌옥시드.PO; Propylene oxide.

EO ; 에틸렌옥시드.EO; Ethylene oxide.

AN ; 아크릴로니트릴.AN; Acrylonitrile.

St ; 스틸렌.St; Styrene.

TEA ; 트리에틸아민.TEA; Triethylamine.

AIBN ; 아조이소부틸로니트릴.AIBN; Azoisobutylonitrile.

폴리머폴리올 a∼i ; 실시예 18∼22, 비교예 8∼11에서 얻은 폴리머 폴리올.Polymer polyols a to i; Polymer polyols obtained in Examples 18 to 22 and Comparative Examples 8 to 11.

물 ; 이온교환수.Water; Ion exchange water.

L-1020 ; 활재케미칼사제 촉매.L-1020; Catalyst made by lubricant chemicals.

X-DM ; 활재케미칼사제 촉매.X-DM; Catalyst made by lubricant chemicals.

KL-210 ; 미쓰이도오아쓰화학사제 가교제.KL-210; Crosslinking agent made by Mitsui Oatsu Chemical Co., Ltd.

L-5309 ; 닛뽄유니카사제 계면활성제.L-5309; A surfactant made by Nippon Unicas.

TM-20 ; TDI-80/20(2,4-토릴렌디이소시아네이트와 2,6-토릴렌디이소시아네이트와의 중량비 80대20의 혼합물)과 미쓰이도오아쓰사제 코스모네이트 MDI-CR과의 중량비 80대 20의 혼합물.TM-20; A mixture of TDI-80 / 20 (a mixture of 80 to 20 weight ratio of 2,4-tolylene diisocyanate and 2,6-torylene diisocyanate) with a weight ratio of 80 to 20 with Cosmonate MDI-CR manufactured by Mitsui Oatsu Corporation.

폼의 물성 ; JIS K-6301, JIS K-6401에 준하여 측정.Foam properties; Measured according to JIS K-6301 and JIS K-6401.

1. 폴리옥시알킬렌 폴리올의 제조1. Preparation of Polyoxyalkylene Polyols

제조예 1∼4Production Examples 1-4

글리세린에 촉매(가) 또는 (나)를 가하여, 100℃에서 6시간 탈수후, 표6에 나타낸 조건에서 프로필렌옥시드를 부가중합하고 이어, 이 폴리옥시알킬렌 폴리올에 대하여 15wt%의 에틸렌옥시드를 부가중합하였다. 반응종료후에 물과 인산을 가하여 중화후 감압건조하고 생성된 알칼리금속인산염의 결정을 여과에 의해 제거하고 폴리올 A∼D를 얻었다. 물성치를 표6에 나타낸다.Catalyst (A) or (B) was added to glycerin, followed by dehydration at 100 DEG C for 6 hours, followed by addition polymerization of propylene oxide under the conditions shown in Table 6, followed by 15 wt% of ethylene oxide based on this polyoxyalkylene polyol. Was addition polymerized. After completion of the reaction, water and phosphoric acid were added, neutralized, dried under reduced pressure, and the produced crystals of alkali metal phosphate were removed by filtration to obtain polyols A to D. Physical properties are shown in Table 6.

제조예 5Preparation Example 5

글리세린에 촉매 (다)를 6.93g을 가하고, 표6에 나타낸 조건에서 프로필렌옥시드를 부가중합하였다. 촉매(다)를 암모니아수에 의해 추출하고, 수세하여 폴리옥시프로필렌 폴리올을 정제후,수산화칼륨을 글리세린 1몰에 대하여 0.23몰이 되도록 가하고, 100℃에서 6시간 감압탈수를 하였다. 이어 에틸렌옥시드를 표6에 나타낸 조건에서 부가중합하였다. 반응종료후에 물과 인산을 가하여 중화후, 감압건조하고 생성된 알칼리금속인산염의 결정을 여과에 의해 제거하고 폴리올 E를 얻었다. 물성치를 표6에 나타낸다.6.93 g of catalyst (C) was added to glycerin, and propylene oxide was polymerized under the conditions shown in Table 6. The catalyst (C) was extracted with ammonia water, washed with water to purify the polyoxypropylene polyol, and potassium hydroxide was added to 0.23 mol with respect to 1 mol of glycerin, followed by dehydration under reduced pressure at 100 ° C for 6 hours. Ethylene oxide was then polymerized under the conditions shown in Table 6. After completion of the reaction, water and phosphoric acid were added to neutralize, dried under reduced pressure, and crystals of the resulting alkali metal phosphate were removed by filtration to obtain polyol E. Physical properties are shown in Table 6.

표 6Table 6

제조예1Preparation Example 1 제조예2Preparation Example 2 제조예3Preparation Example 3 제조예4Preparation Example 4 제조예5Preparation Example 5 폴리올Polyol AA BB CC DD EE 글리세린 mol촉매(가) mol촉매(나) mol촉매(다) gGlycerin mol catalyst (A) mol catalyst (B) mol catalyst (C) g 1.000.23--1.000.23-- 1.000.23--1.000.23-- 1.00-0.37-1.00-0.37- 1.00-0.37-1.00-0.37- 1.00-0.236.931.00-0.236.93 PO 부가반응온도 ℃최대압력 kgf/㎠수산기가(mg KOH/g)EO 부가반응온도 ℃최대압력 kgf/㎠PO addition reaction temperature ℃ maximum pressure kgf / ㎠ hydroxyl value (mg KOH / g) EO addition reaction temperature ℃ maximum pressure kgf / ㎠ 803.537803.5803.537803.5 803.528803.5803.528803.5 1154.0371154.01154.0371154.0 1154.0281154.01154.0281154.0 904.028904.0904.028904.0 수산기가(㎎ KOH/g)모노올함유량(mol%)헤드-대-테일선택율(%)점도(cps/25℃)Hydroxyl value (mg KOH / g) monool content (mol%) head-to-tail selectivity (%) viscosity (cps / 25 ° C) 33.86.796.8110033.86.796.81100 23.58.096.4165023.58.096.41650 33.424.096.390033.424.096.3900 24.035.596.4140024.035.596.41400 24.011.086.4330024.011.086.43300

2. 폴리머 폴리올의 제조2. Preparation of Polymer Polyols

실시예 18∼22, 비교예 8∼11Examples 18-22, Comparative Examples 8-11

온도계, 교반장치, 송액장치가 부착된 1리터 오토클레이브에 폴리올을 만액상태로 채워, 교반하면서 120℃까지 승온하였다. 표7, 8에 나타낸 비율로 미리 혼합한 폴리올, AIBN, AN, St, TEA의 혼합액을 연속적으로 장입하여, 배출구에서 연속적으로 폴리머 폴리올을 얻었다. 이때 반응압력은 3.5kg/cm2(440 kPa), 체류시간은 50분이었다. 정상상태에 도달한 후, 얻어진 반응액을 120℃, 20mmHg에서 4시간 감압흡인처리하고, 미반응단량체 및 TEA를 제거하여 폴리머 폴리올 a∼i를 얻었다. 결과를 표7, 8에 나타낸다.The 1-liter autoclave equipped with a thermometer, a stirrer, and a liquid feeding device was filled with a polyol in a fully liquid state, and the temperature was raised to 120 ° C while stirring. The mixed liquid of the polyol, AIBN, AN, St, and TEA mixed in advance at the ratio shown in Tables 7 and 8 was continuously charged to obtain a polymer polyol continuously at the outlet. At this time, the reaction pressure was 3.5kg / cm 2 (440 kPa), and the residence time was 50 minutes. After the steady state was reached, the reaction solution was aspirated under reduced pressure at 120 ° C. at 20 mmHg for 4 hours, and unreacted monomer and TEA were removed to obtain polymer polyols ai. The results are shown in Tables 7 and 8.

표 7TABLE 7

실시예18 19 20 21 22Example 18 19 20 21 22 폴리머폴리올Polymer polyol aa dd ee ff gg 폴리올 A (중량부)폴리올 B (중량부)Polyol A (parts by weight) Polyol B (parts by weight) -77.60-77.60 47.55-47.55- 53.33-53.33- 53.33-53.33- -46.86-46.86 AN (중량부)St (중량부)TEA (중량부)AIBN (중량부)AN (parts by weight) St (parts by weight) TEA (parts by weight) AIBN (parts by weight) 22.40--0.3522.40--0.35 41.9610.494.000.2641.9610.494.000.26 37.349.331.000.2637.349.331.000.26 30.3416.331.000.2630.3416.331.000.26 42.5110.634.000.2642.5110.634.000.26 수산기가(㎎ KOH/g)점도(cps/25℃)폴리머농도(중량%)Tg(℃)Hydroxyl value (mg KOH / g) viscosity (cps / 25 ℃) polymer concentration (wt%) Tg (℃) 19.5480021.0-19.5480021.0- 19.7660047.69919.7660047.699 18.6684044.811518.6684044.8115 18.6650044.011818.6650044.0118 15.31320050.09915.31320050.099 응집입자Agglomerated particles 없음none 없음none 없음none 없음none 없음none

표 8Table 8

비교예8 9 10 11Comparative Example 8 9 10 11 폴리머폴리올Polymer polyol aa cc hh ii 폴리올 A (중량부)폴리올 C (중량부)폴리올 D (중량부)폴리올 E (중량부)Polyol A (parts by weight) Polyol C (parts by weight) Polyol D (parts by weight) Polyol E (parts by weight) --77.60---77.60- ---75.97--- 75.97 -53.33---53.33-- 53.33---53.33 --- AN (중량부)St (중량부)TEA (중량부)AIBN (중량부)AN (parts by weight) St (parts by weight) TEA (parts by weight) AIBN (parts by weight) 22.40--0.3522.40--0.35 18.975.07-0.3518.975.07-0.35 37.349.33-0.2637.349.33-0.26 37.349.33-0.2637.349.33-0.26 수산기가(㎎ KOH/g)점도(cps/25℃)폴리머농도(중량%)Tg(℃)Hydroxyl value (mg KOH / g) viscosity (cps / 25 ℃) polymer concentration (wt%) Tg (℃) 19.8410020.8-19.8410020.8- 18.11200022.311218.11200022.3112 18.51450044.212318.51450044.2123 18.91500044.012518.91500044.0125 응집입자Agglomerated particles 없음none 있음has exist 있음has exist 있음has exist

3. 폴리우레탄 폼의 제조3. Preparation of Polyurethane Foam

실시예 23∼24, 비교예 12∼13Examples 23-24, Comparative Examples 12-13

폴리머 폴리올, 폴리올, 물, L-1020, X-DM, KL-210, L-5309를 표9에 나타낸 비율로 교반혼합하여 레진프리믹스로 만들어 25℃로 조정하였다. NCO기와 레진 프리믹스의 활성수소의 당량비가 1.00이 되는 양을 25℃로 조정한 TM-20과, 먼저 조정한 레진프리믹스를 목적하는 밀도의 폼을 얻을 수 있도록 사용량을 조정하여, 6초간 강하게 교반혼합하고, 미리 60℃로 가열하여 시판되는 이형제를 도포하여 둔 알루미늄제 테스트 몰드에 주입후, 뚜껑을 닫고 클램프로 밀폐하여, 발포경화시켰다. 교반개시후 3분경과시에 몰드의 클램프를 떼고, 경화한 연질 폴리우레탄 폼을 탈형하여, 폼을 손으로 눌렀을 때의 힘의 크기로 독립기포성을 평가하였다. 그후 롤러를 사용하여 두께를 80% 압축하여 크러싱(crushing) 하였다. 24시간후에 여러물성을 측정하였다. 폼 물성을 표9에 나타낸다.Polymer polyol, polyol, water, L-1020, X-DM, KL-210, L-5309 were stirred and mixed at the ratio shown in Table 9 to make a resin premix and adjusted to 25 ° C. The amount of NCO and the active hydrogen equivalent of the resin premix is adjusted to 1.00 at 25 ° C, and the amount used is adjusted so as to obtain a foam having a desired density for the resin premix that has been adjusted. After injection into a test mold made of aluminum, which was heated to 60 ° C in advance and commercially available a release agent was applied, the lid was closed, sealed with a clamp, and foamed and cured. Three minutes after the start of the stirring, the mold was clamped, the cured flexible polyurethane foam was demolded, and the independent foamability was evaluated by the magnitude of the force when the foam was pressed by hand. The rollers were then crushed by compressing the thickness by 80%. After 24 hours, various physical properties were measured. Foam properties are shown in Table 9.

표 9Table 9

실시예 23Example 23 비교예 12Comparative Example 12 실시예 24Example 24 비교예 13Comparative Example 13 폴리머폴리올 a폴리머폴리올 b폴리머폴리올 e폴리머폴리올 hPolymer Polyol a Polymer Polyol b Polymer Polyol e Polymer Polyol h 40---40 --- -40---40-- --28---28- ---28--- 28 폴리올(중량부)Polyol (parts by weight) 6060 6060 7272 7272 물 (중량부)L-1020(중량부)X-DM (중량부)L-5309(중량부)XL-210(중량부)Water (parts by weight) L-1020 (parts by weight) X-DM (parts by weight) L-5309 (parts by weight) XL-210 (parts by weight) 3.30.40.31.03.03.30.40.31.03.0 3.30.40.31.03.03.30.40.31.03.0 3.50.40.31.03.03.50.40.31.03.0 3.50.40.31.03.03.50.40.31.03.0 독립기포성평가크러싱 후의 폼구열밀도오버올(㎏/㎥)경도 25% ILD (㎏/314㎠)인장강도(㎏/㎠)신율(%)인열강도(㎏/㎠)습열내구성 50% 웨트(%)반발탄성 (%) 코어Independent foaming evaluation Foam foam density over crushing (kg / ㎥) Hardness 25% ILD (kg / 314㎠) Tensile strength (kg / ㎠) Elongation (%) Tear strength (kg / ㎠) Wet heat durability 50% Wet ( Resilient (%) Core 작다없음50221.521200.609.374Small None 5021.521200.609.374 작다없음50211.371050.5311.371Small None 5021.371050.5311.371 작다없음50241.151140.6416.276Small None 50241.151140.6416.276 크다있음50221.041120.5820.6735021.041120.5820.673

본 발명의 폴리옥시알킬렌 폴리올은 알칼리금속수산화물 촉매를 사용하여 제조되며, 모노올 함유량이 낮고, 또 종래 사용되고 있던 복금속시안화물 촉매등을 사용하는 방법과 비교하여, 헤드-대-테일(Head-to-Tail) 결합선택율이 높기 때문에 저점도인 특징을 가지며, 광범위한 폴리우레탄 용도에 있어서 물성향상도 가져올 수가 있다.The polyoxyalkylene polyol of the present invention is prepared using an alkali metal hydroxide catalyst, has a low monool content, and is compared with a method using a bimetal cyanide catalyst or the like, which has been conventionally used. -to-Tail) Due to the high selectivity of the bond, it has low viscosity and can improve physical properties in a wide range of polyurethane applications.

본 발명의 폴리머 폴리올은 모노올 함유량이 낮고 헤드-대-테일(Head-to-Tail) 결합선택율이 높은 폴리옥시알킬렌 폴리올을 매트릭스로 하고 있기 때문에 저점도인 특징을 가지며, 광범위한 폴리우레탄 용도에 있어서 물성향상을 가져올 수가 있다. 또, 폴리머농도를 높게 한 경우라도, 종래보다 저점도이며 입자응집이 없고, 분산안정성이 좋은 폴리머 폴리올을 얻는 것이 가능하게 되었다.The polymer polyol of the present invention is characterized by low viscosity because it has a polyoxyalkylene polyol having a low monool content and a high Head-to-Tail bond selectivity as a matrix, and is suitable for a wide range of polyurethane applications. This can bring about improved physical properties. In addition, even when the polymer concentration is increased, it is possible to obtain a polymer polyol having a lower viscosity than the conventional one, no particle aggregation, and good dispersion stability.

이렇게 하여 얻은 폴리옥시알킬렌 폴리올 및 폴리머 폴리올은 발포시의 독립기포성이 낮기 때문에 크러싱후의 폼에 구열이 생기는 등의 문제도 없고, 경도, 내습열내구성(Wet Set), 반발탄성등의 물성이 우수한 폴리우레탄 폼을 제공한다.The polyoxyalkylene polyols and polymer polyols obtained in this way have low foaming properties at the time of foaming, so that there is no problem of cracking in the foam after crushing. Provides excellent polyurethane foam.

Claims (16)

수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에, 폴리머 입자가 5중량% 이상 30중량% 미만 분산되어 이루어진 것을 특징으로 하는 폴리머 폴리올.Polyoxyalkylene having a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail coupling minimum selectivity by propylene oxide addition polymerization of 96% A polymer polyol, wherein said polymer particles are dispersed at least 5% by weight and less than 30% by weight in said polyol. 수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail)결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에서, 에틸렌성 불포화 단량체의 중합을 행하는 것을 특징으로 하는 제1항의 폴리머 폴리올의 제조방법.Polyoxyalkylene having a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail coupling minimum selectivity by propylene oxide addition polymerization of 96% The method for producing the polymer polyol of claim 1, wherein the polyol is polymerized with an ethylenically unsaturated monomer. 제2항에 있어서, 폴리옥시알킬렌 폴리올은 90중량% 이상의 순도의 수산화세슘, 수산화루비듐에서 선택된 화합물중 적어도 1종류를 포함하는 알칼리금속 촉매의 존재하에서 수산기수 2∼8의 활성수소화합물에 알킬렌옥시드를 부가중합하여 얻어지는 것임을 특징으로 하는 폴리머 폴리올의 제조방법.3. The polyoxyalkylene polyol according to claim 2, wherein the polyoxyalkylene polyol is alkylated to an active hydrogen compound having 2 to 8 hydroxyl groups in the presence of an alkali metal catalyst comprising at least one of compounds selected from cesium hydroxide and rubidium hydroxide having a purity of 90% by weight or more. A method for producing a polymer polyol, which is obtained by addition polymerization of lenoxide. 제3항에 있어서, 알킬렌옥시드는 에틸렌옥시드, 프로필렌옥시드 또는 부틸렌옥시드로 되는 그룹에서 선택된 2종류 이상인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 3, wherein the alkylene oxide is at least two kinds selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide. 제3항에 있어서, 프로필렌옥시드의 함유량이 70중량%이상인 알킬렌옥시드를 사용하며, 폴리옥시알킬렌 폴리올의 말단캡에 사용하는 에틸렌옥시드가 5중량% 이상인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 3, wherein an alkylene oxide having a content of propylene oxide of 70% by weight or more is used, and ethylene oxide used in the end cap of the polyoxyalkylene polyol is 5% by weight or more. . 제2항에 있어서, 에틸렌성 불포화 단량체가 아크릴로니트릴 또는 아크릴로니트릴과 스틸렌의 혼합물인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method of claim 2, wherein the ethylenically unsaturated monomer is acrylonitrile or a mixture of acrylonitrile and styrene. 수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol%이며, 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에, 유리전이온도가 90∼120℃인 폴리머 입자가 30중량% 이상 60중량% 이하 분산되어 이루어지는 것을 특징으로 하는 폴리머 폴리올.Polyoxyalkylene having a hydroxyl value of 10 to 35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail coupling minimum selectivity by propylene oxide addition polymerization of 96% A polymer polyol, wherein the polymer particles having a glass transition temperature of 90 to 120 ° C. are dispersed in a polyol of 30% by weight to 60% by weight. 수산기가가 10∼35 mgKOH/g, 모노올 최대함유량이 15 mol% 이며, 프로필렌옥시드 부가중합에 의한 헤드-대-테일(Head-to-Tail) 결합최저선택율이 96%인 폴리옥시알킬렌 폴리올중에서, 연쇄이동제의 존재하에서 에틸렌성 불포화 단량체의 중합을 행하는 것을 특징으로 하는 제7항의 폴리머 폴리올의 제조방법.Polyoxyalkylene having a hydroxyl value of 10-35 mgKOH / g, a monool maximum content of 15 mol%, and a head-to-tail bond minimum selectivity of 96% by propylene oxide addition polymerization A method for producing the polymer polyol of claim 7, wherein the polyol is polymerized with an ethylenically unsaturated monomer in the presence of a chain transfer agent. 제8항에 있어서, 폴리옥시알킬렌 폴리올은 90중량% 이상의 순도의 수산화세슘, 수산화루비듐에서 선택된 화합물중 적어도 1종류를 포함하는 알칼리금속 촉매의 존재하에서 수산기수 2∼8의 활성수소화합물에 알킬렌옥시드를 부가중합하여 얻어진 것임을 특징으로 하는 폴리머 폴리올의 제조방법.The polyoxyalkylene polyol according to claim 8, wherein the polyoxyalkylene polyol is alkylated to an active hydrogen compound having 2 to 8 hydroxyl groups in the presence of an alkali metal catalyst comprising at least one of compounds selected from cesium hydroxide and rubidium hydroxide having a purity of 90% by weight or more. A method for producing a polymer polyol, characterized in that obtained by addition polymerization of lenoxide. 제9항에 있어서, 알킬렌옥시드가 에틸렌옥시드, 프로필렌옥시드 또는 부틸렌옥시드로 되는 그룹에서 선택된 2종류 이상인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 9, wherein the alkylene oxide is at least two kinds selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide. 제9항에 있어서, 프로필렌옥시드의 함유량이 70중량% 이상인 알킬렌옥시드를 사용하며, 폴리옥시알킬렌 폴리올의 말단캡에 사용하는 에틸렌옥시드가 5중량% 이상인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 9, wherein an alkylene oxide having a content of propylene oxide of 70% by weight or more is used, and ethylene oxide used in the end cap of the polyoxyalkylene polyol is 5% by weight or more. . 제8항에 있어서, 에틸렌성 불포화단량체가 아크릴로니트릴 또는 아크릴로니트릴과 스틸렌의 혼합물인 것을 특징으로 하는 폴리머 폴리올의 제조방법.9. A process according to claim 8 wherein the ethylenically unsaturated monomer is acrylonitrile or a mixture of acrylonitrile and styrene. 제8항에 있어서, 연쇄이동제로서 아민화합물을 사용하는 것을 특징으로 하는 폴리머폴리올의 제조방법.The method for producing a polymer polyol according to claim 8, wherein an amine compound is used as a chain transfer agent. 제13항에 있어서, 아민화합물이 일반식(1)The compound according to claim 13, wherein the amine compound is of formula (1) (상기식 (1)에서 R1, R2및 R3는, H, 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타내며, 이들은 서로 동일하거나 달라도 되나, 동시에 이들 모두가 H인 것은 아니다.)(In Formula (1), R <1> , R <2> and R <3> represent H, a C1-C10 alkyl group, and a C2-C10 hydroxyalkyl group, These may mutually be same or different, but all are H It is not.) 로 표시되는 아민화합물, 또는 일반식(2)Amine compound represented by the formula, or general formula (2) (상기식 (2)에서 X는 O 또는 NR2를 나타내며, R1은 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타내며, R2는 H, 탄소수 1∼10의 알킬기, 탄소수 2∼10의 히드록시알킬기를 나타낸다.)(In Formula (2), X represents O or NR 2 , R 1 represents an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 2 to 10 carbon atoms, and R 2 represents H, an alkyl group having 1 to 10 carbon atoms and carbon number. 2-10 hydroxyalkyl group.) 로 표시되는 화합물인 것을 특징으로 하는 폴리머 폴리올의 제조방법.Method for producing a polymer polyol, characterized in that the compound represented by. 제13항에 있어서, 아민화합물이 트리에틸아민인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 13, wherein the amine compound is triethylamine. 제13항에 있어서, 아민화합물이 N-메틸모르포린인 것을 특징으로 하는 폴리머 폴리올의 제조방법.The method for producing a polymer polyol according to claim 13, wherein the amine compound is N-methylmorpholine.
KR1019980021333A 1994-04-12 1998-06-09 Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams KR100187524B1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP94-73251 1994-04-12
JP06073250A JP3034163B2 (en) 1994-04-12 1994-04-12 Polyoxyalkylene polyol and method for producing the same
JP7325194 1994-04-12
JP94-73250 1994-04-12
JP94-106432 1994-05-20
JP10643294A JP3344824B2 (en) 1994-05-20 1994-05-20 Method for producing flexible high elastic polyurethane foam
JP95-25150 1995-02-14
JP07025150A JP3083235B2 (en) 1994-04-12 1995-02-14 Polymer polyol, method for producing the same, and method for producing flexible high elastic polyurethane foam
KR1019950008414A KR0173811B1 (en) 1994-04-12 1995-04-11 Preparation of polyoxyalkylene polyols polymer polyols and flexible polyurethane foams

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019950008414A Division KR0173811B1 (en) 1994-04-12 1995-04-11 Preparation of polyoxyalkylene polyols polymer polyols and flexible polyurethane foams

Publications (1)

Publication Number Publication Date
KR100187524B1 true KR100187524B1 (en) 1999-06-01

Family

ID=27520692

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019980021332A KR0173850B1 (en) 1994-04-12 1998-06-09 Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyrethane foams
KR1019980021333A KR100187524B1 (en) 1994-04-12 1998-06-09 Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1019980021332A KR0173850B1 (en) 1994-04-12 1998-06-09 Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyrethane foams

Country Status (1)

Country Link
KR (2) KR0173850B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434028B1 (en) * 2001-06-29 2004-06-04 동아화학 주식회사 Polyols and Their Synthetic Method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160099294A (en) 2015-02-12 2016-08-22 (주)대유플러스 Bubble removing apparatus of foam sheet for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434028B1 (en) * 2001-06-29 2004-06-04 동아화학 주식회사 Polyols and Their Synthetic Method

Also Published As

Publication number Publication date
KR0173850B1 (en) 1999-04-01

Similar Documents

Publication Publication Date Title
EP0677543B2 (en) Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams
KR960011890B1 (en) Polymer-polyol and process for preparation thereof
KR100356415B1 (en) High-durability flexible polyurethane cold cure molded foam and process for producing the same
JP5145935B2 (en) Flexible polyurethane foam, method for producing the same, and automotive seat using the flexible polyurethane foam
KR101797265B1 (en) Ethylene oxide/propylene oxide polyether polyols and polyurethanes made thereofrom
KR19990067501A (en) Molded polyurethane foam with improved physical properties
JP2008150607A (en) Method for producing stabilizer for producing polymer polyol using maleic anhydride
JP2003301041A (en) Method for producing polyol and polymer dispersed polyol
JP3083235B2 (en) Polymer polyol, method for producing the same, and method for producing flexible high elastic polyurethane foam
KR100187524B1 (en) Preparation of polyoxyalkylene polyols, polymer polyols and flexible polyurethane foams
JPH03244620A (en) Production of polyurethane foam
KR0173811B1 (en) Preparation of polyoxyalkylene polyols polymer polyols and flexible polyurethane foams
JP2002322230A (en) Method for producing soft polyurethane foam and polyol composition
JP3418473B2 (en) Method for producing polyoxyalkylene polyol
JPH06172462A (en) Polymer polyol, its production and use
JPH09176272A (en) Flexible polyurethane foam and its production
JPH07138330A (en) Production of polymer polyol for flame-retardant foam
JP2010270195A (en) Method for manufacturing flexible polyurethane foam
JP4715002B2 (en) Method for producing flexible polyurethane foam
JP3053937B2 (en) Method for producing polyurethane foam
JP3938957B2 (en) Method for producing polymer polyol and polyurethane foam
JP3329495B2 (en) Polymer polyol, production method thereof and use thereof
KR960011915B1 (en) Polyurethane foam prepared from high concentration-low viscosity polymer polyol
JP3338515B2 (en) Polymer polyol for hot molding, method for producing the same, and hot molded polyurethane foam
JPH055848B2 (en)

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 17

EXPY Expiration of term