KR0182157B1 - Organic electrolyte of lithium secondary battery - Google Patents

Organic electrolyte of lithium secondary battery Download PDF

Info

Publication number
KR0182157B1
KR0182157B1 KR1019960022492A KR19960022492A KR0182157B1 KR 0182157 B1 KR0182157 B1 KR 0182157B1 KR 1019960022492 A KR1019960022492 A KR 1019960022492A KR 19960022492 A KR19960022492 A KR 19960022492A KR 0182157 B1 KR0182157 B1 KR 0182157B1
Authority
KR
South Korea
Prior art keywords
organic solvent
mixed
electrolyte
secondary battery
lithium secondary
Prior art date
Application number
KR1019960022492A
Other languages
Korean (ko)
Other versions
KR980006593A (en
Inventor
고장면
박진환
Original Assignee
홍건희
한국타이어제조주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍건희, 한국타이어제조주식회사 filed Critical 홍건희
Priority to KR1019960022492A priority Critical patent/KR0182157B1/en
Publication of KR980006593A publication Critical patent/KR980006593A/en
Application granted granted Critical
Publication of KR0182157B1 publication Critical patent/KR0182157B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차 전지에 있어서, 전해질의 유기 전해액의 점도를 낮추고 내 산화성을 향상시켜 전지의 충방전 사이클 특성을 향상시키기 위하여, 다음 일반식(Ⅰ)으로 표시되는 불소 치환 탄산에스테르 화합물과 알킬렌계 카보네이트의 고 유전율 유기 용매를 부피비로 50 : 50 내지 20 : 80로 혼합하여 유기 전해액용 혼합 유기 용매를 제조하고, 이어서 상기 혼합 유기 용매와 리튬염을 혼합하여 제조됨을 특징으로 하는 리튬 이차 전지의 전해질이다.The present invention provides a fluorine-substituted carbonate ester compound and an alkylene-based compound represented by the following general formula (I) in order to improve the charge and discharge cycle characteristics of a battery by lowering the viscosity of the electrolyte and improving oxidation resistance of the electrolyte in a lithium secondary battery. The high dielectric constant organic solvent of carbonate is mixed in a volume ratio of 50:50 to 20:80 to prepare a mixed organic solvent for an organic electrolyte solution, and then prepared by mixing the mixed organic solvent and a lithium salt. to be.

(위 식에서, R1,R2는 탄소수 1이상의 포화탄화수소기를 표시하며, R1,R2의 수소중 적어도 1개 이상을 불소로 치환한다.)(In the above formula, R 1 , R 2 represents a saturated hydrocarbon group having 1 or more carbon atoms, and at least one of hydrogen of R 1 , R 2 is replaced with fluorine.)

Description

리튬 이차 전지의 유기 전해질Organic Electrolyte of Lithium Secondary Battery

제1도는 본 발명의 실시예 및 비교예에 의한 점도를 함께 나타낸 그래프이고,1 is a graph showing the viscosity according to the Examples and Comparative Examples of the present invention,

제2도는 본 발명의 실시예 4에 의해 얻어진 리튬 이차 전지의 충방전 결과를 나타내는 그래프이다.2 is a graph showing charge and discharge results of the lithium secondary battery obtained in Example 4 of the present invention.

본 발명은 리튬 이차 전지의 유기 전해질에 관한 것으로서, 더욱 상세하게는 리튬 이차 전지에 사용되는 전해질의 유기 전해액의 점도를 낮추고, 내산화성을 향상시켜 리튬 이차 전지의 충방전 사이클 특성을 향상시키는 리튬 이차 전지의 유기 전해질에 관한 것이다.The present invention relates to an organic electrolyte of a lithium secondary battery, and more particularly, to a lithium secondary battery which lowers the viscosity of an organic electrolyte solution of an electrolyte used in a lithium secondary battery and improves oxidation resistance to improve charge / discharge cycle characteristics of a lithium secondary battery. It relates to an organic electrolyte of a battery.

최근 전자 기기의 급속한 발전으로 전원의 소형화, 경량화, 고전압, 고수명화가 요구되고 있다. 이러한 전자 기기의 전원으로서 가장 유력한 것이 바로 리튬 이차 전지이다. 리튬 이차 전지는 에너지 밀도 및 신뢰성(안전성)이 지금까지 상업화된 다른 어떤 전지보다도 높다. 이러한 리튬 이차 전지에 사용되는 전해질로는 지금까지 주로 프로필렌 카보네이트와 같은 고 유전율의 유기 용매에 리튬염을 용해시킨 액체 전해질이 사용되고 있다.Recently, with the rapid development of electronic devices, there is a demand for miniaturization, light weight, high voltage, and high lifespan of power supplies. The most prominent power source for such electronic devices is a lithium secondary battery. Lithium secondary batteries have higher energy density and reliability (safety) than any other commercially available battery. As an electrolyte used in such a lithium secondary battery, a liquid electrolyte in which lithium salt is dissolved in a high dielectric constant organic solvent such as propylene carbonate has been used.

그러나, 프로필렌 카보네이트와 같은 고 유전율의 유기 용매는 대부분 점도가 높아서 전해질의 전도도를 떨어뜨리므로 점도를 낮추기 위한 가소제를 고유전율의 유기 용매와 혼합하여 사용할 필요가 있다. 이와 같은 가소제로서 주로 사용되어 왔던 것이 디옥솔란(1,3-Dioxolane,이하 DO라고도 함), 디메칠에테르(Dimethylether,이하 DME라고도 함), 테트라하이드로퓨란(Tetrahydrofuran,이하 THF라고도 함)등과 같은 저점도의 유기 용매등이 있다.However, since high dielectric constant organic solvents such as propylene carbonate have high viscosity, which lowers the conductivity of the electrolyte, a plasticizer for lowering the viscosity needs to be mixed with a high dielectric constant organic solvent. Mainly used as a plasticizer such as dioxolane (1,3-Dioxolane, hereinafter referred to as DO), dimethyl ether (hereinafter referred to as DME), tetrahydrofuran (hereinafter referred to as THF) Organic solvents of FIG.

그러나, 이 유기 용매들은 내산화성이 좋지 않아서 높은 전위에서 리튬과 반응하여 산화하게 된다. 이렇게 반응된 리튬은 전기 화학적으로 활성을 잃어버려서 충방전에 사용할 수 없게 되며, 충방전이 반복됨에 따라 전기용량을 감소시키는 주 요인이 된다.However, these organic solvents have poor oxidation resistance and react with lithium at high potential to oxidize. Lithium reacted in this way loses electrochemical activity and thus cannot be used for charging and discharging, and as the charging and discharging is repeated, it is a main factor for reducing electric capacity.

따라서, 본 발명은 이러한 리튬 이차 전지 전해질의 유기용매 가소제로서 내산화성이 높은 불소치환 탄산에스테르 화합물을 사용함으로써 리튬 이차 전지의 충방전 사이클 특성을 향상시키는 것을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a charge / discharge cycle characteristic of a lithium secondary battery by using a fluorine-substituted carbonate ester compound having high oxidation resistance as an organic solvent plasticizer of the lithium secondary battery electrolyte.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 리튬 이차 전지에 있어서, 전해질의 유기 전해액의 점도를 낮추고 내 산화성을 향상시켜 전지의 충방전 사이클 특성을 향상시키기 위하여, 다음 일반식(Ⅰ)으로 표시되는 불소 치환 탄산에스테르 화합물과 알킬렌계 카보네이트의 고 유전율 유기 용매를 부피비로 50 : 50 내지 20 : 80로 혼합하여 유기 전해액용 혼합 유기 용매를 제조하고, 이어서 상기 혼합 유기 용매와 리튬염을 혼합하여 제조됨을 특징으로 하는 리튬 이차 전지의 유기 전해질이다.The present invention provides a fluorine-substituted carbonate ester compound and an alkylene-based compound represented by the following general formula (I) in order to improve the charge and discharge cycle characteristics of a battery by lowering the viscosity of the electrolyte and improving oxidation resistance of the electrolyte in a lithium secondary battery. A high dielectric constant organic solvent of carbonate is mixed in a volume ratio of 50:50 to 20:80 to prepare a mixed organic solvent for an organic electrolyte solution, and then mixed with the mixed organic solvent and a lithium salt. It is an electrolyte.

(위식에서, R1,R2는 탄소수 1이상의 포화탄화수소기를 표시하며, R1,R2의 수소중 적어도 1개 이상을 불소로 치환한다.)(In the above formula, R 1 and R 2 represent a saturated hydrocarbon group having 1 or more carbon atoms, and at least one of hydrogens of R 1 and R 2 is replaced with fluorine.)

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

즉, 본 발명은 리튬 이차 전지에 있어서, 전해질의 유기 전해액의 점도를 낮추고 내 산화성을 향상시켜 전지의 충방전 사이클 특성을 향상시키지 위하여, 다음 일반식(Ⅰ)으로 표시되는 불소 지환 탄산에스테르 화합물과 알킬렌계 카보네이트의 고 유전율 유기 용매를 부피비로 50 : 50 내지 20 : 80로 혼합하여 유기 전해액용 혼합 유기 용매를 제조한다.That is, the present invention relates to a fluorine-alicyclic carbonate compound represented by the following general formula (I) in order to improve the charge and discharge cycle characteristics of the battery by lowering the viscosity of the organic electrolyte solution of the electrolyte and improving the oxidation resistance by improving the oxidation resistance. A high dielectric constant organic solvent of an alkylene carbonate is mixed in a volume ratio of 50:50 to 20:80 to prepare a mixed organic solvent for an organic electrolyte solution.

(위식에서, R1,R2는 탄소수 1이상의 포화탄화수소기를 표시하며, R1,R2의 수소중 적어도 1개 이상을 불소로 치환한다.)(In the above formula, R 1 and R 2 represent a saturated hydrocarbon group having 1 or more carbon atoms, and at least one of hydrogens of R 1 and R 2 is replaced with fluorine.)

상기의 일반식(Ⅰ)의 화합물은 예를 들면, 다음 일반식(Ⅰ-a)이 바람직하다.As for the compound of said general formula (I), the following general formula (I-a) is preferable, for example.

상기의 불소치환 탄산에스테르 화합물은 가소제로 유기전해액의 점도를 낮출 뿐만 아니라 내산화성이 뛰어나서 리튬 이차 전지의 충방전 사이클 특성을 향상시키는 역할을 한다.The fluorine-substituted carbonate ester compound is a plasticizer that not only lowers the viscosity of the organic electrolyte solution but also has excellent oxidation resistance, thereby serving to improve charge and discharge cycle characteristics of a lithium secondary battery.

또한, 고 유전율의 알킬렌계 유기 용매로서는 프로필렌 카보네이트(PC), 에칠렌 카보네이트(EC), 또는 디에칠렌 카보네이트(DEC)로부터 선택되는 1종 또는 2종 이상 혼합하여 사용할 수 있다.As the high dielectric constant alkylene organic solvent, one or two or more selected from propylene carbonate (PC), ethylene carbonate (EC), or dieethylene carbonate (DEC) can be used.

상기의 일반식(Ⅰ)로 표시되는 불소 치환 탄산에스테르 화합물과 알킬렌계 카보네이트의 고 유전율 유기 용매를 50 : 50내지 20 : 80의 혼합부피비로 혼합한다.A high dielectric constant organic solvent of the fluorine-substituted carbonate ester compound represented by the above general formula (I) and an alkylene carbonate is mixed at a mixing volume ratio of 50:50 to 20:80.

상기에서 일반식(Ⅰ)로 표시되는 불소 치환 탄산에스테르 화합물의 사용량이 약 50부피비 이상인 경우는 얻어지게되는 유기 용매의 점도가 너무 저하되어 바람직하지 않고, 또한 20중량부 이하인 경우는 유기 용매의 점도가 높아 본 발명에서 기대되는 전해질을 얻을 수 없게된다.In the case where the amount of the fluorine-substituted carbonate ester compound represented by the general formula (I) is about 50% by volume or more, the viscosity of the organic solvent obtained is too low, which is not preferable. High, the electrolyte expected in the present invention cannot be obtained.

또한, 본 발명에서 사용하는 상기의 리튬염으로는 LiClO4, LiPF6, LiBF4, LiCF3SO3, LiAsF6, LiN(CF3SO2)2, LiC(CF3SO2)3등의 1종을 사용할 수 있다.In addition, as the lithium salt used in the present invention include LiClO 4, LiPF 6, LiBF 4 , LiCF 3 SO 3, LiAsF 6, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) , such as 31 Species can be used.

이하, 본 발명을 실시예로 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1 내지 2][Examples 1 and 2]

유기 용매로서 프로필렌 카보네이트에 상기 일반식(Ⅰ-a)의 화합물을 다음표1에 나타난 각 혼합비로 혼합하여 혼합 유기 용매를 제조하였다.Compounds of the general formula (I-a) were mixed with propylene carbonate as organic solvents at the respective mixing ratios shown in Table 1 below to prepare mixed organic solvents.

이렇게 제조된 각 혼합 유기 용매의 혼합비에 따른 점도를 측정하여 다음 표1에 나타냈다.The viscosity according to the mixing ratio of each of the mixed organic solvents thus prepared was shown in Table 1 below.

표1에 나타난 바와 같이 적당한 유기 용매의 점도인 1.0∼1.5cp는 일반식(Ⅰ-a)화합물과 프로필렌카보네이트의 고 유전율 유기 용매를 부피비로 50 : 50 내지 20 : 80[화합물(Ⅰ-a) : 프로필렌 카보네이트]정도에서 얻을 수 있었다.As shown in Table 1, the viscosity of the suitable organic solvent, 1.0 to 1.5cp, is 50:50 to 20:80 in terms of volume ratio of the high dielectric constant organic solvent of the general formula (I-a) compound and propylene carbonate [compound (I-a) : Propylene carbonate].

[비교예1 내지5][Comparative Examples 1 to 5]

다음 표 2에 나타난 바와 같이 일반식(Ⅰ-a)화합물과 프로필렌 카보네이트를 혼합하여 유기 용매를 제조하였다.As shown in Table 2, an organic solvent was prepared by mixing the compound of Formula (I-a) with propylene carbonate.

이렇게 제조된 각 혼합 유기 용매의 혼합비에 따른 점도를 측정하여 다음 표2에 나타냈다.The viscosity according to the mixing ratio of each of the mixed organic solvents thus prepared was shown in Table 2 below.

[실시예 3]Example 3

유기용매로서 상기 실시예1로 제조된 혼합 용매에 이튬염으로서 LiClO를 1M농도로 녹여서 유기 전해질을 제조하였다. 이렇게 제조한 유기 전해질의 분해 전위를 은(銀)전극을 참조전극으로 하여 유리질 탄소(glassy carbon) 전극을 대극으로 하여 측정한 결과 환원 전위는 -3.6V, 산화 전위는 2.9V로 높은 내산화성을 나타냈다.An organic electrolyte was prepared by dissolving LiClO at a concentration of 1 M as a lithium salt in a mixed solvent prepared in Example 1 as an organic solvent. The decomposition potential of the organic electrolyte thus prepared was measured by using a silver electrode as a reference electrode and a glassy carbon electrode as a counter electrode. As a result, the reduction potential was -3.6V and the oxidation potential was 2.9V. Indicated.

[실시예 4]Example 4

LiMnO85중량%, 아세틸렌 블랙10중량% 및 폴리비닐리덴플루오라이드(PVDF)5중량%의 혼합물을 메틸피롤리디논(n-methyl pyrrolidinone)에 혼합하여 제조한 슬러리를 알루미늄 박막에 코팅하여 제조한 양극과 흑연 90중량%, 폴리비닐리덴플루오라이드 10중량%의 혼합물을 메틸피롤리디논(n-methyl pyrrolidinone)에 혼합하여 제조한 슬러리를 구리 박막에 코팅하여 제조한 음극과 상기 실시예3에서 얻은 유기 전해질을 사용하여 리튬 이차 전지를 제조하였다. 이렇게 제조된 리튬 이차 전지의 충방전 횟수에 따른 용량감소를 제2도에 나타내었다(충방전 영역은 2.5∼4.5V였으며 충방전 속도는 5시간율이었다). 제2도에 나타난 바와 같이 100회 충방전 후에도 초기용량의 98%이상을 유지하는 결과를 나타낸다.A positive electrode prepared by coating a slurry prepared by mixing a mixture of 85% by weight of LiMnO, 10% by weight of acetylene black and 5% by weight of polyvinylidene fluoride (PVDF) with methylpyrrolidinone (n-methyl pyrrolidinone) A cathode prepared by mixing a mixture of 90 wt% graphite and 10 wt% polyvinylidene fluoride in methylpyrrolidinone (n-methyl pyrrolidinone) on a copper thin film, and the organic electrolyte obtained in Example 3 To prepare a lithium secondary battery. The capacity decrease according to the number of charge / discharge cycles of the lithium secondary battery thus manufactured is shown in FIG. 2 (charge / discharge region was 2.5 to 4.5V and charge / discharge rate was 5 hours). As shown in FIG. 2, even after 100 charge / discharge cycles, a result of maintaining 98% or more of the initial capacity is shown.

상기 실시예에서 나타난 바와 같이 본 발명의 불소치환 탄산에스테르화합물을 고유전율의 유기 용매와 같이 혼합하여 리튬 이차 전지용 유기 전해질의 용매로 사용함으로써 뛰어난 전지의 충방전 사이클 특성을 얻을 수 있다.As shown in the above embodiment, the fluorine-substituted carbonate ester compound of the present invention is mixed with an organic solvent having a high dielectric constant and used as a solvent of an organic electrolyte for a lithium secondary battery, thereby obtaining excellent charge and discharge cycle characteristics of a battery.

Claims (1)

리튬 이차 전지에 있어서, 전해질의 유기 전해액의 점도를 낮추고 내산화성을 향상시켜 전지의 충방전 사이클 특성을 향상시키기 위하여, 다음 일반식(Ⅰ)으로 표시되는 불소 치환 탄산에스테르 화합물과 알킬렌계 카보네이트의 고 유전율 유기 용매를 부피비로 50 : 50 내지 20 : 80로 혼합하여 유기 전해액용 혼합 유기 용매를 제조하고, 이어서 상기 혼합 유기 용매와 리튬염을 혼합하여 제조됨을 특징으로 하는 리튬 이차 전지의 유기 전해질.In a lithium secondary battery, in order to lower the viscosity of the organic electrolyte solution of the electrolyte and to improve oxidation resistance and to improve the charge / discharge cycle characteristics of the battery, the fluorine-substituted carbonate ester compound represented by the following general formula (I) and the alkylene-based carbonate An organic electrolyte of a lithium secondary battery, characterized in that a dielectric constant organic solvent is mixed in a volume ratio of 50:50 to 20:80 to prepare a mixed organic solvent for an organic electrolyte, and then mixed with the mixed organic solvent and a lithium salt. (위 식에서, R1,R2는 탄소수 1이상의 포화탄화수소기를 표시하며, R1,R2의 수소중 적어도 1개 이상을 불소로 치환한다.)(In the above formula, R 1 , R 2 represents a saturated hydrocarbon group having 1 or more carbon atoms, and at least one of hydrogen of R 1 , R 2 is replaced with fluorine.)
KR1019960022492A 1996-06-20 1996-06-20 Organic electrolyte of lithium secondary battery KR0182157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960022492A KR0182157B1 (en) 1996-06-20 1996-06-20 Organic electrolyte of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960022492A KR0182157B1 (en) 1996-06-20 1996-06-20 Organic electrolyte of lithium secondary battery

Publications (2)

Publication Number Publication Date
KR980006593A KR980006593A (en) 1998-03-30
KR0182157B1 true KR0182157B1 (en) 1999-05-15

Family

ID=19462607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960022492A KR0182157B1 (en) 1996-06-20 1996-06-20 Organic electrolyte of lithium secondary battery

Country Status (1)

Country Link
KR (1) KR0182157B1 (en)

Also Published As

Publication number Publication date
KR980006593A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US6413678B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3304187B2 (en) Electrolyte for lithium secondary battery
EP1125338B1 (en) Non-aqueous electrolyte composition for batteries
US7976988B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US4737424A (en) Secondary lithium battery
EP0757399B1 (en) Non-aqueous electrolyte and lithium secondary battery
KR20160136686A (en) Lithium metal battery
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
CN1290974A (en) Non-aqeous electrolytic sotution and lithium accumulator using said non-aqeous electrolytic solution
JP3438636B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP3513448A1 (en) Electrolytes containing six membered ring cyclic sulfates
US4770959A (en) Lithium-fluorinated graphite cell
KR20180102666A (en) An electrolyte solution, an anode, and a lithium-ion battery including the electrolyte solution and /
CA1143002A (en) Organic electrolyte for rechargeable lithium cells
US20030148190A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2002008721A (en) Nonaqueous electrolyte and lithium secondary battery
JPH1092222A (en) Solvent for electrolytic solution
KR0182157B1 (en) Organic electrolyte of lithium secondary battery
JP2012253032A (en) Nonaqueous electrolyte solution and lithium secondary battery using the same
JPH0737613A (en) Electrolyte for lithium secondary battery
CN111354977A (en) Lithium ion battery electrolyte, preparation method thereof and lithium battery comprising lithium ion battery electrolyte
KR100309776B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
JP4470956B2 (en) Method for producing non-aqueous electrolyte for lithium secondary battery
JPH065309A (en) Electrolyte solvent for battery and battery electrolyte using same
JP2004006400A (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee