KR0179332B1 - Method for manufacturing cd te/cds solar battery using rapid thermal annealing - Google Patents

Method for manufacturing cd te/cds solar battery using rapid thermal annealing Download PDF

Info

Publication number
KR0179332B1
KR0179332B1 KR1019950034275A KR19950034275A KR0179332B1 KR 0179332 B1 KR0179332 B1 KR 0179332B1 KR 1019950034275 A KR1019950034275 A KR 1019950034275A KR 19950034275 A KR19950034275 A KR 19950034275A KR 0179332 B1 KR0179332 B1 KR 0179332B1
Authority
KR
South Korea
Prior art keywords
thin film
cdte
heat treatment
cds
cdte thin
Prior art date
Application number
KR1019950034275A
Other languages
Korean (ko)
Other versions
KR970024326A (en
Inventor
신성호
김범수
박정일
박광자
Original Assignee
이승배
국립기술품질원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승배, 국립기술품질원 filed Critical 이승배
Priority to KR1019950034275A priority Critical patent/KR0179332B1/en
Publication of KR970024326A publication Critical patent/KR970024326A/en
Application granted granted Critical
Publication of KR0179332B1 publication Critical patent/KR0179332B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 급속 열처리를 행한 CdTe 박막을 이용하는 ITO(또는 SnO2:F)(CdS/CdTe/Au 태양전지의 제조 방법에 관한 것이다.The present invention relates to a method for producing an ITO (or SnO 2 : F) (CdS / CdTe / Au solar cell) using a CdTe thin film subjected to rapid heat treatment.

또한 본 발명은 CdTe 박막형 태양전지의 제조 시에 CdTe 박막층을 급속 열처리 방법으로 처리하여 박막의 물성을 개선시키고 효율이 높은 태양전지를 제조하는 방법을 제공한다.In another aspect, the present invention provides a method for manufacturing a CdTe thin film solar cell by treating the CdTe thin film layer by a rapid heat treatment method to improve the physical properties of the thin film and high efficiency.

본 발명의 방법에 의해, CdS 박막 위에 제조된 CdTe 박막층을 크롬산염의 부식 용액에 의한 식각, 히드라진 수화물의 환원제에 의해 산화층을 제거한 CdTe 박막형 태양전지가 제조된다.By the method of the present invention, a CdTe thin film type solar cell in which a CdTe thin film layer prepared on a CdS thin film is etched by a corrosion solution of chromate, and an oxide layer is removed by a reducing agent of hydrazine hydrate is manufactured.

Description

급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조방법Manufacturing Method of CdTe / CdS Solar Cell Using Rapid Heat-treated CdTe Thin Film

제1도는 본발명에 사용된 급속 열처리 장치의 개략도.1 is a schematic view of a rapid heat treatment apparatus used in the present invention.

제2도는 광흡수도 측정에 의한 밴드갭 에너지 변화를 나타내는 그래프.2 is a graph showing a change in bandgap energy by measuring light absorption.

제3도는 본 발명의 방법에 의한 CdTe/CdS 태양전지의 구조를 나타내는 개략도.3 is a schematic view showing the structure of a CdTe / CdS solar cell by the method of the present invention.

제4도는 본 발명의 방법에 의해 CdTe 박막을 급속열처리한 CdTe/CdS 태양전지의 전류-전압 곡선도이다.4 is a current-voltage curve diagram of a CdTe / CdS solar cell subjected to rapid heat treatment of a CdTe thin film by the method of the present invention.

본 발명은 급속 열처리(rapid thermal annealing)를 이용한 CdTe 박막형 태양전지의 제조 방법에 관한 것으로, 보다 상세하게는 급속 열처리한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a CdTe thin film solar cell using rapid thermal annealing, and more particularly, to a method of manufacturing a CdTe / CdS solar cell using a rapidly heat-treated CdTe thin film.

오늘날 태양전지는 효율, 가격 및 시장면에서 괄목할 만한 진전을 보여주고 있으며 전세계적으로 응용분야가 지속적으로 증가되고 있어서 재료적, 기술적 측면에서 장래성이 큰 분야이다. 이러한 태양전지의 재료 중에서 효율, 재현성 및 제조 비용의 측면에서 가장 유망한 재료인 CdTe는 밴드갭 에너지(Eg)가 상온에서 1.5eV로서 1㎛내외의 얇은 두께에서도 가시광 영역의 빛을 대부분 흡수하는 높은 광흡수 계수를 지니며, 현재 최고 15.8%의 태양광 변환 효율을 보이는 재료이다.[참조문헌: C. Ferekides et al., Tcchnical Degest of the Inter. PVSEC-7, p509(1993)].Today's solar cells are making significant strides in efficiency, price, and market, and their applications are promising in terms of materials and technology as their applications continue to increase worldwide. Among the solar cell materials, CdTe, the most promising material in terms of efficiency, reproducibility, and manufacturing cost, has a bandgap energy (Eg) of 1.5 eV at room temperature and high light that absorbs most of visible light even at a thickness of about 1 μm. It has an absorption coefficient and currently exhibits a solar conversion efficiency of up to 15.8%. C. Ferekides et al., Tcchnical Degest of the Inter. PVSEC-7, p509 (1993)].

한편, 다양한 방법에 의해 제조된 CdTe 박막은 열처리 과정을 거치게 되는데, 열처리에 따른 CdTe 박막의 물성은 열처리의 시간과 온도, 열처리 방식 및 열처리 분위기, 예를 들어 질소, 진공, 수소 및 산소 등에 따라 변화한다. 종래에는 주로 로(furnace)열처리 방법이 사용되고 있는 바, 이 방법에 따르면 재료 내에 존재하는 결함을 제거하고 결정성을 향상시킬 수 있으나 300-500℃ 정도에서 20분 이상 동안 처리를 해야 하므로 각층 내부에 응력과 핀홀이 형성되고 또한 접합 지역에서 바람직하지 못한 상호 확산이 발생되므로써 인해 효율이 감소하게 된다.Meanwhile, the CdTe thin film manufactured by various methods undergoes a heat treatment process, and the properties of the CdTe thin film according to the heat treatment change depending on the time and temperature of the heat treatment, the heat treatment method, and the heat treatment atmosphere, for example, nitrogen, vacuum, hydrogen, and oxygen. do. Conventionally, furnace heat treatment method is mainly used. According to this method, defects existing in the material can be removed and crystallinity can be improved. Efficiency decreases due to the formation of stress and pinholes and undesirable interdiffusion in the junction area.

특히 전술한 로열처리 방법의 경우, CdCl2처리으 유무에 따라 그 물성이 크게 변화하게 된다. 이러한 CdCl2처리는 상온에서 CdCl2를 CH3OH에 포화시킨 용액을 CdTe 표면에 도포하는 처리를 말하는 바, 이에 따라 이후 열처리 시에 재결정 현상이 유발되고 결정립 성장이 촉진되게 된다. 결과적으로 이러한 결정립 성장에 의해 결정립계에서의 전자와 정공의 재결합이 최소화함으로써 전지효율이 증가되는 효과가 발휘되게 된다. 그러나, 재결정 과정시에 생성되는 잔류 물질들이 CdTe 표면에 남는 경우에는 전지 구성시 전류 흐름면에서 결함으로 작용하게 되어 전지 특성을 저하시키는 단점도 지닌다.In particular, in the case of the above-described royal treatment method, the physical properties of the above-described method change significantly depending on the presence or absence of CdCl 2 treatment. This CdCl 2 treatment refers to a process of applying a solution saturated with CdCl 2 in CH 3 OH at room temperature to the surface of the CdTe, thereby causing recrystallization and promoting grain growth during subsequent heat treatment. As a result, the effect of increasing the cell efficiency by minimizing the recombination of electrons and holes in the grain boundary by the grain growth. However, when residual materials generated during the recrystallization process remain on the surface of the CdTe, there is a disadvantage in that the battery flow becomes a defect in terms of current flow, thereby degrading battery characteristics.

한편, 최근에 반도체 공정에 널리 사용되는 급속 열처리(Rapid Thermal Annealing, 이하 간단히 RTA라고 한다) 방법은 반도체 집적 회로의 제조 공정에서 도핑된 원소의 재료 내의 확산을 방지함과 재료 내의 이온 주입(Ion implantation) 및 건식식각공정 등으로 인하여 발생되는 재료의 계면과 표면의 결함을 제거하기 위한 차세대 열처리 방법으로 도입되어 현재 얕은 p-n접합을 형성하고 또한 실리사이드 등을 형성하는데 사용되고 있는 바, 이의 용도는 계속적인 연구 대상이 되고 있는 실정에 있다. 예를 들면, CuInSe2박막에 대해 RTA 처리를 행하고 미세 구조의 변화를 관찰하였으며[참조문헌: W. Riedl et al., Technical Degest of the International PVSEC-7, p 537(1993)], CdS 박막에 대한 XRD, SEM 분석결과를 보고하고 있다[참조문헌: R. Jayakrishnan et al., Semicond. Sci. Technol., 9 97 (1994)]. CdTe의 열처리 방법으로서 급속 열처리를 적용한다면 로열처리에 비해 고온에서 1분 이내의 짧은 시간에 결함을 치유하고 박막간의 계면에서의 상호 확산을 방지하여 계면의 광학적, 전기적 성질을 향상시킬 수 있고, 공정 시간을 단축시킬 수 있는 한편 종래의 열처리 방법으로 부터 발생되는 다결정 박막의 결정립 성장에는 큰 영향을 끼치지 않는다.On the other hand, the rapid thermal annealing (hereinafter referred to simply as RTA) method widely used in the semiconductor process in recent years prevents the diffusion of the doped element in the material and ion implantation in the material in the manufacturing process of the semiconductor integrated circuit. ) Is introduced as a next-generation heat treatment method to remove the defects on the interface and surface of the material generated by the dry etching process, and is currently used to form shallow pn junctions and to form silicides. It is the situation that is targeted. For example, RTA treatment was performed on CuInSe 2 thin films and changes in microstructure were observed (W. Riedl et al., Technical Degest of the International PVSEC-7, p 537 (1993)). The results of XRD and SEM analysis have been reported [R. Jayakrishnan et al., Semicond. Sci. Technol., 9 97 (1994)]. If rapid heat treatment is applied as a heat treatment method of CdTe, the optical and electrical properties of the interface can be improved by curing the defects at a short time within a minute at high temperature and preventing mutual diffusion at the interfaces between the thin films, compared to the royal treatment. While the time can be shortened, the grain growth of the polycrystalline thin film generated by the conventional heat treatment method is not significantly affected.

따라서, 이러한 열처리를 통하여 얻어지는 결과적인 이점에 대하여서는 여러 증착 온도에서 성장시킨 CdTe 박막에 대하여 급속 열처리를 행하여 얻어지는 연구 결과를 비교하여야 할 수 있을 것인 바, 열처리 방법으로는 노열처리가 아닌 급속 열처리 방법을 태양전지의 제조에 적용한 연구와 특허는 현재까지 보고된 바가 없다.Therefore, the results obtained through the heat treatment may be compared with the results obtained by performing rapid heat treatment on the CdTe thin film grown at various deposition temperatures. Research and patents applying the method to the manufacture of solar cells have not been reported to date.

본 발명의 목적은 ITO(In2O3-SnO2) 투명 전도성 유리 및 실리콘 산화막으로된 200℃∼300℃의 기판 상에 CdS 및 CdTe 박막을 증착시킨 후에 아르곤 가스 또는 질소 가스 분위기 하에서 400℃∼600℃로 1∼2분간 급속 열처리를 행한 다음에 상기 박막의 표면 상의 불순물을 제거하고 표면 성분비를 변화시키기 위해 2∼20%의 크롬산 용액으로 화학적 식각 처리를 행하고, 환원제로서 히드라진 수화물로 산화막을 제거한 다음 증류수로 세정한후에 N2건(gun)으로 건조시키며, 배선 금속으로 Au를 사용하여 증착시킨 후 dp 건조기에서 열처리하는 것을 특징으로 하는 급속 열처리를 이용한 CdTe 박막형 태양전지의 제조 방법을 제공하는데 있다.An object of the present invention is to deposit CdS and CdTe thin films on a substrate of 200 ° C. to 300 ° C. made of ITO (In 2 O 3 —SnO 2 ) transparent conductive glass and a silicon oxide film, followed by 400 ° C. to 300 ° C. under argon gas or nitrogen gas atmosphere. Rapid heat treatment at 600 ° C. for 1 to 2 minutes, followed by chemical etching treatment with 2-20% chromic acid solution to remove impurities on the surface of the thin film and to change the surface composition ratio, and removing the oxide film with hydrazine hydrate as a reducing agent. The present invention provides a method for manufacturing a CdTe thin film type solar cell using rapid heat treatment, which is washed with distilled water, dried with an N 2 gun, deposited using Au as a wiring metal, and heat treated in a dp dryer.

이하, 첨부된 도면에 의거하여 본 발명의 방법에 이용된 급속 열처리 공정을 상세히 설명한다.Hereinafter, on the basis of the accompanying drawings will be described in detail the rapid heat treatment process used in the method of the present invention.

제1도는 본 발명의 방법에 사용된 급속 열처리 장치의 개략도로, 진공용기의 위쪽 및 아래쪽에서 할로겐 램프로 가열하는 방식을 사용하였으며 시편을 용기 내의 지지대 위에 올려놓은 상태에서 열처리 하였다.FIG. 1 is a schematic diagram of a rapid heat treatment apparatus used in the method of the present invention, which uses a method of heating with a halogen lamp at the top and bottom of a vacuum vessel and heat-treating the specimen on a support in the container.

온도는 두 개의 열전대를 시료 표면에 접촉시켜 측정하였으며 분위기 가스로는 아르곤을 사용하였다. 또한, 공정중의 진공도를 200mTorr로 하여 400℃∼600℃에서 50℃ 간격으로 1-2분간 열처리 하였다.The temperature was measured by contacting two thermocouples with the sample surface and argon was used as the atmospheric gas. In addition, the vacuum degree during the process was 200 mTorr, and the heat treatment was performed for 1 minute at 400 ° C. to 600 ° C. at 50 ° C. intervals.

본 발명의 방법에 의하면, 전자빔 증착법, 가열 증법 및 스터링법에 의해 투명 전도성 ITO(In2O3-SnO2) 유리와 실리콘 산화막(SiO2) 위에 CdS 및 CdTe 박막을 증착시킨 후에 CdTe 박막의 열처리 방법으로서 일반적인 로열처리 대신에 급속열처리를 사용함으로써 물리적 전기 특성과 태양전지 특성이 상당히 향상되는 효과를 볼 수 있었다.According to the method of the present invention, CdS and CdTe thin films are deposited on the transparent conductive ITO (In 2 O 3 -SnO 2 ) glass and silicon oxide film (SiO 2 ) by electron beam evaporation, heating, steaming, and sterling. By using rapid heat treatment instead of the conventional heat treatment, the physical electrical characteristics and solar cell characteristics were significantly improved.

본 발명은 하기의 실시예에 의해 보다 구체적으로 설명될 것이지만, 본 발명이 이러한 실시예에 한정되지 않음을 밝혀 둔다.The present invention will be explained in more detail by the following examples, but it should be noted that the present invention is not limited to these examples.

[실시예 1]Example 1

다목적 증착 장치(AG L-56 Universal coating system: 레이볼드(Leybold)사제)에 부착된 전자빔 증착기를 사용하여 다결정 CdTe 박막을 기판 상에 증착시켰다. 기판으로는 ITO 투명전도성 유리를 사용하였는 바, 이러한 기판을 초음파에 의한 15분간의 에탄올 세척과 증류수로 세척을 한 후에 건조시켰다. 증착 시의 기판 온도는 300℃이고 증착 두꼐는 2㎛였으며, 이렇게 증착된 CdTe 박막에 대해 500℃에서 2분간 급속 열처리를 행하였다. 이러한 과정에 의해 열처리된 CdTe 박막은 [111] 우선 성장 방향을 지니는 ZnS 입방체 구조로 증착되었고, 합체(Coalescence)에 의한 결정립 성장을 관찰할 수 있었다. 또한 열처리 후의 광흡수율을 측정한 결과, 제2도에 도시된 바와 같이 밴드갭 에너지가 1.5∼1.51eV 정도여서 단결정 CdTe의 값에 접근하였음을 알 수 있다.A polycrystalline CdTe thin film was deposited on a substrate using an electron beam evaporator attached to an AG L-56 Universal coating system (manufactured by Leybold). ITO transparent conductive glass was used as the substrate, and the substrate was dried after washing with ethanol for 15 minutes by ultrasonic waves and distilled water. At the time of deposition, the substrate temperature was 300 ° C. and the deposition thickness was 2 μm. The CdTe thin film thus deposited was subjected to rapid heat treatment at 500 ° C. for 2 minutes. The CdTe thin film heat-treated by this process was deposited in a ZnS cube structure having a [111] first growth direction, and grain growth by coalescence was observed. In addition, as a result of measuring the light absorption after the heat treatment, as shown in FIG. 2, the band gap energy was about 1.5 to 1.51 eV, indicating that the value of the single crystal CdTe was approached.

[실시예 2]Example 2

다목적 증착 장치(AG L-560: 레이볼드사제)에 부착된 가열형 증착기(thermal evaporator)를 사용하여 기판 상에 증착시켰다. 기판으로는 ITO 투명 전도성 유리를 사용하였다. CdTe 박막의 증착 조건이나 열처리 방법은 실시예 1과 동일한 급속 열처리 방법이며, 다만 기판 온도를 280℃로 하여 증착하였다. 물성 분석 결과, 실시예 1과 동일하게 급속 열처리에 의해 물성이 향상됨을 알 수 있다.It deposited on the board | substrate using the thermal evaporator attached to the multipurpose vapor deposition apparatus (AG L-560: Raybold company). ITO transparent conductive glass was used as the substrate. The deposition conditions and the heat treatment method of the CdTe thin film were the same rapid heat treatment methods as in Example 1, except that the substrate was deposited at 280 ° C. As a result of the physical property analysis, it can be seen that the physical properties are improved by rapid heat treatment as in Example 1.

[실시예 3]Example 3

CdTe 박막의 전기 비저항 측정을 위해 습식 산화 공정에 의해 3000Å의 SiO2를 성장시킨 Si 웨이퍼를 기판으로 사용하였으며 실시예 1과 동일한 방법으로 증착한 후에 급속 열처리를 행하였다. 그리고, 이렇게 열처리한 CdTe 박막에 전기 비저항 측정을 위한 전극용 배선층을 증착하기 전에 CdTe 표면의 불순물층 제거 및 표면 성분비 변화를 위해 크로메이트 용액(2-20%)를 사용하여 10초동안 화학적 식각 처리를 행하였고, 히드라진 수화물 등의 환원제로 산화막을 제거한 다음 증류수로 세정한 후에 N2건(gun)으로 건조시켰다. 배선 금속으로는 Au를 사용하였으며, 기판 상에 상온에서 100-250 Å/min의 증착 속도로 500Å을 증착하였고 또한 전극의 밀착력을 향상시키기 위해 건조기(오븐)에서 150℃로 1시간 동안 열처리를 행하였다. 이상의 방법으로 제조된 CdTe 박막의 전기적 특성을 알아 보기 위해 HP4145B 반도체 상수 분석기를 이용하여 전류-전압 간의 관계를 측정하였는 바, 6 × 104Ω㎝의 비저항 값을 보여서 종래의 로열처리 결과(1.4 × 105Ω㎝)에 비해 낮은 값을 나타냄을 알 수가 있었다. 결과적으로 급속 열처리 방법이 태양전지용 다결정 CdTe 박막의 열처리에 적용가능하고 물리적, 전기적 특성 향상에 큰 효과를 주는 것을 알 수 있다.In order to measure the electrical resistivity of the CdTe thin film, a Si wafer in which 3000 SiO of SiO 2 was grown by a wet oxidation process was used as a substrate. Rapid deposition was performed after deposition in the same manner as in Example 1. In order to remove the impurity layer on the CdTe surface and change the surface composition ratio, the chemical etching treatment was performed for 10 seconds using a chromate solution (2-20%) before depositing the electrode wiring layer for measuring the electrical resistivity on the heat-treated CdTe thin film. The oxide film was removed with a reducing agent such as hydrazine hydrate, washed with distilled water, and then dried with N 2 gun. Au was used as the wiring metal, and 500 Å was deposited on the substrate at a deposition rate of 100-250 Å / min at room temperature, and heat-treated at 150 ° C. for 1 hour in a dryer (oven) to improve the adhesion of the electrode. It was. HP4145B semiconductor constant analyzer using the current to determine an electrical characteristic of a CdTe thin film prepared by the above method - boyeoseo the specific resistance value of the bar, 6 × 10 4 Ω㎝ hayeotneun measuring the relationship between the voltage conventional royal processing result (1.4 × 10 5 Ωcm) showed a lower value. As a result, it can be seen that the rapid heat treatment method is applicable to the heat treatment of the polycrystalline CdTe thin film for solar cells and has a great effect on improving physical and electrical properties.

[실시예 4]Example 4

CdTe 박막 태양전지를 제조하기 위하여 ITO 기판위에 CdS 박막을 가열 증착법으로 200℃의 기판 온도에서 2000Å 두께로 증착하였으며, 질소 분위기 하에서 400℃ 온도로 30분간 로열처리를 행하였다. CdTe 증착 조건 및 방법은 실시예 2와 동일하며 열처리된 CdTe/CdS/ITO 구조의 박막은 실시예 3의 전처리 조건, 배선 금속 증착 조건 및 건조기 열처리를 거쳐 CdTe 박막 태양전지를 제조하였다. 이러한 공정을 거쳐 제조된 p-CdTe/n-CdS 태양전지의 개략도는 제3도에 도시된 바와 같으며 전지 특성 평가는 태양광 대신 태양광 시뮬레이터를 이용하여 광량을 미리 감광 장치로 수동 측정한 다음 컴퓨터를 이용하여 광조사(AM 1.0) 전후의 전류-전압 특성을 측정하였다.In order to manufacture a CdTe thin film solar cell, a CdS thin film was deposited on an ITO substrate by a heat deposition method at a thickness of 2000 kPa at a substrate temperature of 200 ° C., and subjected to a thermal treatment for 30 minutes at 400 ° C. under a nitrogen atmosphere. CdTe deposition conditions and methods are the same as in Example 2, the heat-treated CdTe / CdS / ITO structure of the thin film was subjected to the pretreatment conditions, wiring metal deposition conditions and dryer heat treatment of Example 3 to prepare a CdTe thin film solar cell. The schematic diagram of the p-CdTe / n-CdS solar cell manufactured through such a process is shown in FIG. 3, and the evaluation of the cell characteristics is performed by manually measuring the amount of light using a photosensitive device in advance using a solar simulator instead of sunlight. Current-voltage characteristics before and after light irradiation (AM 1.0) were measured using a computer.

제2도는 광흡수도 측정에 의한 밴드갭 에너지 변화를 나타내는 그래프이고, 제4도는 본 발명의 방법에 의해 CdTe 박막을 급속 열처리하여 얻어진 CdTe/CdS 태양전지의 전류-전압 곡선도인바, 에너지 변환 효율이 10.2%임을 알 수 있었다.FIG. 2 is a graph showing the change in bandgap energy by light absorption measurement. FIG. 4 is a current-voltage curve diagram of a CdTe / CdS solar cell obtained by rapid heat treatment of a CdTe thin film by the method of the present invention. This was found to be 10.2%.

[실시예 5]Example 5

CdTe 박막 태양전지를 제조하기 위하여 ITO 기판위에 CdS 박막을 실시예 4와 동일하게 증착 및 열처리 하였으며, CdTe 박막을 스퍼터링 장치를 사용하여 300℃의 기판 온도 및 50W의 RF 전력을 사용하여 2㎛의 두께로 증착하였다. 실시예 1 및 2와 동일하게 급속 열처리된 CdTe/CdS/ITO 구조의 박막은 실시예 3의 전처리 조건, 배선 금속 증착 조건 및 건조기 열처리를 거쳐 CdTe 박막 태양전지로 제조되었다. 실시예 4의 방법과 동일하게 태양전지의 특성을 평가한 결과, 제조된 태양전지는 8.7%의 에너지 변환효율을 보였다.In order to manufacture a CdTe thin film solar cell, a CdS thin film was deposited and heat treated on an ITO substrate in the same manner as in Example 4, and the CdTe thin film was sputtered using a substrate temperature of 300 ° C. and a RF power of 50 W using a sputtering apparatus. Was deposited. The thin film of the CdTe / CdS / ITO structure rapidly heat-treated in the same manner as in Examples 1 and 2 was fabricated as a CdTe thin film solar cell after the pretreatment conditions, wiring metal deposition conditions, and dryer heat treatment of Example 3. As a result of evaluating the characteristics of the solar cell in the same manner as in Example 4, the manufactured solar cell showed an energy conversion efficiency of 8.7%.

Claims (8)

ITO(In2O3-SnO2) 투명 전도성 유리 및 실리콘 산화막으로 된 200℃∼300℃의 기판 상에 CdS 및 CdTe 박막을 증착시키는 CdS 및 CdTe 박막 증착 과정; 상기 과정에 의해 증착한 다음 아르곤 가스의 분위기 하에서 400℃∼600℃로 1∼2분간 급속 열처리를 행하는 급속 열처리 과정; 상기 과정에 의하여 열처리를 행한 후에 상기 박막의 표면 상의 불순물을 제거하고 표면 성분비를 변화시키기 위해 2∼20%의 크롬산 용액으로 화학적 식각처리를 행하고 환원제로서 히드라진 수화물로 산화막을 제거하는 산화막 제거 과정; 상기 산화막 제거 과정을 거친 기판을 증류수로 세정한 후에 N2 건으로 건조시키는 건조 과정 및 Au를 사용하여 배선 금속을 증착시킨 후에 건조기에서 열처리를 행하는 열처리 과정을 포함하여 이루어진 급속 열처리를 행한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.A CdS and CdTe thin film deposition process for depositing CdS and CdTe thin films on a substrate of 200 ° C. to 300 ° C. made of ITO (In 2 O 3 —SnO 2 ) transparent conductive glass and silicon oxide film; A rapid heat treatment step of performing a rapid heat treatment for 1 to 2 minutes at 400 ° C. to 600 ° C. under an atmosphere of argon gas after deposition by the above process; An oxide film removing step of performing an etch treatment on the surface of the thin film to remove impurities on the surface of the thin film and performing chemical etching treatment with a 2-20% chromic acid solution to remove surface oxides, and removing an oxide film with hydrazine hydrate as a reducing agent; CdTe using a CdTe thin film subjected to rapid heat treatment, which comprises a step of cleaning the substrate after the oxide film removal process with distilled water, followed by a drying step of drying with an N2 gun, and a heat treatment step of depositing a wiring metal using Au and then performing a heat treatment in a dryer. / CdS solar cell manufacturing method. 제1항에 있어서, 상기 CdTe 박막의 증착 공정은 가열 증착법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using the CdTe thin film subjected to rapid heat treatment according to claim 1, wherein the deposition process of the CdTe thin film is performed by heat deposition. 제1항에 있어서, 상기 CdTe 박막의 증착 공정은 전자빔 증착법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using the CdTe thin film subjected to rapid heat treatment according to claim 1, wherein the CdTe thin film is deposited by electron beam deposition. 제1항에 있어서, 상기 CdTe 박막의 증착 공정은 스퍼터링법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of claim 1, wherein the deposition of the CdTe thin film is performed by sputtering. ITO(In2O3-SnO2) 투명 전도성 유리 및 실리콘 산화막으로 된 200℃∼300℃의 기판 상에 CdS 및 CdTe 박막을 증착시키는 CdS 및 CdTe 박막 증착 과정; 상기 과정에 의해 증착한 다음 질소 가스의 분위기 하에서 400℃∼600℃로 1∼2분간 급속 열처리를 행하는 급속 열처리 과정; 상기 과정에 의하여 열처리를 행한 후에 상기 박막의 표면 상의 불순물을 제거하고 표면 성분비를 변화시키기 위해 2∼20%의 크롬산 용액으로 화학적 식각처리를 행하고 환원제로서 히드라진 수화물로 산화막을 제거하는 산화막 제거 과정; 상기 산화막 제거 과정을 거친 기판을 증류수로 세정한 후에 N2 건으로 건조시키는 건조 과정 및 Au를 사용하여 배선 금속을 증착시킨 후에 건조기에서 열처리를 행하는 열처리 과정을 포함하여 이루어진 급속 열처리를 행한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.A CdS and CdTe thin film deposition process for depositing CdS and CdTe thin films on a substrate of 200 ° C. to 300 ° C. made of ITO (In 2 O 3 —SnO 2 ) transparent conductive glass and silicon oxide film; A rapid heat treatment step of depositing by the above process and performing rapid heat treatment at 400 ° C. to 600 ° C. for 1 to 2 minutes in an atmosphere of nitrogen gas; An oxide film removing step of performing an etch treatment on the surface of the thin film to remove impurities on the surface of the thin film and performing chemical etching treatment with a 2-20% chromic acid solution to remove surface oxides, and removing an oxide film with hydrazine hydrate as a reducing agent; CdTe using a CdTe thin film subjected to rapid heat treatment, which comprises a step of cleaning the substrate after the oxide film removal process with distilled water, followed by a drying step of drying with an N2 gun, and a heat treatment step of depositing a wiring metal using Au and then performing a heat treatment in a dryer. / CdS solar cell manufacturing method. 제5항에 있어서, 상기 CdTe 박막의 증착 공정은 가열 증착법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using a CdTe thin film subjected to rapid heat treatment according to claim 5, wherein the deposition process of the CdTe thin film is performed by heat deposition. 제5항에 있어서, 상기 CdTe 박막의 증착 공정은 전자빔 증착법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using the CdTe thin film subjected to rapid heat treatment according to claim 5, wherein the CdTe thin film is deposited by electron beam deposition. 제5항에 있어서, 상기 CdTe 박막의 증착 공정은 스퍼터링법으로 수행되는 것을 특징으로 하는 급속 열처리를 한 CdTe 박막을 이용하는 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using the CdTe thin film subjected to rapid heat treatment according to claim 5, wherein the deposition process of the CdTe thin film is performed by sputtering.
KR1019950034275A 1995-10-06 1995-10-06 Method for manufacturing cd te/cds solar battery using rapid thermal annealing KR0179332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950034275A KR0179332B1 (en) 1995-10-06 1995-10-06 Method for manufacturing cd te/cds solar battery using rapid thermal annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950034275A KR0179332B1 (en) 1995-10-06 1995-10-06 Method for manufacturing cd te/cds solar battery using rapid thermal annealing

Publications (2)

Publication Number Publication Date
KR970024326A KR970024326A (en) 1997-05-30
KR0179332B1 true KR0179332B1 (en) 1999-03-20

Family

ID=19429425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950034275A KR0179332B1 (en) 1995-10-06 1995-10-06 Method for manufacturing cd te/cds solar battery using rapid thermal annealing

Country Status (1)

Country Link
KR (1) KR0179332B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348702B1 (en) * 1999-12-28 2002-08-13 주식회사 루밴틱스 A method for preparation of transparent conductive thin-film by Rapid Thermal Annealing Method and a transparent conductive thin-film prepared by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348702B1 (en) * 1999-12-28 2002-08-13 주식회사 루밴틱스 A method for preparation of transparent conductive thin-film by Rapid Thermal Annealing Method and a transparent conductive thin-film prepared by the method

Also Published As

Publication number Publication date
KR970024326A (en) 1997-05-30

Similar Documents

Publication Publication Date Title
AU712220B2 (en) Photovoltaic device and its method of preparation
Fan et al. Properties of Sn‐Doped In2 O 3 Films Prepared by RF Sputtering
US4423403A (en) Transparent conductive films and methods of producing same
US6169246B1 (en) Photovoltaic devices comprising zinc stannate buffer layer and method for making
Wu et al. Recent developments in RF sputtered cadmium stannate films
JPH06204527A (en) Solar cell
Sankapal et al. Preparation and characterization of Sb2S3 thin films using a successive ionic layer adsorption and reaction (SILAR) method
Vigil-Galán et al. Influence of the growth conditions and postdeposition treatments upon the grain boundary barrier height of CdTe thin films deposited by close space vapor transport
EP0403936A2 (en) Method for producing a conductive oxide pattern
US5264077A (en) Method for producing a conductive oxide pattern
US4709466A (en) Process for fabricating thin film photovoltaic solar cells
Ishihara et al. Interaction between n‐type amorphous hydrogenated silicon films and metal electrodes
KR0179332B1 (en) Method for manufacturing cd te/cds solar battery using rapid thermal annealing
Moutinho et al. Alternative procedure for the fabrication of close-spaced sublimated CdTe solar cells
Müller et al. CdSCuxS heterojunctions produced by rf Sputtering
Di Giulio et al. Growth and characterization of tin oxide thin films prepared by reactive sputtering
JPH0766437A (en) Manufacture of substrate for photoelectric transducer
JPS6249753B2 (en)
Ruckh et al. Applications of ZnO in Cu (In, Ga) Se/sub 2/solar cells
EP3291310B1 (en) Method of manufacturing a solar cell
Mgbenu Accelerated aging of Al/Ge and Al/Si thin film couples
JP3229610B2 (en) Manufacturing method of ITO electrode
CN113594289B (en) PbS homojunction device and preparation method thereof
JP2001223376A (en) Manufacturing method for polycrystal semiconductor thin-film solar battery, and solar battery manufactured thereby
CN109904250B (en) Photodiode and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
EXPY Expiration of term