KR0173063B1 - Process for desulfurizing catalytically cracked gasoline - Google Patents

Process for desulfurizing catalytically cracked gasoline Download PDF

Info

Publication number
KR0173063B1
KR0173063B1 KR1019960030205A KR19960030205A KR0173063B1 KR 0173063 B1 KR0173063 B1 KR 0173063B1 KR 1019960030205 A KR1019960030205 A KR 1019960030205A KR 19960030205 A KR19960030205 A KR 19960030205A KR 0173063 B1 KR0173063 B1 KR 0173063B1
Authority
KR
South Korea
Prior art keywords
desulfurization
hydrogen
oil
less
target value
Prior art date
Application number
KR1019960030205A
Other languages
Korean (ko)
Other versions
KR970006463A (en
Inventor
시게토 하타나카
사토루 히기타
오사무 사다카네
다다오 미야마
Original Assignee
이즈미야 요시히코
미쓰비시세키유가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이즈미야 요시히코, 미쓰비시세키유가부시키가이샤 filed Critical 이즈미야 요시히코
Publication of KR970006463A publication Critical patent/KR970006463A/en
Application granted granted Critical
Publication of KR0173063B1 publication Critical patent/KR0173063B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 올레핀의 수소화로 인한 옥탄가의 저하를 최소한으로 막고 또한 높은 탈황율을 달성할 수 있는 접촉 분해 가솔린의 탈황방법에 관한 것이다.The present invention relates to a process for desulfurization of catalytic cracked gasoline which can minimize the decrease in octane number due to hydrogenation of olefins and attain a high desulfurization rate.

원료인 접촉 분해 가솔린을 하기의 다단계 공정을 사용하여 처리한다.The catalytic cracked gasoline as a raw material is treated using the following multi-step process.

① 제1공정 : 반응기 입구 황화수소 농도 0.1용량% 이하, 반응 온도 200 내지 350℃, 수소 분압 5 내지 30kg/㎠, 수소/오일 비율 500 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정.① First step: 0.1 vol% or less of hydrogen sulfide concentration at the reactor inlet, reaction temperature 200 to 350 ° C., hydrogen partial pressure 5 to 30 kg / cm 2, hydrogen / oil ratio 500 to 3,000 scf / bbl, liquid space velocity (LHSV) 2 to 10 l / A desulfurization treatment step using a hydrodesulfurization catalyst at a hr condition and carried out in a desulfurization rate of 60 to 90%.

② 제2공정 : 제1공정의 생성유에 대해 반응기 입구 황화수소 농도 0.05용량% 이하, 반응 온도 200 내지 300℃, 수소 분압 5 내지 15kg/㎠, 수소/오일 비율 1,000 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정 및② The second step: 0.05 vol% or less of hydrogen sulfide concentration at the inlet of the reactor for the oil produced in the first step, reaction temperature 200 to 300 ° C., hydrogen partial pressure 5 to 15 kg / cm 2, hydrogen / oil ratio 1,000 to 3,000 scf / bbl, liquid space velocity (LHSV) Desulfurization treatment process using a hydrodesulfurization catalyst at a condition of 2 to 10 l / hr and carried out at a desulfurization rate of 60 to 90%, and

③ 제3공정 이후 : 제2공정의 생성유의 황 농도가 목표치 이하로 되지 않는 경우, 목표치 이하로 될 때까지 ②의 공정을 필요한 횟수로 반복 실시하는 탈황 처리 공정.③ After the third step: If the sulfur concentration of the produced oil of the second step does not fall below the target value, the desulfurization treatment step of repeating step (2) as many times as necessary until the target value is below the target value.

Description

접촉 분해 가솔린의 탈황방법Desulfurization Method of Catalytic Gasoline

본 발명은 접촉 분해 가솔린의 탈황방법에 관한 것이다. 보다 상세하게는 황 화합물 및 올레핀 성분을 함유하는 접촉 분해 가솔린을 접촉을 이용하여 수소화 탈황 처리할 때에 올레핀 성분의 수소화를 극력 억제하여 옥탄가의 저하를 최소한으로 하고 또한 높은 탈황율을 달성할 수 있는 탈황방법에 관한 것이다.The present invention relates to a desulfurization method of catalytic cracked gasoline. More specifically, when hydrodesulfurization treatment of a catalytic cracking gasoline containing a sulfur compound and an olefin component is carried out by contact, hydrogen sulfide of the olefin component is suppressed as much as possible to minimize the reduction of the octane number and to achieve a high desulfurization rate. It is about a method.

석유 정제의 분야에서 올레핀 성분을 다량으로 함유하는 고옥탄가 가솔린 재료원으로서 접촉 분해 가솔린이 있다. 이것은 중질 석유 유분, 예를 들면, 감압 경유 또는 상압 잔유 등의 원료유를 접촉 분해하고 접촉 분해 생성물을 회수 및 증류함으로써 수득되는 가솔린 유분이며 자동차 가솔린의 주요한 혼합 재료원의 하나로서 사용된다. 접촉 분해 가솔린의 비점은 20 내지 250℃ 정도이며 올레핀 및 방향족을 많이 함유하는 고옥탄가 기재이다.In the field of petroleum refining, catalytic cracked gasoline is a high octane gasoline gasoline material source containing a large amount of olefin components. It is a gasoline fraction obtained by catalytic cracking of heavy petroleum fraction, for example, crude oil such as vacuum gas oil or atmospheric residue, and recovering and distilling catalytic cracking products, and is used as one of the main mixed material sources for automobile gasoline. The boiling point of catalytic cracked gasoline is about 20-250 degreeC, and it is a high octane number base material containing many olefins and aromatics.

그러나 상기한 접촉 분해의 원료유는 원래의 황 화합물의 함유량이 비교적 많으며 이것을 그대로 접촉 분해 처리하는 경우에 접촉 분해 생성물의 황 화합물 함유량도 많아진다. 황분이 적은 원료유는 그대로 접촉 분해하는 경우도 있지만 황분이 많은 경우, 접촉 분해 가솔린을 자동차 가솔린의 혼합 재료원으로서 사용하면 환경에 대한 영향이 문제로 될 염려가 있으므로 원료유를 미리 탈황 처리하는 경우도 많다.However, the above-mentioned raw material of the catalytic cracking has a relatively high content of the original sulfur compound, and the sulfur compound content of the catalytic cracking product also increases when this is subjected to catalytic cracking. In the case of a large amount of sulfur, in the case of a large amount of sulfur, when desulfurization of raw material oil is carried out in advance, the use of catalytic cracked gasoline as a mixed material source of automobile gasoline may cause a problem to the environment. There are many.

탈황 처리로서 종래부터 석유 정제 분야에서 실시되는 수소화 탈황처리가 일반적이며 이것은 고온 및 가압시킨 수소 분위기 중에서 탈황하여야 하는 원료유를 적당한 수소화 탈황처리 촉매에 접촉시키는 것이다.As a desulfurization treatment, a hydrodesulfurization treatment conventionally practiced in the field of petroleum refining is common, and this is to contact raw hydrogen which needs to be desulfurized in a high temperature and pressurized hydrogen atmosphere to a suitable hydrodesulfurization catalyst.

접촉 분해의 원료유인 감압 경유 또는 상압 잔유 등의 수소화 탈황처리의 경우, 수소화 탈황처리 촉매는 Ⅵ족 및 Ⅷ족 원소, 예를 들면, 알루미나 위에 담지시킨 것이 사용된다. 또한 수소화 탈황처리의 조건으로서 일반적으로 온도 약 300 내지 400℃, 수소 분압 약 30 내지 200kg/㎠, 액 공간속도(LHSV) 약 0.1 내지 10ℓ/hr가 채용되고 있다.In the case of hydrodesulfurization treatment such as vacuum gas oil or atmospheric residual oil, which is a raw material oil for catalytic cracking, the hydrodesulfurization catalyst is supported on Group VI and Group VIII elements, for example, alumina. As the conditions for the hydrodesulfurization treatment, a temperature of generally about 300 to 400 ° C, a hydrogen partial pressure of about 30 to 200 kg / cm 2, and a liquid space velocity (LHSV) of about 0.1 to 10 l / hr are employed.

그러나 접촉 분해 장치의 원료유인 감압 경유나 상압 잔유 등의 중질 석유 유분의 수소화 탈황 처리의 경우에 처리 조건이 상기한 바와 같이 고온 및 고압이므로 장치의 설계 조건이 가혹하기 때문에 건설비가 높으며 탈황처리를 실시하지 않은 원료유를 분해하는 경우도 있다. 또한 탈황 처리하는 경우에는 접촉 분해 장치의 증강만을 하고 원료유의 탈황이 충분하게 실시되지 않는 경우도 있다.However, in the case of hydrodesulfurization of heavy petroleum fractions, such as vacuum gas oil or atmospheric residual oil, which are the raw materials of the catalytic cracking device, the processing conditions are high temperature and high pressure as described above. In some cases, crude oil that is not used is decomposed. In the case of the desulfurization treatment, in some cases, the catalytic cracking device is only strengthened, and desulfurization of the raw material oil is not sufficiently performed.

따라서 접촉 분해 가솔린 속에 원료유가 탈황 처리된 경우에 30 내지 300중량ppm(전체 유분), 원료유가 탈황처리되지 않은 경우에 50 내지 수천 중량ppm(전체 유분)에 이르는 황이 함유되어 있으며 최근에 환경 규제 강화에 대응하는 것이 어려워지고 있다.Therefore, the catalytic cracking gasoline contains 30 to 300 ppm by weight (whole fraction) when the raw oil is desulfurized, and 50 to thousands ppm by weight (whole fraction) when the raw oil is not desulfurized. It is becoming difficult to cope.

접촉 분해 가솔린을 직접 수소화 탈황처리할 수 있지만, 이러한 경우에 접촉 분해 가솔린 속에 함유된 올레핀 성분이 수소화되고 이의 함유량이 감소되므로 옥탄가가 저하되는 문제점이 있다. 특히, 고탈황율이 필요한 경우에 옥탄가의 저하가 현저하다.The catalytic cracking gasoline can be directly hydrohydrodesulfurized, but in this case, there is a problem that the octane number is lowered because the olefin component contained in the catalytic cracking gasoline is hydrogenated and its content is reduced. In particular, when a high desulfurization rate is required, the reduction of the octane number is remarkable.

접촉 분해 가솔린 속에 티오펜류, 티아사이클로알칸류, 티올류, 설파이드류 등이 함유된다. 이중에서도 티오펜류의 비율이 많으며 티올류, 설파이드류의 비율은 작다.In the catalytic cracked gasoline, thiophenes, thiacycloalkanes, thiols, sulfides and the like are contained. Among them, the ratio of thiophenes is large, and the ratio of thiols and sulfides is small.

탈황반응에 따른 황은 황화수소를 사용하여 탈황하며 기상내의 황화수소는 접촉 분해 가솔린 속의 올레핀과 반응하여 티올을 생성시킨다. 따라서 어느 정도 이상의 탈황율을 달성하기 위해 올레핀을 수소화하여 티올의 생성을 방지하는 것이 필요하며 탈황율을 높이기 위해 옥탄가의 저하는 다시 현저해진다.Sulfur in the desulfurization reaction is desulfurized using hydrogen sulfide, and hydrogen sulfide in the gas phase reacts with olefins in catalytic cracking gasoline to form thiols. Therefore, in order to achieve more than a certain degree of desulfurization rate, it is necessary to hydrogenate the olefin to prevent the formation of thiols, and to lower the desulfurization rate, the decrease in the octane number becomes remarkable.

또한 올레핀을 수소화하지 않고 남긴 그대로 탈황하는 경우에 티올의 생성이 불가피해지며 티올은 부식성이 있으므로 촉매 반응에 다른 부식성이 없는 디설파이드로 해서 부식성을 제거하는 완화 장치를 설치하는 것이 필요하다.In addition, in the case of desulfurization as it is without hydrogenation of the olefin, the formation of thiols is inevitable, and since the thiols are corrosive, it is necessary to provide a mitigation device to remove the corrosiveness by disulfide without other corrosive reactions in the catalytic reaction.

황 화합물 및 올레핀 성분을 함유하는 접촉 분해 가솔린을 수소화 탈황시키는 장치에 사용되는 촉매는 기타 탈황 촉매와 동일하게 Ⅷ족 및 Ⅵ족 원소, 예를 들면, 크롬, 몰리브덴, 텅스텐, 코발트, 니켈 등을 적당한 기재, 예를 들면, 알루미나 위에서 담지시킨 것을 사용할 수 있다. 이러한 촉매는 예비 황화시켜 활성화하며 예비 황화 방법으로서 나프타의 탈황 촉매와 동일한 방법을 사용할 수 있다. 결국 나프타에 디메틸디설파이드 등의 황 화합물을 혼합하여 수소와 함께 150 내지 350℃로 가열하고 촉매가 충전된 반응탑으로 오일을 통과시키는 방법이 일반적이다. 디메틸디설파이드 등의 황 화합물은 촉매의 활성 금속 표면에서 수소와 반응하여 황화수소로 전환되며 황화수소와 활성 금속은 다시 반응하여 탈황 반응에서 활성인 금속 황화물로 된다.The catalyst used in the apparatus for hydrodesulfurizing catalytic cracked gasoline containing sulfur compounds and olefin components is the same as other desulfurization catalysts, suitable for Group VIII and VI elements such as chromium, molybdenum, tungsten, cobalt, nickel and the like. A substrate supported on, for example, alumina can be used. This catalyst is activated by presulfurization and the same method as the desulfurization catalyst of naphtha can be used as the presulfurization method. After all, it is common to mix naphtha with sulfur compounds such as dimethyl disulfide, heat them to 150 to 350 ° C. with hydrogen, and pass oil through a reaction column filled with a catalyst. Sulfur compounds such as dimethyl disulfide react with hydrogen on the surface of the active metal of the catalyst to be converted to hydrogen sulfide, and the hydrogen sulfide and the active metal react again to become active metal sulfides in the desulfurization reaction.

접촉 분해 가솔린을 수소화 탈황하는 경우, 올레핀의 수소화로 인한 옥탄가의 저하는 큰 문제이며 이를 억제하여 효율적으로 탈황을 실시하는 기술 개발이 요망되고 있다. 본 발명의 목적은 이러한 올레핀의 수소화 반응을 억제하여 옥탄가의 저하를 최소한으로 막고 또한 높은 탈황율을 달성하는 접촉 분해 가솔린의 수소화 탈황방법을 제공하는 것이다.In the case of hydrodesulfurization of catalytic cracked gasoline, a decrease in octane number due to hydrogenation of olefins is a big problem, and development of a technology for efficiently desulfurization by suppressing it is desired. It is an object of the present invention to provide a method for hydrodesulfurization of catalytically cracked gasoline which suppresses the hydrogenation of such olefins, thereby minimizing the reduction of the octane number and achieving a high desulfurization rate.

이러한 목적을 달성하기 위해 탈황 반응으로 인해 발생하는 황화수소와 올레핀의 반응에 따라 생성되는 티올의 생성을 낮게 억제하는 것이 필요하며 탈황율을 높게 하는 경우에 기상내의 황화수소 농도가 높아지므로 티올의 생성이 역으로 촉진된다. 결국 종래의 기술에서 올레핀의 수소화 반응을 억제하여 탈황시키는 경우, 높은 탈황율을 달성하는 것이 어려우며 역으로 높은 탈황율을 달성하기 위해 티올의 생성을 억제해야 하므로 올레핀을 수소화시키는 것이 필요하며 옥탄가가 저하되는 커다란 문제점이 있다.In order to achieve this purpose, it is necessary to lower the production of thiol produced by the reaction of hydrogen sulfide and olefin generated by the desulfurization reaction, and when the desulfurization rate is high, the concentration of hydrogen sulfide in the gas phase becomes high, thus the production of thiol is reversed. Is promoted. As a result, when desulfurization by suppressing the hydrogenation reaction of olefins in the prior art, it is difficult to achieve a high desulfurization rate and conversely, it is necessary to hydrogenate olefins to suppress the production of thiol in order to achieve a high desulfurization rate and lower the octane number There is a big problem.

본 발명자들은 상기한 과제를 해결하기 위해 예의 연구를 거듭한 결과, 황 화합물 및 올레핀 성분을 함유하는 접촉 분해 가솔린을 수소화 탈황 처리할 때에 탈황을 종래의 1단계 공정에서 일정한 반응 조건 범위의 2단계 이상의 공정으로 분할하여 차례차례로 탈황함으로써 올레핀의 수소화 반응을 억제하여 옥탄가의 저하를 최소한으로 막고 또한 높은 탈황율을 달성하는 획기적인 접촉 분해 가솔린의 수소화 탈황방법을 발명하기에 이르렀다.The present inventors have intensively studied to solve the above problems, and as a result, when hydrodesulfurizing a catalytic cracking gasoline containing a sulfur compound and an olefin component, desulfurization is carried out in two or more stages of a constant reaction condition range in a conventional one-step process. By dividing into steps in order to desulfurization, the inventors have invented a breakthrough hydrodesulfurization method of catalytically cracked gasoline, which suppresses the hydrogenation of olefins, thereby preventing a decrease in octane number and attaining a high desulfurization rate.

구체적으로는 하기의 다단계 공정 처리로써 접촉 분해 가솔린의 황분을 목표로 하는 농도 이하로 탈황시키는 방법이다.Specifically, it is a method of desulfurization below the target concentration of sulfur of catalytically cracked gasoline by the following multistage process treatment.

① 제1공정 : 반응기 입구 황화수소 농도 0.1용량% 이하, 반응 온도 200 내지 350℃, 수소 분압 5 내지 30kg/㎠, 수소/오일 비율 500 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정.① First step: 0.1 vol% or less of hydrogen sulfide concentration at the reactor inlet, reaction temperature 200 to 350 ° C., hydrogen partial pressure 5 to 30 kg / cm 2, hydrogen / oil ratio 500 to 3,000 scf / bbl, liquid space velocity (LHSV) 2 to 10 l / A desulfurization treatment step using a hydrodesulfurization catalyst at a hr condition and carried out in a desulfurization rate of 60 to 90%.

② 제2공정 : 제1공정의 생성유에 대해 반응기 입구 황화수소 농도 0.05용량% 이하, 반응 온도 200 내지 300℃, 수소 분압 5 내지 15kg/㎠, 수소/오일 비율 1,000 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정 및② The second step: 0.05 vol% or less of hydrogen sulfide concentration at the inlet of the reactor for the oil produced in the first step, reaction temperature 200 to 300 ° C., hydrogen partial pressure 5 to 15 kg / cm 2, hydrogen / oil ratio 1,000 to 3,000 scf / bbl, liquid space velocity (LHSV) Desulfurization treatment process using a hydrodesulfurization catalyst at a condition of 2 to 10 l / hr and carried out at a desulfurization rate of 60 to 90%, and

③ 제3공정 이후 : 제2공정의 생성유의 황 농도가 목표치 이하로 되지 않는 경우, 목표치 이하로 될 때까지 ②의 공정을 필요한 횟수로 반복 실시하는 탈황 처리 공정.③ After the third step: If the sulfur concentration of the produced oil of the second step does not fall below the target value, the desulfurization treatment step of repeating step (2) as many times as necessary until the target value is below the target value.

본 명세서에서의 반응기 입구의 황화수소 농도란 반응기 입구에서 원료유가 기화된 상태의 가스 중에 함유된 황화수소의 용량%를 나타낸다. 또한 수소 분압이란 반응기 입구에서 원료유가 기화된 상태에서의 수소의 분압을 나타낸다.In the present specification, the hydrogen sulfide concentration at the reactor inlet refers to the volume% of hydrogen sulfide contained in the gas in which the crude oil is vaporized at the reactor inlet. In addition, hydrogen partial pressure shows the partial pressure of hydrogen in the state in which the raw material oil vaporized at the inlet of a reactor.

제1공정은 접촉 분해 가솔린 속에 함유된 황 화합물의 대부분을 수소화 분해시켜 탈황하는 공정이며 반응 조건은 통상적인 나프타의 탈황 등과 비교하여 올레핀의 수소화를 극력 억제하도록 하는 저온, 저압, 높은 수소 오일 비율의 특수한 조건이며 허용될 수 있는 올레핀의 수소하율을 감안하여 탈황율이 60 내지 90%의 범위로 되도록 상세한 반응 조건 설정을 실시한다. 탈황율이 90% 이상인 반응 조건에서 상기와 같이 올레핀을 수소화함으로써 티올의 생성은 억제할 수 있지만 옥탄가가 저하되므로 바람직하지 않다. 또한 탈황율 60% 이하에서 공정수가 많아지므로 경제적이 아니다. 반응 온도와 접촉 시간은 탈황율이 60 내지 90중량%로 되도록 하는 범위에서 설정하면 양호하다. 반응 온도에 관해 저온일수록 올레핀의 수소화를 방지하는데 유리하지만 200℃ 이하에서 탈황 속도가 늦어지므로 실용적이 아니며 또한 350℃ 이상에서 촉매 활성의 손실이 가속화되므로 바람직하지 않다.The first process is to desulfurize most of the sulfur compounds contained in catalytic cracking gasoline to desulfurize, and the reaction conditions are low temperature, low pressure, and high hydrogen oil ratios to suppress hydrogenation of olefins as compared to conventional desulfurization of naphtha. Detailed reaction conditions are set so that the desulfurization rate is in the range of 60 to 90% in consideration of the specific conditions and allowable hydrogen loading rate of the olefin. Although hydrogenation of an olefin as mentioned above in reaction conditions whose desulfurization rate is 90% or more can produce | generate thiol, but since octane number falls, it is unpreferable. In addition, it is not economical because the number of processes increases at less than 60% desulfurization rate. The reaction temperature and the contact time may be set in a range such that the desulfurization rate is 60 to 90% by weight. The lower the temperature, the more advantageous it is to prevent hydrogenation of the olefin, but it is not practical because the desulfurization rate is slower at 200 ° C. or lower, and it is not preferable because the loss of catalyst activity is accelerated at 350 ° C. or higher.

수소/오일 비율이 클수록 황화수소가 희석되므로 티올의 생성을 억제할 수 있지만 장치의 크기 등의 점에서 500 내지 3,000scf/bbl인 것이 현실적이다. 또한 반응 중의 황화수소 농도는 낮게 억제시키는 것이 필요하므로 반응기 입구의 황화수소 농도를 0.1용량% 이하로 하는 것이 바람직하다. 따라서 재순환 수소 가스중의 황화수소를 예를 들면, 아민 흡수 장치 등을 사용하여 제거할 수 있다. 아민 흡수 장치를 사용하는 경우에 황화수소 농도를 0.01용량% 정도로 할 수 있다. 또한 제2공정 이후의 반응 후의 기체, 액체 분리후의 가스(이른바, 재순환 수소)는 황화수소 농도가 낮으므로 황화수소 농도가 0.1용량% 이하인 경우에 아민 흡수 장치를 사용하지 않고 제1공정 공급용의 수소로서 사용할 수 있다. 올레핀의 수소화율이 20% 이하로 되도록 반응 조건을 설정하면 옥탄가의 저하를 최소한으로 막을 수 있다.The larger the hydrogen / oil ratio, the more the hydrogen sulfide is diluted, so that the production of thiols can be suppressed. However, the size of the device is 500 to 3,000 scf / bbl. In addition, since the hydrogen sulfide concentration during the reaction needs to be kept low, the hydrogen sulfide concentration at the inlet of the reactor is preferably 0.1 vol% or less. Therefore, hydrogen sulfide in recycle hydrogen gas can be removed using an amine absorption apparatus etc., for example. When using an amine absorber, the hydrogen sulfide concentration can be about 0.01% by volume. In addition, since the gas after the reaction after the second process and the gas after the liquid separation (so-called recycle hydrogen) have a low hydrogen sulfide concentration, when the hydrogen sulfide concentration is 0.1 vol% or less, it is used as hydrogen for the first process supply without using an amine absorber. Can be used. If the reaction conditions are set so that the hydrogenation rate of an olefin becomes 20% or less, the fall of an octane number can be prevented to the minimum.

제1공정에서 탈황된 접촉 분해 가솔린은 기액 분리된 다음, 제2공정에서 다시 탈황시킨다. 제2공정에서는 제1공정에서 탈황되지 않은 황 화합물을 수소화 분해시켜 탈황하는 동시에 제1공정에서 생성된 티올을 수소화 분해시켜 탈황한다. 티올은 비교적 탈황시키기 쉬우므로 제1공정과 비교하여 온화한 조건에서 반응시킬 수 있으며 올레핀과 황화수소의 반응으로 인한 티올의 생성을 억제하므로 수소/오일 비율을 크게 하고 반응 압력을 낮게 하는 것이 바람직하다. 즉, 반응 온도 200 내지 300℃, 수소 분압 5 내지 15kg/㎠, 수소/오일 비율 1,000 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건하에서 설정할 수 있다. 또한 반응기 입구 황화수소 농도를 0.05용량% 이하로 하는 것이 바람직하며 따라서 재순환 수소 가스 중의 황화수소를 아민 흡수 장치 등을 사용하여 제거하는 것이 필요하다. 이러한 경우, 제1공정의 반응 후의 기액 분리 후의 가스를 아민 흡수 장치를 통과시킨 후에 제2공정을 사용할 수 있다.The catalytic cracked gasoline desulfurized in the first step is gas-liquid separated and then desulfurized again in the second step. In the second step, the sulfur compound which is not desulfurized in the first step is hydrosulfated to desulfurize, and at the same time, the thiol produced in the first step is hydrolyzed to be desulfurized. Since thiol is relatively easy to desulfurize, it can be reacted under mild conditions as compared with the first step, and it is preferable to increase the hydrogen / oil ratio and lower the reaction pressure because it suppresses the production of thiol due to the reaction of olefin and hydrogen sulfide. That is, it can set under the conditions of reaction temperature 200-300 degreeC, hydrogen partial pressure 5-15 kg / cm <2>, hydrogen / oil ratio 1,000-3,000 scf / bbl, and liquid space velocity (LHSV) 2-10 l / hr. It is also preferable to set the hydrogen sulfide concentration at the reactor inlet to 0.05% by volume or less, and therefore it is necessary to remove hydrogen sulfide in the recycle hydrogen gas using an amine absorber or the like. In this case, the second step can be used after passing the gas after gas-liquid separation after the reaction of the first step through the amine absorption device.

제2공정에서 올레핀의 수소화로 인한 옥탄가의 저하를 방지하기 위해 탈황율이 60 내지 90%로 되도록 반응 조건을 설정하는 것이 필요하며 또한 올레핀의 수소화율이 20% 이하로 되도록 반응 조건을 설정하면 옥탄가의 저하를 최소한으로 할 수 있다.In order to prevent the lowering of the octane number due to hydrogenation of the olefin in the second step, it is necessary to set the reaction conditions so that the desulfurization rate is 60 to 90%, and when the reaction conditions are set so that the hydrogenation rate of the olefin is 20% or less. Can be minimized.

제2공정에서 탈황시켜도 목표하는 황 농도까지 탈황시킬 수 없는 경우에 기액 분리된 다음, 제3공정 이후에 다시 탈황시킨다. 제3공정 이후에 기본적으로 제2공정을 반복하여 탈황율이 60 내지 90%의 조건에서 탈황 조작을 반복하면서 목표하는 황 농도 이하로 될 때까지 탈황한다. 제1공정에서 최종 공정까지 올레핀의 총 수소화율을 40% 이하로 함으로써 본 발명의 특징인 옥탄가의 저하를 작게 억제할 수 있다. 또한 최종적으로 접촉 분해 가솔린 속의 티올에 기인하는 황 농도가 5중량ppm 이하로 될 때까지 탈황시킴으로써 접촉 분해 가솔린의 부식성을 실질적으로 해소할 수 있으며 완화 장치의 필요성이 없어진다.If desulfurization in the second step does not allow desulfurization to a desired sulfur concentration, gas-liquid separation is carried out, followed by desulfurization after the third step. After the third step, the second step is basically repeated to desulfurize until the target sulfur concentration is lower than the target sulfur concentration while repeating the desulfurization operation under the condition of 60 to 90%. By setting the total hydrogenation rate of the olefins to 40% or less from the first step to the final step, the decrease in the octane number, which is a feature of the present invention, can be suppressed small. In addition, desulfurization until the sulfur concentration attributable to thiol in the catalytic cracking gasoline reaches 5 ppm by weight or less can substantially eliminate the corrosiveness of the catalytic cracking gasoline and eliminate the need for a mitigation device.

이러한 다단계 공정을 사용하여 탈황을 실시하는 공정은 일본국 공개특허공보 제(평)5-78670호에 기재된 바와 같이 생성유의 색상 개선을 목적으로 하여 경유 등의 다량의 황분을 함유하고 또한 올레핀이 함유되지 않은 오일의 탈황에서 제안되어 있다. 그러나 본 발명은 올레핀과 황화수소의 반응으로 인해 생성된 티올의 부생을 방지하는 관점에서 다단계 공정을 채용하고 또한 각각의 반응 조건을 올레핀의 수소화가 최소한으로 되도록 규정한 것이며 색상 개선을 목적으로 하는 종래의 다단계 공정 탈황 공정과 전혀 상이한 신규 공정이다.The process of desulfurization using such a multistage process contains a large amount of sulfur such as light oil and also contains olefins for the purpose of improving the color of the produced oil, as described in JP-A-5-78670. In the desulfurization of oils that have not been proposed. However, the present invention adopts a multi-step process in terms of preventing the by-product of thiol produced by the reaction of olefin and hydrogen sulfide, and also defines each reaction condition so that hydrogenation of olefin is minimized. It is a novel process that is completely different from the multistage process desulfurization process.

본 발명에서 사용되는 촉매는 다공성 무기 산화물 담체에 탈황 활성 금속을 담지시킨 석유 정제 분야에서 통상적으로 사용되는 수소화 탈황 촉매를 사용할 수 있다.As the catalyst used in the present invention, a hydrodesulfurization catalyst commonly used in the field of petroleum refining in which a desulfurization active metal is supported on a porous inorganic oxide carrier may be used.

다공성 무기 산화물 담체로서 예를 들면, 알루미나, 실리카, 티타니아, 마그네시아 등을 들 수 있으며 이들의 단독 또는 혼합물의 형태로 사용할 수 있다. 바람직하게는 알루미나, 실리카-알루미나를 선택할 수 있다.Examples of the porous inorganic oxide carrier include alumina, silica, titania, magnesia, and the like, and may be used alone or in the form of a mixture thereof. Preferably, alumina, silica-alumina can be selected.

또한 코우크 석출을 방지할 목적으로 담체에 칼륨 등의 알칼리 금속을 함유시킨 촉매도 본 발명에서 사용되는 촉매로서 대단히 바람직하다.In addition, a catalyst in which an alkali metal such as potassium is contained in a carrier for the purpose of preventing coke precipitation is also very preferable as the catalyst used in the present invention.

탈황 활성 금속으로서 크롬, 몰리브덴, 텅스텐, 코발트, 니켈을 들 수 있으며 이들의 단독 또는 혼합물의 형태로 사용할 수 있다. 바람직하게는 코발트-몰리브덴 또는 니켈-코발트-몰리브덴을 선택할 수 있다. 이들 금속은 담체 위에 금속, 산화물, 황화물 또는 이들의 혼합물의 형태로 존재할 수 있다. 활성 금속의 담지 방법으로서 함침법 및 공침법 등의 공지된 방법을 사용할 수 있다.Desulfurization active metals include chromium, molybdenum, tungsten, cobalt, nickel and can be used alone or in the form of mixtures thereof. Preferably cobalt-molybdenum or nickel-cobalt-molybdenum can be selected. These metals may be present on the carrier in the form of metals, oxides, sulfides or mixtures thereof. As a supporting method of an active metal, well-known methods, such as an impregnation method and a coprecipitation method, can be used.

반응 탑의 형식은 특별히 한정하지 않으며 고정상 병류 하강류 방식이 바람직하다. 이들 개개의 조작은 석유 정제 분야에 공지되어 있으며 임의로 선택하여 실시할 수 있다.The type of the reaction tower is not particularly limited and a fixed bed cocurrent downflow method is preferred. These individual operations are known in the field of petroleum refining and can be carried out at random selection.

본 발명을 실시예에 따라 보다 상세하게 설명한다.The present invention will be described in more detail with reference to examples.

[실시예]EXAMPLE

고정상의 병류 하강류 방식의 소형 반응 장치에서 알루미나 담체에 4.0중량%의 CoO와 15중량%의 MoO3를 담지시킨 1/16인치 압출 성형 시판 촉매를 100ml충전시킨다.100 ml of a 1/16 inch extruded commercial catalyst in which 4.0 wt% of CoO and 15 wt% of MoO 3 were supported on an alumina carrier was charged in a small reaction apparatus of a fixed bed cocurrent downflow mode.

5중량%의 디메틸디설파이드를 가한 30 내지 150℃의 직렬 증류 가솔린 유분을 사용하여 300℃, 압력 15kg/㎠, LHSV 2ℓ/hr, 수소/오일비율 500scf/bbl에서 예비 황화를 5시간 동안 실시한다.Presulfurization is carried out for 5 hours at 300 ° C., pressure 15 kg / cm 2, LHSV 2 L / hr, hydrogen / oil ratio 500 scf / bbl, using a serial distillation gasoline fraction at 30-150 ° C. with 5% by weight of dimethyl disulfide.

제1공정1st process

황화 종료후에 반응기 입구의 황화수소 농도 0.05용량%, 250℃, LHSV 5ℓ/hr, 수소 분압 12kg/㎠, 수소/오일 비율 2,000scf/bbl의 조건에서 상압 잔유를 함유하는 원료유를 직접 분해하여 수득한 80 내지 220℃ 유분의 접촉 분해 가솔린(밀도 0.779g/㎤ @ 15℃, 유황분 220중량ppm, 올레핀 분 32용량%, 리서치 옥탄가 87.1)을 사용하여 탈황 반응 시험을 실시한다.Obtained by directly decomposing raw oil containing atmospheric residual oil under the conditions of 0.05 vol% hydrogen sulfide concentration at reactor inlet, 250 ° C, LHSV 5l / hr, hydrogen partial pressure 12kg / cm2, hydrogen / oil ratio 2,000scf / bbl after completion of sulfidation. The desulfurization reaction test is carried out using a catalytically cracked gasoline of 80 to 220 ° C oil (density 0.779 g / cm 3 to 15 ° C, 220 ppm by weight of sulfur, 32% by volume of olefin, 87.1 of research octane number).

그 결과, 황분 63중량ppm(탈황율 71%), 이중에서 티올 황의 양은 12중량ppm, 올레핀 분 29용량%(수소화율 9%), 리서치 옥탄가 86.0의 수소화 탈황처리 접촉 분해 가솔린을 수득한다.As a result, 63 parts by weight of sulfur (71% desulfurization), 12 parts by weight of thiol sulfur, 29% by volume of olefins (9% hydrogenation), and hydrodesulfurization catalytic cracking gasoline having a research octane number of 86.0.

제2공정2nd process

이러한 탈황 접촉 분해 가솔린을 반응기 입구의 황화수소 농도 0.03용량% 및 이외에는 제1공정과 동일한 반응 조건에서 다시 탈황시킨다. 그 결과, 황분 21중량ppm(탈황율 67%), 이중에서 티올 황의 양은 9중량ppm, 올레핀 분 27용량%(수소화율 7%), 리서치 옥탄가 85.3의 수소화 탈황처리 접촉 분해 가솔린을 수득한다.This desulfurization catalytic cracking gasoline is desulfurized again under the same reaction conditions as in the first step except for 0.03% by volume hydrogen sulfide concentration at the reactor inlet. As a result, 21 parts by weight of sulfur (67% desulfurization), 9 parts by weight of thiol sulfur, 27% by volume of olefins (7% hydrogenation), and a hydrodesulfurization catalytic cracking gasoline having a research octane number 85.3.

제3공정3rd process

이러한 탈황 접촉 분해 가솔린을 반응기 입구의 황화수소 농도를 함유하고제2공정과 동일한 반응 조건에서 다시 탈황시킨다. 그 결과, 황분 8중량ppm(탈황율 63%), 이중에서 티올 황의 양은 3중량ppm, 올레핀 분 24용량%(수소화율 11%), 리서치 옥탄가 84.5의 수소화 탈황처리 접촉 분해 가솔린을 수득한다.This desulfurization catalytic cracking gasoline contains hydrogen sulfide concentration at the reactor inlet and is desulfurized again under the same reaction conditions as in the second process. As a result, 8 ppm by weight of sulfur content (63% desulfurization rate), of which the amount of thiol sulfur was 3 ppm by weight, 24% by volume olefin content (11% hydrogenation rate), and hydrogenated desulfurization catalytic cracking gasoline with research octane number 84.5 were obtained.

또한 제1 내지 제3공정의 종합 탈황율은 95%, 올레핀 종합 수소화율은 25%이다.The total desulfurization rate in the first to third processes is 95%, and the olefin synthesis hydrogenation rate is 25%.

[비교실시예]Comparative Example

실시예와 동일한 반응 장치 및 촉매를 사용하고 동일한 예비 황화를 실시한다. 예비 황화 후에 반응 온도를 실시예1과 비교하여 30℃ 높은 280℃로 하고 접촉 분해 가솔린의 탈황 반응을 실시한다. 기타 조건 및 사용하는 접촉 분해 가솔린은 실시예와 동일하다.The same reaction apparatus and catalyst as in the examples are used and the same preliminary sulfidation is carried out. After the preliminary sulfidation, the reaction temperature is set to 280 ° C, which is 30 ° C higher than that of Example 1, and desulfurization of catalytic cracked gasoline is performed. Other conditions and the catalytic cracking gasoline used are the same as in the examples.

그 결과, 황분 15중량ppm(탈황율 93%), 이중에서 티올 황의 양은 7중량ppm, 올레핀 분 18용량%(수소화율 43%), 리서치 옥탄가 82.1의 수소화 탈황처리 접촉 분해 가솔린을 수득한다.As a result, 15 parts by weight of sulfur (93% desulfurization), 7 parts by weight of thiol sulfur, 18% by volume of olefins (43% hydrogenation), and hydrodesulfurization catalytic cracking gasoline with a research octane number 82.1 were obtained.

황 화합물 및 올레핀 성분을 함유하는 접촉 분해 가솔린을 수소화 탈황 처리할 때에 일정한 조건 하에서 탈황 반응을 다단계에서 실시함을 특징으로 하는 본 발명의 방법을 적용함으로써 올레핀의 수소화 반응을 억제하고 옥탄가의 저하를 최소한으로 할 수 있다.When the catalytic cracking gasoline containing the sulfur compound and the olefin component is hydrodesulfurized, the desulfurization reaction is carried out in multiple stages under certain conditions, thereby suppressing the hydrogenation of olefins and minimizing the reduction of octane number. You can do

Claims (3)

다음의 다단계 공정을 사용하여 처리함을 특징으로 하는 접촉 분해 가솔린의 탈황방법.A desulfurization method of catalytic cracking gasoline characterized by the following multi-step process. ① 제1공정 : 반응기 입구 황화수소 농도 0.1용량% 이하, 반응 온도 200 내지 350℃, 수소 분압 5 내지 30kg/㎠, 수소/오일 비율 500 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정.① First step: 0.1 vol% or less of hydrogen sulfide concentration at the reactor inlet, reaction temperature 200 to 350 ° C., hydrogen partial pressure 5 to 30 kg / cm 2, hydrogen / oil ratio 500 to 3,000 scf / bbl, liquid space velocity (LHSV) 2 to 10 l / A desulfurization treatment step using a hydrodesulfurization catalyst at a hr condition and carried out in a desulfurization rate of 60 to 90%. ② 제2공정 : 제1공정의 생성유에 대해 반응기 입구 황화수소 농도 0.05용량% 이하, 반응 온도 200 내지 300℃, 수소 분압 5 내지 15kg/㎠, 수소/오일 비율 1,000 내지 3,000scf/bbl, 액 공간 속도(LHSV) 2 내지 10ℓ/hr의 조건에서 수소화 탈황 촉매를 사용하고 탈황율 60 내지 90%의 범위에서 실시하는 탈황 처리 공정 및② The second step: 0.05 vol% or less of hydrogen sulfide concentration at the inlet of the reactor for the oil produced in the first step, reaction temperature 200 to 300 ° C., hydrogen partial pressure 5 to 15 kg / cm 2, hydrogen / oil ratio 1,000 to 3,000 scf / bbl, liquid space velocity (LHSV) Desulfurization treatment process using a hydrodesulfurization catalyst at a condition of 2 to 10 l / hr and carried out at a desulfurization rate of 60 to 90%, and ③ 제3공정 이후 : 제2공정의 생성유의 황 농도가 목표치 이하로 되지 않는 경우, 목표치 이하로 될 때까지 ②의 공정을 필요한 횟수로 반복 실시하는 탈황 처리 공정.③ After the third step: If the sulfur concentration of the produced oil of the second step does not fall below the target value, the desulfurization treatment step of repeating step (2) as many times as necessary until the target value is below the target value. 제1항에 있어서, 각 공정에서 올레핀의 수소화율이 20% 이하인 동시에 전체 공정을 경유한 이후의 올레핀의 총 수소화율이 40% 이하인 범위에서 탈황시킴을 특징으로 하는 접촉 분해 가솔린의 탈황방법.The desulfurization method of catalytic cracking gasoline according to claim 1, wherein the desulfurization method of the catalytic cracking gasoline is desulfurized in a range in which the hydrogenation rate of the olefins is 20% or less in each process and the total hydrogenation rate of the olefins after the whole process is 40% or less. 제1항 또는 제2항에 있어서, 전체 공정을 경유한 이후의, 티올에 기인하는 황 농도가 5중량ppm 이하임을 특징으로 하는 접촉 분해 가솔린의 탈황방법.The method for desulfurizing catalytic cracked gasoline according to claim 1 or 2, wherein the sulfur concentration attributable to thiol after passing through the entire process is 5 ppm by weight or less.
KR1019960030205A 1995-07-26 1996-07-25 Process for desulfurizing catalytically cracked gasoline KR0173063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP95-209304 1995-07-26
JP20930495A JP3387700B2 (en) 1995-07-26 1995-07-26 Desulfurization method of catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
KR970006463A KR970006463A (en) 1997-02-21
KR0173063B1 true KR0173063B1 (en) 1999-03-20

Family

ID=16570745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960030205A KR0173063B1 (en) 1995-07-26 1996-07-25 Process for desulfurizing catalytically cracked gasoline

Country Status (8)

Country Link
US (1) US5906730A (en)
EP (1) EP0755995B1 (en)
JP (1) JP3387700B2 (en)
KR (1) KR0173063B1 (en)
CA (1) CA2182060C (en)
DE (1) DE69616197T2 (en)
SG (1) SG66319A1 (en)
TW (1) TW325497B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790912B1 (en) * 1999-02-24 2008-01-03 아이에프피 Process for production of gasolines with low sulfur contents
WO2010018954A2 (en) * 2008-08-14 2010-02-18 에스케이에너지 주식회사 Method and apparatus for recovering hydrogen in a petroleum-based hydrocarbon desulfurization process

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231754B1 (en) 1996-02-02 2001-05-15 Exxon Research And Engineering Company High temperature naphtha desulfurization using a low metal and partially deactivated catalyst
US6409913B1 (en) 1996-02-02 2002-06-25 Exxonmobil Research And Engineering Company Naphtha desulfurization with reduced mercaptan formation
US6231753B1 (en) 1996-02-02 2001-05-15 Exxon Research And Engineering Company Two stage deep naphtha desulfurization with reduced mercaptan formation
US6692635B2 (en) * 1999-02-24 2004-02-17 Institut Francais Du Petrole Process for the production of gasolines with low sulfur contents
FR2797639B1 (en) * 1999-08-19 2001-09-21 Inst Francais Du Petrole PROCESS FOR PRODUCING LOW SULFUR ESSENCE
US6387249B1 (en) 1999-12-22 2002-05-14 Exxonmobil Research And Engineering Company High temperature depressurization for naphtha mercaptan removal
EP1268711A4 (en) * 1999-12-22 2004-06-09 Exxonmobil Res & Eng Co High temperature depressurization for naphtha mercaptan removal
US6303020B1 (en) * 2000-01-07 2001-10-16 Catalytic Distillation Technologies Process for the desulfurization of petroleum feeds
FR2811328B1 (en) * 2000-07-06 2002-08-23 Inst Francais Du Petrole PROCESS INCLUDING TWO STAGES OF GASOLINE HYDRODESULFURATION AND AN INTERMEDIATE REMOVAL OF THE H2S FORMED DURING THE FIRST STAGE
US6416659B1 (en) 2000-08-17 2002-07-09 Catalytic Distillation Technologies Process for the production of an ultra low sulfur
US6736962B1 (en) * 2000-09-29 2004-05-18 Exxonmobil Research And Engineering Company Catalytic stripping for mercaptan removal (ECB-0004)
US6495030B1 (en) * 2000-10-03 2002-12-17 Catalytic Distillation Technologies Process for the desulfurization of FCC naphtha
US7374667B2 (en) 2001-03-12 2008-05-20 Bp Corporation North America, Inc. Process for the production of gasoline with a low sulfur content comprising a stage for transformation of sulfur-containing compounds, an acid-catalyst treatment and a desulfurization
US7052598B2 (en) 2001-03-12 2006-05-30 Institut Francais Du Petrole Process for the production of gasoline with a low sulfur content comprising a hydrogenation, a fractionation, a stage for transformation of sulfur-containing compounds and a desulfurization
FR2821851B1 (en) * 2001-03-12 2004-06-04 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF GASOLINE WITH LOW SULFUR CONTENT INCLUDING A STEP OF TRANSFORMATION OF SULFUR COMPOUNDS, TREATMENT ON ACID CATALYST AND DESULFURATION
US20020175108A1 (en) 2001-03-12 2002-11-28 Institut Francais Du Petrole Process for the production of a desulfurized gasoline from a gasoline fraction that contains conversion gasoline
FR2821850B1 (en) * 2001-03-12 2007-04-27 Inst Francais Du Petrole PROCESS FOR PRODUCTION OF LOW SULFUR CONTENT COMPRISING HYDROGENATION, FRACTIONATION, STAGE OF PROCESSING OF SULFUR COMPOUNDS AND DESULFURATION
US6673237B2 (en) 2001-11-28 2004-01-06 Corning Incorporated High performance monolith treater for gasoline upgrade
US7153415B2 (en) * 2002-02-13 2006-12-26 Catalytic Distillation Technologies Process for the treatment of light naphtha hydrocarbon streams
FR2837831B1 (en) * 2002-03-29 2005-02-11 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF HYDROCARBONS WITH LOW SULFUR CONTENT AND MERCAPTANS
BR0202413A (en) 2002-06-26 2004-05-11 Petroleo Brasileiro Sa Selective hydrodesulfurization process of olefinic currents
JP4803785B2 (en) * 2003-09-26 2011-10-26 Jx日鉱日石エネルギー株式会社 Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP5036074B2 (en) * 2003-09-26 2012-09-26 Jx日鉱日石エネルギー株式会社 Environmentally friendly gasoline
US7341657B2 (en) * 2003-12-22 2008-03-11 China Petroleum & Chemical Corporation Process for reducing sulfur and olefin contents in gasoline
US7785461B2 (en) * 2004-11-10 2010-08-31 Petroleo Brasileiro S.A. - Petrobras Process for selective hydrodesulfurization of naphtha
US20060151359A1 (en) * 2005-01-13 2006-07-13 Ellis Edward S Naphtha desulfurization process
BRPI0502040A (en) * 2005-05-13 2007-01-09 Petroleo Brasileiro Sa selective naphtha hydrodesulfurization process
FR2888583B1 (en) * 2005-07-18 2007-09-28 Inst Francais Du Petrole NOVEL METHOD OF DESULFURIZING OLEFINIC ESSENCES FOR LIMITING THE MERCAPTAN CONTENT
US20070114156A1 (en) * 2005-11-23 2007-05-24 Greeley John P Selective naphtha hydrodesulfurization with high temperature mercaptan decomposition
BRPI0601787B1 (en) 2006-05-17 2016-06-07 Petroleo Brasileiro Sa selective naphtha hydrodesulfurization process
US7842181B2 (en) * 2006-12-06 2010-11-30 Saudi Arabian Oil Company Composition and process for the removal of sulfur from middle distillate fuels
JP5123635B2 (en) 2007-10-12 2013-01-23 Jx日鉱日石エネルギー株式会社 Method for producing gasoline base material and gasoline
US8142646B2 (en) 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
WO2009105749A2 (en) 2008-02-21 2009-08-27 Saudi Arabian Oil Company Catalyst to attain low sulfur gasoline
US9005432B2 (en) 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
CN101905165B (en) * 2010-08-12 2012-07-18 中国石油天然气股份有限公司 Preparation and application of gasoline selective hydrodesulfurization catalyst
US8535518B2 (en) 2011-01-19 2013-09-17 Saudi Arabian Oil Company Petroleum upgrading and desulfurizing process
CN102604672B (en) * 2011-01-20 2014-05-28 中国石油化工股份有限公司 Method for producing low-sulfur gasoline
CN102604673B (en) * 2011-01-20 2014-12-03 中国石油化工股份有限公司 Method for producing low-sulfur gasoline
CN103059963B (en) * 2011-10-21 2014-12-31 中国石油化工股份有限公司 Method for producing clean gasoline
CN103059952B (en) * 2011-10-21 2014-12-31 中国石油化工股份有限公司 Method for producing sulfur-free clean gasoline
FR2993569B1 (en) * 2012-07-17 2015-12-04 IFP Energies Nouvelles METHOD OF DESULFURIZING A GASOLINE
CN104549556B (en) * 2013-10-28 2017-03-22 中国石油化工股份有限公司 Method for improving selectivity of catalyst
US9850435B2 (en) 2014-08-26 2017-12-26 Exxonmobil Research And Engineering Company Hydroprocessing with drum blanketing gas compositional control
RU2578150C1 (en) * 2014-09-18 2016-03-20 Сергей Владиславович Дезорцев Method of producing ecologically clean liquid rocket fuel
CN106147839B (en) * 2015-04-03 2018-06-19 中国石油化工股份有限公司 A kind of method for reducing content of sulfur in gasoline
CN106147838B (en) * 2015-04-03 2018-06-19 中国石油化工股份有限公司 A kind of method for producing super low-sulfur oil
CN106147856B (en) * 2015-04-03 2018-04-13 中国石油化工股份有限公司 A kind of method for reducing the high olefin gasolines feed sulphur content of high-sulfur
CN106147844B (en) * 2015-04-03 2018-04-13 中国石油化工股份有限公司 A kind of method of hydrotreating for producing super low-sulfur oil
US10308883B2 (en) 2015-10-07 2019-06-04 Axens Process for desulfurizing cracked naphtha
WO2018111541A1 (en) 2016-12-15 2018-06-21 Exxonmobil Research And Engineering Company Process for improving gasoline quality from cracked naphtha
US20180237706A1 (en) 2017-02-21 2018-08-23 Exxonmobil Research And Engineering Company Desulfurization of a naphtha boiling range feed
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
CN108620120B (en) * 2017-03-24 2020-11-06 中国石油化工股份有限公司 Preparation method of catalyst for catalyzing diesel oil hydrogenation conversion
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349027A (en) * 1965-02-08 1967-10-24 Gulf Research Development Co Multi-stage hydrodesulfurization process
US3732155A (en) * 1971-03-31 1973-05-08 Exxon Research Engineering Co Two-stage hydrodesulfurization process with hydrogen addition in the first stage
US3884797A (en) * 1971-09-27 1975-05-20 Union Oil Co Hydrofining-reforming process
US4131537A (en) * 1977-10-04 1978-12-26 Exxon Research & Engineering Co. Naphtha hydrofining process
FR2476118B1 (en) * 1980-02-19 1987-03-20 Inst Francais Du Petrole PROCESS FOR DESULFURIZING A CATALYTIC CRACKING OR STEAM CRACKING EFFLUENT
US4801373A (en) * 1986-03-18 1989-01-31 Exxon Research And Engineering Company Process oil manufacturing process
GB8910711D0 (en) * 1989-05-10 1989-06-28 Davy Mckee London Process
US5110444A (en) * 1990-08-03 1992-05-05 Uop Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
US5358633A (en) * 1993-05-28 1994-10-25 Texaco Inc. Hydrodesulfurization of cracked naphtha with low levels of olefin saturation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790912B1 (en) * 1999-02-24 2008-01-03 아이에프피 Process for production of gasolines with low sulfur contents
WO2010018954A2 (en) * 2008-08-14 2010-02-18 에스케이에너지 주식회사 Method and apparatus for recovering hydrogen in a petroleum-based hydrocarbon desulfurization process
WO2010018954A3 (en) * 2008-08-14 2010-06-10 에스케이에너지 주식회사 Method and apparatus for recovering hydrogen in a petroleum-based hydrocarbon desulfurization process

Also Published As

Publication number Publication date
US5906730A (en) 1999-05-25
TW325497B (en) 1998-01-21
JPH0940972A (en) 1997-02-10
DE69616197D1 (en) 2001-11-29
KR970006463A (en) 1997-02-21
EP0755995A1 (en) 1997-01-29
JP3387700B2 (en) 2003-03-17
EP0755995B1 (en) 2001-10-24
SG66319A1 (en) 1999-07-20
DE69616197T2 (en) 2002-06-06
CA2182060A1 (en) 1997-01-27
CA2182060C (en) 2000-06-27

Similar Documents

Publication Publication Date Title
KR0173063B1 (en) Process for desulfurizing catalytically cracked gasoline
US4149965A (en) Method for starting-up a naphtha hydrorefining process
US6334948B1 (en) Process for producing gasoline with a low sulphur content
US4306964A (en) Multi-stage process for demetalation and desulfurization of petroleum oils
JP4786102B2 (en) Two-stage advanced naphtha desulfurization with reduced formation of mercaptans
US4243519A (en) Hydrorefining process
JP4798324B2 (en) Method for desulfurizing gasoline comprising desulfurization of heavy and intermediate fractions resulting from fractionation into at least three fractions
US4054508A (en) Demetalation and desulfurization of residual oil utilizing hydrogen and trickle beds of catalysts in three zones
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
KR102322556B1 (en) Process for producing a gasoline with a low sulphur and mercaptans content
US6736962B1 (en) Catalytic stripping for mercaptan removal (ECB-0004)
KR100202205B1 (en) Process for desulfurizing catalytically cracked gasoline
AU2001291009A1 (en) Catalytic stripping for mercaptan removal
JP2000239668A (en) Production of low-sulfur-content gasoline
EP0725126A1 (en) Process for desulfurizing catalytically cracked gasoline
JP3291164B2 (en) Desulfurization method of catalytic cracking gasoline
JP4186157B2 (en) Process for producing low sulfur content gasoline comprising hydrogenation, fractionation, conversion of sulfur containing compounds and desulfurization
EP1517979B1 (en) Process for the selective hydrodesulfurization of olefinic naphtha streams
JP3269900B2 (en) Desulfurization of cracked gasoline fraction
US4298458A (en) Low pressure hydrotreating of residual fractions
KR20040019984A (en) A hydrogenation process for removing mercaptan from gasoline
US3859202A (en) First stage residual oil hydrodesulfurization with ammonia addition
CN100560695C (en) The method of hydrodesulfurizationof of naphtha
US3859204A (en) Residual oil hydrodesulfurization process by catalyst pretreatment and ammonia addition
JPH05112785A (en) Treatment of heavy hydrocarbon oil

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 18

EXPY Expiration of term