KR0151662B1 - Method for manufacturing plastic die steel - Google Patents

Method for manufacturing plastic die steel

Info

Publication number
KR0151662B1
KR0151662B1 KR1019950000481A KR19950000481A KR0151662B1 KR 0151662 B1 KR0151662 B1 KR 0151662B1 KR 1019950000481 A KR1019950000481 A KR 1019950000481A KR 19950000481 A KR19950000481 A KR 19950000481A KR 0151662 B1 KR0151662 B1 KR 0151662B1
Authority
KR
South Korea
Prior art keywords
steel
hardness
machinability
toughness
mold
Prior art date
Application number
KR1019950000481A
Other languages
Korean (ko)
Other versions
KR960029477A (en
Inventor
서인교
Original Assignee
서순화
기아특수강주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서순화, 기아특수강주식회사 filed Critical 서순화
Priority to KR1019950000481A priority Critical patent/KR0151662B1/en
Publication of KR960029477A publication Critical patent/KR960029477A/en
Application granted granted Critical
Publication of KR0151662B1 publication Critical patent/KR0151662B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Abstract

본 발명의 고인성 쾌삭 경면 플라스틱 금형강의 조성은 주량 %로서 C : 0.07-0.25%, Si : 0.15-0.90%, Mn : 0.70-2.0%, P : 0.030%이하, S : 0.05-0.20%, Cu : 0.20-0.80%, Ni : 2.0-4.0%, Cr : 0.6-1.5%, Mo : 0.2-0.8%, V : 0.05-0.20%, W : 0.05-0.18%, Al : 0.5-2.0%, Ca : 0.001-0.010%의 성분을 가지며 저탄소 Ni-Al플라스틱 금형강인 AISI P21 기본적인 특성인 경도 및 강도를 더욱 개량하기 위해 Ni, Cu, Al에 의한 금속간화합물의 석출, V, W, Mo, Cr에 의한 미세 탄질화물의 석출물로 고강도, 고인성, 고경도화하였으며, 쾌삭 원소인, S, Ca를 첨가하여 절삭성을 더욱 향상시켰으므로 금형의 가공시간과 비용, 금형수명의 향상을 기할 수 있다. 특히, 위항의 합금원소들이 충분한 효과를 발휘하기 위한 최적 열처리조건 도출과 열처리 작업의 단순화로 작업성을 향상시켰기 때문에 본 발명은 정밀가공에 적합한 우수한 고인성 쾌삭 경면 플라스틱 금형강 및 그 제조방법에 관한 것이다.The composition of the high toughness free-cut mirror plastic mold steel of the present invention is based on the percentage of C: 0.07-0.25%, Si: 0.15-0.90%, Mn: 0.70-2.0%, P: 0.030% or less, S: 0.05-0.20%, Cu : 0.20-0.80%, Ni: 2.0-4.0%, Cr: 0.6-1.5%, Mo: 0.2-0.8%, V: 0.05-0.20%, W: 0.05-0.18%, Al: 0.5-2.0%, Ca: Precipitation of intermetallic compounds by Ni, Cu, and Al, by V, W, Mo, and Cr in order to further improve the hardness and strength of AISI P21, which is a low carbon Ni-Al plastic mold steel with 0.001-0.010% of component High carbon, high toughness and high hardness as precipitates of fine carbonitride, and the addition of free cutting elements, S, Ca to improve the machinability to improve the processing time, cost and mold life of the mold. In particular, the present invention relates to an excellent toughness free-cutting plastic mold steel suitable for precision machining and a method of manufacturing the same because the alloying elements of the above have improved workability by deriving an optimum heat treatment condition and simplifying heat treatment to achieve a sufficient effect. will be.

Description

고인성형 쾌삭 경면 플리스틱 금형강 및 그의 제조방법.High toughness free cutting mirror plastic mold steel and its manufacturing method.

제1도는 본 발명에 따른 강(B)의 100배 미세조직 사진이고,1 is a 100-fold microstructure photograph of steel (B) according to the present invention,

제2도는 본 발명에 따른 강의 절삭성 평가후 칩처리성을 보여주는 사진이다.Figure 2 is a photograph showing the chip treatment after the machinability evaluation of the steel according to the present invention.

본 발명은 플라스틱 사출 및 성형에 사용되는 저탄소-Ni-Cu-Al-S계 고인성형 쾌삭 경면 프리하든 플라스틱 금형용 강에 관한 것이다.The present invention relates to a low carbon-Ni-Cu-Al-S-based high toughness free-cut mirror free hardened steel used for plastic injection and molding.

최근 플라스틱 제품은 소형화, 경량화, 고급화 및 정밀화 추세가 두드러지고 있음은 물론, 자동차, 가전, 일반 생필품에의 적용도도 더욱 커지고 있다. 이에 다라 사출 성형용 플라스틱 재질의종류도 다양해지고 있으며 플라스틱 금형용 강을 이용한 플라스틱 제품의 고급화, 정밀화가 진행되면서 기존 플라스틱 금형용 강의 성질에 내마모, 내인성을 요구하고 있으나, 종래의 고급 플라스틱 금형용 강은 저탄소-Ni-Cu-Al, 저탄소-Ni-Al, 저탄소-Ni-Cu-Al-S계가 주종을 이루고 있기 때문에, 이들 강은 쾌삭성, 경면성, 방전가공성, 보수성에 치우쳐 있어 형상이 복잡하고 박육부가 많은 정밀가공 금형에서 박육부 모서리가 절손되어 금형의 수명이 단축되는 경우가 많았다.Recently, plastic products have become more compact, lighter, more advanced, and more sophisticated, as well as more applicable to automobiles, home appliances, and general necessities. Accordingly, the types of plastic materials for injection molding are also diversified, and as the quality and precision of plastic products using the plastic mold steel are advanced, wear resistance and endurance are required for the properties of the existing plastic mold steel, but the conventional high-quality plastic mold steel is low carbon. Since Ni-Cu-Al, Low Carbon-Ni-Al, and Low Carbon-Ni-Cu-Al-S are the predominant, these steels are complex in shape due to their bias in free machinability, specularity, discharge workability and water retention. In the precision processing molds with many meat parts, the edges of the thin parts are often broken and the life of the mold is shortened.

또 대형금형강의 경우 열처리시 종래 강의 시효경화에 의한 경도향상을 위해 열처리시간이 길어야 하고, 3-4회 재열처리하므로 특수강 제조업체의 원가에 심한 부담을 주었다.In addition, in case of heat treatment of large mold steel, the heat treatment time should be long to improve the hardness by aging hardening of conventional steel, and the reheat treatment was performed 3-4 times, which put a heavy burden on the cost of special steel manufacturers.

본 발명은 이러한 종래 강의 문제점을 해결하면서 장점인 절삭성, 보수성, 경면성, 방전가공성을 유지하는 소재의 제공을 목적으로 하며 금형강의 경도균일, 인성향상, 내마모성을 향상시켜 정밀 절삭가공용에 가장 적합한 고인성형 쾌삭 경면 플라스틱 금형용 강을 제조하기 위한 것이다.The present invention aims to provide a material that maintains the advantages of cutting, water retention, specularity, and discharge workability while solving the problems of the conventional steel, and improves the hardness uniformity, toughness improvement, and wear resistance of the mold steel, and is most suitable for precision cutting. It is for manufacturing the steel for molding free cutting specular plastic mold.

본 발명의 강은 저탄소-Mn-Ni-Cu-Cr-Al-S계 금형강에 MuS 유화물의 미세화, 균일화 및 연시화 억제를 위한 Ca첨가와 인성, 마모, 균일 경도를 위한 Mo, V, W을 첨가하여, 기지조직 자체의 절삭저항성 억제을 위한 상부 베이나이트화를 유도하고 Ni-Al, Cu-Al금속간화합물과 Mo. V, W복합 미세탄화물 석출에 의한 경도 향상, 인성향상을 그 특징으로 하는 것이다.The steel of the present invention is Mo, V, W for the addition of Ca, toughness, abrasion, uniform hardness for suppressing the miniaturization, homogenization and softening of MuS emulsification in low carbon-Mn-Ni-Cu-Cr-Al-S-based mold steel In addition, induction of upper bainitization for suppressing cutting resistance of the matrix structure itself was carried out, and Ni-Al, Cu-Al intermetallic compound and Mo. It is characterized by the hardness improvement and toughness improvement by precipitation of V, W composite microcarbide.

본 발명에 의한 강은 다음의 성분범위를 갖는다. 즉, 중량비로 C 0.07-0.25%, Si 0.15-0.90%, Mn 0.70-2.0%, P≤0.030%, S 0.05-0.20%, Cu 0.20-0.80%, Ni 2.0-4.0%, Cr 0.6-1.5%, Mo 0.2-0.8%, V 0.05-0.20%, W 0.05-0.18%, Al 0.5-2.0%, Ca 0.001-0.010%를 함유하며 잔량은 Fe인데 전기로 제강시 통상의 미량 불순물이다.Steel according to the present invention has the following component ranges. That is, by weight ratio C 0.07-0.25%, Si 0.15-0.90%, Mn 0.70-2.0%, P≤0.030%, S 0.05-0.20%, Cu 0.20-0.80%, Ni 2.0-4.0%, Cr 0.6-1.5% , Mo 0.2-0.8%, V 0.05-0.20%, W 0.05-0.18%, Al 0.5-2.0%, Ca 0.001-0.010%. The remaining amount is Fe, which is a common trace impurity in steelmaking.

이하, 본 발명 강의 화학성분 한정 이유에 관한 성명한다.Hereinafter, a statement regarding the reason for limiting the chemical composition of the steel of the present invention.

탄소(C)는 기지에 고용해서 경도와 강도를 상승시킴과 동시에 본 발명강의 기본조직인 상부 베이나이트를 이루는 기본적 첨가원소로서, 탄소량이 많게 되면 마르덴사이트 조직화하며 과량의 탄화물이 석출하여 절삭저항이 높아지므로 피절삭성이 나빠지고 방전가공시 가공면이 경화되므로 0.25% 이하로 할 필요가 있다.Carbon (C) is a basic additive element that forms the upper bainite, which is the basic structure of the steel of the present invention, while increasing the hardness and strength by solidifying it at the base, and when the carbon content is large, mardenite is organized and excess carbide precipitates to reduce cutting resistance. As it increases, the machinability deteriorates and the machined surface hardens during discharge processing. Therefore, it is required to be 0.25% or less.

탄소량이 낮은 경우에는 요체화열처리시 탄소고용량이 적어 금형강에 필수적인 기본경도가 낮게되고, 경도를 균질하게 하고 내마모성을 증가시키는 Cr, V, W 미세탄화물의 석출이 적게되므로 금형의 수명이 짧아지기 때문에 0.07% 이상으로 할 필요가 있다.If the carbon content is low, the high carbon capacity during the heat treatment is low, so the basic hardness essential for the mold steel is low, and the precipitation of Cr, V, W microcarbide, which makes the hardness homogeneous and increases the wear resistance, is short, resulting in short mold life. Therefore, it is necessary to make it to 0.07% or more.

Si는 탄산제로서 유효하게 작용함과 동시에 대기하에서 내식성을 가지게 하는 것을 목적으로 참가하나 다량 첨가되면 재료의 피삭성을 저해하고 인성을 해치므로 0.9% 이하로 한정하며, Si 량이 적게되면 제강시 탈산효과를 얻기 어려우며 페라이트상이 약화되어 경도가 저하되므로 0.15% 이상 함유시킬 필요가 있다.Si participates in order to act effectively as a carbonate and to have corrosion resistance in the air, but when added in a large amount, it inhibits the machinability of the material and impairs toughness, so it is limited to 0.9% or less. Since the effect is difficult to obtain and the ferrite phase is weakened and the hardness is reduced, it is necessary to contain 0.15% or more.

Mn은 소입성을 향상시키고 베이나이트상을 조절하며 경도를 균지하게 하고 MnS 계 생성으로 피삭성을 증가시키므로 본 발명 강에서 중요한 원소중 하나이다.Mn is one of the important elements in the steel of the present invention because it improves the hardenability, regulates the bainite phase, homogenizes the hardness and increases the machinability by the formation of the MnS system.

Mn 량이 많게되면 베이나이트를 미세하게하여 피삭성이 저하되고 잔류 오스테나이트가 증가하며 열간가공성이 나빠지므로 2.0% 이하로 한정하며, Mn 량이 적게 되면 MnS 생성량이 적게되어 피삭성이 나빠지며, 내마모성이 저하하고 소입성이 나빠지므로 0.7% 이상으로 한정한다.When the Mn content is large, bainite is finely reduced, machinability is decreased, residual austenite is increased, and hot workability is deteriorated. Therefore, the Mn content is limited to 2.0% or less. It decreases and hardenability worsens, so it is limited to 0.7% or more.

S 는 피삭성을 개선할 목적으로 첨가하나 0.2% 이상 첨가되면 열간가공성이 저하되고 금형의 인성이 저하되므로 0.2% 이하로첨가하여야 하며, S 량이 적으면 Mn과 결합하는 MnS 개재물의 양이 적어 피삭성을 개선시키지 못하므로 0.05% 이상 함유시킬 필요가 있다.S is added for the purpose of improving machinability, but when 0.2% or more is added, the hot workability is lowered and the toughness of the mold is lowered. Therefore, S should be added at 0.2% or less. When the amount of S is small, the amount of MnS inclusions bonded with Mn is small. Since it does not improve machinability, it is necessary to contain 0.05% or more.

Cu는 본 발명 강의 시효열처리시 Cu-Al 금속간화합물을 만들어 피삭성을 해치지 않으면서 경도를 균일하게 하는 중요한 첨가원소로서 과량첨가되면 열간가공성을 저해하므로 0.8% 이하로 하며 Cu 량이 낮은 경우에는 상기 첨가효과가 적게되므로 0.2% 이상으로 한정한다.Cu is an important element that makes Cu-Al intermetallic compound in the aging heat treatment of the present invention and makes the hardness uniform without impairing machinability. When Cu is excessively added, Cu inhibits hot workability and is 0.8% or less. Since the effect of addition is less limited to 0.2% or more.

Ni 는 본 발명 강에서 시효열처리시 Ni-Al 금속간화합물을 석출시켜 기지조직인 베이나이트의 경도를 향상시키는 중요한 원소로서 Ni 량이 많게되면 베이나이트가 미세하게되어 절삭성이 저하되므로 4.0% 이하로 한정하며, Ni 량이 적게되면 내식성이 저하되며 석출경화에 의한 경도유지가 어려우므로 2.0% 이상으로 할 필요가 있다.Ni is an important element that precipitates Ni-Al intermetallic compound during aging heat treatment in the present invention steel and improves the hardness of bainite, which is a known structure. When Ni is large, bainite becomes fine and the machinability decreases, so it is limited to 4.0% or less. When the amount of Ni is small, the corrosion resistance is lowered and the hardness is hardly maintained by precipitation hardening. Therefore, the Ni content needs to be 2.0% or more.

Cr은 열처리시 미세한 크롬 탄화물을 만들어 금형재료의 심부경도를 향상시키고 금형표면의 내식성을 향상시키는 원소로서 Cr 량이 많게되면 재료의 피삭성이 저하되므로 1.5% 이하로 한정하며, Cr 량이 적게되면 상기의 효과를 얻을 수 없으므로 0.6% 이상으로 할 필요가 있다.Cr is an element that makes fine chromium carbide during heat treatment and improves the core hardness of the mold material and improves the corrosion resistance of the mold surface. When Cr amount increases, machinability of the material decreases, so it is limited to 1.5% or less. Since no effect can be obtained, it is necessary to make it 0.6% or more.

Mo 는 Cr, Ni과 상승작용으로 재료의 경도를 상승시키는 원소로서 Mo량이 많게되면 재료의 피삭성이 나빠지고 첨가량에 상당하는 효과를 볼 수 없으므로 0.8% 이하로 할 필요가 있으며, Mo 량이 적게되면 금형에 필요한 강도, 경도 조절이 어려우므로 0.2% 이상으로 한정한다.Mo is an element that increases the hardness of the material by synergistic with Cr and Ni. When the amount of Mo increases, the machinability of the material deteriorates and the added amount cannot be seen. Therefore, the amount of Mo needs to be 0.8% or less. It is difficult to control the strength and hardness necessary for the mold, so it is limited to 0.2% or more.

V는 C와 N과 결합하여 내마모성과 강도를 향상시키는 고가의 중요한 첨가원소로 재료의 강도를 보존하면서 인성을 가지게 한다.V is an expensive and important additive that combines with C and N to improve wear resistance and strength, while maintaining toughness while preserving the strength of the material.

그러나 과량함유시키면 그 효과에 비해 경제적이지 못하므로 그 상한을 0.2% 이하로 하며 V 량이 적게되면 강도 및 인성의 확보가 어려우므로 0.05% 이상으로 한정한다.However, if the content is excessive, it is not economical compared to the effect, so the upper limit is 0.2% or less, and when the amount of V is small, strength and toughness are difficult to secure, so it is limited to 0.05% or more.

W는 금형재료 가공표면의 내마모성을 향상시키고 경도를 유지하게 하는 첨가원소로서 W 량이 많게되면 다량의 탄화물로 인해 피삭성이 저하되므로 0.18% 이하로 하여야 하며 W 량이 적게되면 내마모성이 저하하여 수명이 단축되므로 0.05% 이상으로 한정한다.W is an additive element that improves the wear resistance and maintains the hardness of the mold material processing surface. When the amount of W increases, machinability decreases due to a large amount of carbide. Therefore, W should be less than 0.18%. Therefore, it is limited to 0.05% or more.

Al은 시효열처리시 미세한 Ni-Al 금속간화합물로 석출되어 베이나이트 기지조직에 높은 경도를 가지도록하는 중요한 원소로서 피절삭성을 해치지 않는다.Al is an important element that precipitates as a fine Ni-Al intermetallic compound during aging heat treatment and has high hardness in bainite matrix, and does not impair machinability.

또한 질화처리시 질화경도를 상승시키나 과량첨가되면 제강시 Al2O3생성량이 상대적으로 많아져 재료의 청정성을 유지하기 위해 특별한 제강기술이 요구되고 연성이 오히려 저하하므로 2.0% 이하로 한정하며 Al 량이 적게되면 상기 우수한 효과를 얻을 수 없으므로 0.5% 이상으로 첨가하여야 한다.In addition, during the nitriding process, the nitriding hardness is increased. However, when excessively added, the amount of Al 2 O 3 produced during steelmaking is relatively high. Therefore, special steelmaking technology is required to maintain the cleanliness of the material and the ductility decreases, so the amount of Al is limited to 2.0% or less. If less, the excellent effect cannot be obtained, so it should be added at 0.5% or more.

Ca는 MnS 개재물과 함께 피삭성과 공구수명 향상에 기여하는 중요원소로서 MnS의 핵생성을 많게하여 미세하게 하며 MnS 의 과도한 연신을 억제하여 인성의 저하를 방지한다.Ca is an important element that contributes to improved machinability and tool life along with MnS inclusions, which increases the nucleation of MnS and makes it finer, and prevents excessive stretching of MnS, thereby preventing toughness.

그러나 과도하게 첨가되면 거대 개재물이 형성되어 경면성을 저하시키므로 0.001% 이하로 한정하며 Ca량이 적게되면 상기의 우수한 효과를 얻을수 없으므로 0.01% 이상 첨가하여야 한다.However, when excessively added, large inclusions are formed to decrease the specularity, so it is limited to 0.001% or less. When the amount of Ca is small, the excellent effect cannot be obtained.

이하 본 발명을 실시예에 의하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

본 발명의 강은 저탄소-Ni-Cu-S-Al의 특수강으로서 절삭성, 고경도, 경면사상성을 확보하기 위해 전기로 제강 및 진공 탈가스법으로 청정한 강을 제조하였다.The steel of the present invention is a special steel of low carbon-Ni-Cu-S-Al, and has been manufactured by electric steelmaking and vacuum degassing to secure cutting property, high hardness, and specularity.

먼저 전기로에서 탈탄작업시 과산화 방지를 위해 실리콘과 알루미늄을 적절히 사용하였으며, 진공 탈가스 작업전 미리 생성된 산화개재물을 슬래그탈산법을 이용하여 탈산력을 회복한 뒤 충분히 교반 제거하였고, 알루미늄을 제외한 실리콘(Si), 망간(Mn), 동(Cu), 니켈(Ni), 크롬(Cr), 몰리브덴(Mo), 바나듐(V), 텅스텐(W), 황(S)를 투여하여 합금성분을 조정하였다. 또한 진공 탈가스 작업시 진공도를 0.1 Torr 이하로 극력제어하여 강의 청정도를 달성하였으며, Al,Ca를 목표조성에 맞추어 강괴를 주조하고 850℃, 1200℃의 2단계로 나누어 가열한 후 평철압연하였다.First, silicon and aluminum were properly used to prevent peroxidation during decarburization in an electric furnace, and after the deoxidation power was recovered by slag-tal acid method, the oxidation inclusions generated before vacuum degassing were sufficiently stirred and removed. Adjust the alloying components by administering (Si), manganese (Mn), copper (Cu), nickel (Ni), chromium (Cr), molybdenum (Mo), vanadium (V), tungsten (W), and sulfur (S) It was. In addition, the cleanliness of steel was achieved by controlling the vacuum degree to 0.1 Torr or less during vacuum degassing. The steel was cast in accordance with the target composition to Al, Ca, and heated in two stages of 850 ℃ and 1200 ℃ and then rolled into flat iron.

압연을 마친 금형강을 연속열처리로에서 두께 20mm당 1-2시간 유지하여 용체화처리, 공냉한 후 다시 450-550℃ 에서 두께 25mm당 2-4시간 시효열처리한 후 공냉하여 경도 (HRC) 38-45의 시효경화용 고인성 쾌삭 플라스틱 금형강을 제조하였다.After the rolled mold steel is maintained in a continuous heat treatment furnace for 1-2 hours per 20mm thickness for solution treatment and air-cooling, it is then aging heat-treated for 2-4 hours per 25mm thickness at 450-550 ℃, followed by air cooling for hardness (H R C ) 38-45 high toughness free cutting plastic mold steel for age hardening was prepared.

[실시예 2]Example 2

본 발명의 강을 비교강과 대비하여 실시한 예를 나타내었다. 표 1은 시험편의 화학조성이다.An example in which the steel of the present invention is carried out in comparison with a comparative steel is shown. Table 1 shows the chemical compositions of the test pieces.

표 1의 A, B강은 본 발명강이며, C-G강은 비교강으로 모두 기존의 저탄소-Ni-Al계 플라스틱 금형용 강이다. 특히, G강의 경우 AISI P21로서 본 강종들의 기준으로 하였다. 이러한 시험재에 대해 강도, 경도분포, 충격인성, 내마모, 절삭성, 경면성 등에 대해 시험하엿다.A and B steels in Table 1 are the present invention steel, and C-G steels are comparative steels, all of which are conventional low carbon-Ni-Al-based plastic mold steels. In particular, in the case of G steel, AISI P21 was used as the standard of steel grades. The test materials were tested for strength, hardness distribution, impact toughness, wear resistance, machinability, and specularity.

강도 및 충격인성시험은 가공된 인장시험편, 충격시험편을 상온에서 각각 시험하여 비교하였다.The strength and impact toughness tests were compared by testing the processed tensile test pieces and the impact test pieces at room temperature, respectively.

경도분포시험은 각 시험편의 두께가 50mm 인 완제품의 단면 경도를 Rockwell C Scale로서 표면에서 심부까지 균일간격으로 측정하였다.In the hardness distribution test, the cross-sectional hardness of the finished product having a thickness of 50 mm of each specimen was measured at a uniform interval from the surface to the deep portion using the Rockwell C Scale.

절삭성 시험은 소재직경 Φ35를 기준으로 동구 동력계를 이용한 절삭저항과 칩처리성을 조하사엿다.The machinability test was conducted to measure cutting resistance and chip treatment using a copper ball dynamometer based on the material diameter Φ35.

경면성 시험은 금형소재들을 최종 1㎛ 다이아몬드 페이스트를 사요하여 경면가공한 후 표면조도를 측정하였는데 그 기준은 Ra(㎛)로 하였다.In the mirror test, the surface roughness of the mold materials was measured using a final 1 μm diamond paste, and the standard was set to Ra (μm).

표 2는 표 1의 화학성분을 갖는 금형강으로 실험한 기계적 특성이다.Table 2 shows the mechanical properties tested with the mold steel having the chemical composition of Table 1.

본 발명강 A와 B는 비교강들에 비해 강도, 인성 및 경도편차에서 우수한 결과치를 얻었다.The inventive steels A and B obtained excellent results in strength, toughness and hardness deviations compared to the comparative steels.

이것은 기본강인 G강에 비해 시효석출물 뿐만아니라 미세 탄화물의 고른분포에서 기인되는 것이고, 특히 강도와 충격치의 경우 월등히 우수하여 정밀 금형 가공제품의 박육 모서리부분에 인성 및 강성을 부여함으로써 고강도화를 실현하였으며, 경도가 상대적으로 높고 편차가 적어 내마모성이 우수하므로 금형의수명을 대폭 향상시킬 수 있다.This is due to the even distribution of fine carbides as well as aging precipitates compared to G steel, which is the basic steel.In particular, the strength and impact value are excellent, and high strength has been achieved by giving toughness and rigidity to the thin edges of precision molded products. Since the hardness is relatively high and the variation is small, the wear resistance is excellent, and the life of the mold can be greatly improved.

제1도는 본 발명의 강(B)의 100배 미세조직사진이다.1 is a 100 times microstructure photograph of the steel (B) of the present invention.

이 사진에서와 같이 저탄소 상부 베이나이트 기지조직이 균일하게 나타나고 있으며 적삭성 향상을 위해 첨가된 Mn과 S에 의한 MnS비금속 유화물이 Ca에 의해 연신되지 않고 미세하고 짧게 분포하고 있어 충격인성, 강도향상과 함게 피삭성의 개선이 뚜렷이 나타난다는 것을 알 수 있다.As shown in this picture, the low-carbon upper bainite matrix is uniform, and the MnS nonmetallic emulsions by Mn and S added to improve the machinability are finely and shortly distributed without being stretched by Ca, thus improving impact toughness and strength. It can be seen that the improvement of machinability is apparent.

제2도는 본 발명 강의 절삭성 평가후 칩처리성을 관찰한 것이다.2 is a view of chip treatment after evaluating the machinability of the steel of the present invention.

절삭속도 및 절삭깊이에 따라 약간 다른 형태의 칩모양을 보이고 있으며 고경도 및 고인성 플라스틱 금형강임에도 불구하고 형상이 제어된 MnS에 의해 뛰어난 절삭성을 보이고 있다.The chip shape is slightly different according to the cutting speed and depth of cutting. Despite the high hardness and toughness of the plastic mold steel, the shape is controlled by the MnS which has a controlled shape.

평가기준 : 1-5(양호) G강[A1S1 P21) : 3기준Evaluation standard: 1-5 (good) G steel (A1S1 P21): 3 standard

표 3은 정밀 플라스틱 금형강에 필요한 특성 항목별 평가결과표이다.Table 3 is an evaluation result table for each characteristic item required for precision plastic mold steel.

비교강인 G강에 비해 본 발명강 A와 B는 모든 특성 항목에서 우수한 결과를 보였고, 경면성이 우수한 C, E, F강에 비해 경면성을 저하시키지 않고, 강도, 인성 및 절삭성을 향상시킬 수 있었던 것은 형상이 제어된 MnS의 고른 분포 금속간화합물, 미세 탄화물의 석출, 기지조직의 상부 베이나이트화 때문이다.Compared to the comparative steel G steel, the present invention steels A and B showed excellent results in all properties, and can improve the strength, toughness and machinability without reducing the mirror property compared to C, E and F steel having excellent mirror properties. This was due to the uniformly distributed intermetallic compound of MnS with controlled shape, the precipitation of fine carbides, and the upper bainitization of the matrix.

이상에서 살펴본 바와 같이, 본 발명은 정밀 플라스틱 금형강이 필요로하는 경도, 절삭성, 경면성, 용접성 뿐만아니라 기존강의 단점인 저인성을 고강도와 고인성 및 균일한 경도분포를 가질 수 있도록 합금하여 정밀금형의 박육부 모서리의 절손을 방지할 수 있고, 이러한 특성을 발휘할 수 있도록 간편한 열처리 방식을 도출하여 금형의 수명을 연장할 수 있고, 작업의 효율을 기할 수 있는 등의 탁월한 효과가 있다.As described above, the present invention is a precision mold by alloying so as to have a high strength, high toughness and uniform hardness distribution as well as the hardness, machinability, specularity, weldability required by the precision plastic mold steel, as well as the low toughness of the existing steel It is possible to prevent the cutting edge of the thin part, and to derive the simple heat treatment method to exert such characteristics, it is possible to extend the life of the mold, and the work efficiency can be excellent.

Claims (2)

중량비로써 C : 0.07-0.25%, Si : 0.15-0.90%, Mn : 0.70-2.0%, P : 0.030%이하, S : 0.05-0.20%, Cu : 0.20-0.80%, Ni : 2.0-4.0%, Cr : 0.6-1.5%, Mo : 0.2-0.8%, V : 0.05-0.20%, W : 0.05-0.18%, Al : 0.5-2.0%, Ca : 0.001-0.010%를 함유하고, 대부분 Fe이며 나머지는 제강시통상의 미량 불순물인 것을 특징으로 하는 고인성 쾌삭경면 플라스틱 금형강As weight ratio, C: 0.07-0.25%, Si: 0.15-0.90%, Mn: 0.70-2.0%, P: 0.030% or less, S: 0.05-0.20%, Cu: 0.20-0.80%, Ni: 2.0-4.0%, Cr: 0.6-1.5%, Mo: 0.2-0.8%, V: 0.05-0.20%, W: 0.05-0.18%, Al: 0.5-2.0%, Ca: 0.001-0.010%, mostly Fe and the rest High toughness free-cut plastic mold steel, characterized by trace impurities in steelmaking 중량비로서 C : 0.07-0.25%, Si : 0.15-0.90%, Mn : 0.70-2.0%, P : 0.030%이하, S : 0.05-0.20%, Cu : 0.20-0.80%, Ni : 2.0-4.0%, Cr : 0.6-1.5%, Mo : 0.2-0.8%, V : 0.05-0.20%, W : 0.05-0.18%, Al : 0.5-2.0%, Ca : 0.001-0.010%의 강재를 제조한 다음, 850℃, 1200℃의 2단계로 나누어 가열한 후 평철압연하고, 압연을 마친 금형강을 연속열처리로에서 두께 20mm당 1-2시간 유지하여 용체화처리하고 공냉한 후, 다시 450-550℃에서 두께 25mm당 2-4시간 시효열처리한 후 공냉하는 것으로 이루어지는 고인성형 쾌삭경면 플라스틱 금형강의 제조방법.As weight ratio, C: 0.07-0.25%, Si: 0.15-0.90%, Mn: 0.70-2.0%, P: 0.030% or less, S: 0.05-0.20%, Cu: 0.20-0.80%, Ni: 2.0-4.0%, Steel: Cr: 0.6-1.5%, Mo: 0.2-0.8%, V: 0.05-0.20%, W: 0.05-0.18%, Al: 0.5-2.0%, Ca: 0.001-0.010% After heating in two stages of 1200 ℃, flat iron rolling, and maintaining the rolled mold steel for 1-2 hours per 20mm thickness in a continuous heat treatment furnace, solution treatment and air-cooling, then again 25mm thickness at 450-550 ℃ A method for producing a high toughness free-cut plastic mold steel which consists of air-cooling after aging heat treatment for 2-4 hours.
KR1019950000481A 1995-01-12 1995-01-12 Method for manufacturing plastic die steel KR0151662B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950000481A KR0151662B1 (en) 1995-01-12 1995-01-12 Method for manufacturing plastic die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950000481A KR0151662B1 (en) 1995-01-12 1995-01-12 Method for manufacturing plastic die steel

Publications (2)

Publication Number Publication Date
KR960029477A KR960029477A (en) 1996-08-17
KR0151662B1 true KR0151662B1 (en) 1998-11-16

Family

ID=19406670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950000481A KR0151662B1 (en) 1995-01-12 1995-01-12 Method for manufacturing plastic die steel

Country Status (1)

Country Link
KR (1) KR0151662B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164549A (en) * 2013-05-17 2014-11-26 宝山钢铁股份有限公司 Pre-hardening method of steel plate of hardening and tempering low-alloy plastic mould steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112139245B (en) * 2020-08-28 2022-07-22 张家港宏昌钢板有限公司 Production method of plastic die steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164549A (en) * 2013-05-17 2014-11-26 宝山钢铁股份有限公司 Pre-hardening method of steel plate of hardening and tempering low-alloy plastic mould steel

Also Published As

Publication number Publication date
KR960029477A (en) 1996-08-17

Similar Documents

Publication Publication Date Title
KR20040108699A (en) Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JPS5853709B2 (en) As-forged high-strength forging steel
US20040037731A1 (en) Cast steel and casting mold
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
KR0151662B1 (en) Method for manufacturing plastic die steel
JP4462264B2 (en) Manufacturing method of cold rolled steel sheet for nitriding treatment
JP3928454B2 (en) Thin steel sheet for nitriding
JP2012077333A (en) Nitriding steel excellent in machinability, and nitrided part
JP2019143197A (en) Steel nitride, and nitriding treatment member and manufacturing method therefor
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2008280598A (en) Steel sheet for soft nitriding treatment, and its manufacturing method
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP2007107046A (en) Steel material to be induction-hardened
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
KR20120072499A (en) Precipitation hardening typed die steel with excellent hardness and toughness, and manufacturing method thereof
JP3808322B2 (en) Steel for free-cutting plastic molds with excellent mirror finish
JP7220750B1 (en) Hot work tool steel with excellent high-temperature strength and toughness
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method
JP2006118014A (en) Method for producing case hardening steel having excellent cold workability and crystal grain coarsening resistance
KR0147719B1 (en) Method for manufacturing high-strength ni-cr-v steel material for conveyor chain
JPH10121193A (en) Cold forging steel
JP2000192195A (en) Free cutting cold working tool steel
KR101605964B1 (en) Die steel and manufacturing method thereof
JPH02145744A (en) Carbon steel for machine structural use having excellent cold forgeability and induction hardenability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110414

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140623

Year of fee payment: 17

EXPY Expiration of term