KR0151355B1 - Apparatus and method for the treatment of waste water - Google Patents

Apparatus and method for the treatment of waste water

Info

Publication number
KR0151355B1
KR0151355B1 KR1019950016794A KR19950016794A KR0151355B1 KR 0151355 B1 KR0151355 B1 KR 0151355B1 KR 1019950016794 A KR1019950016794 A KR 1019950016794A KR 19950016794 A KR19950016794 A KR 19950016794A KR 0151355 B1 KR0151355 B1 KR 0151355B1
Authority
KR
South Korea
Prior art keywords
wastewater
treatment
waste water
oxidant
vacuum reaction
Prior art date
Application number
KR1019950016794A
Other languages
Korean (ko)
Other versions
KR960037582A (en
Inventor
안태영
안경수
Original Assignee
권영대
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권영대 filed Critical 권영대
Priority to KR1019950016794A priority Critical patent/KR0151355B1/en
Priority to GB9612871A priority patent/GB2302328B/en
Priority to CN96107121A priority patent/CN1150126A/en
Publication of KR960037582A publication Critical patent/KR960037582A/en
Application granted granted Critical
Publication of KR0151355B1 publication Critical patent/KR0151355B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 오·폐수의 열산화처리방법 및 그 장치에 관한 것으로, 좀 더 구체적으로는 오·폐수를 저류조에 집수하여 침전처리시키는 단계; 상기 저류조에서 공급되는 오·폐수에 제1산화제 400~2000mg/1를 혼합하여 40~90℃로 유지되는 제1진공반응탱크에 유입시킨후, 교반하면서 15~45분동안 진공반응시키는 단계; 상기 오·폐수에 중금속이 함유된 경우, 선택적으로 상기 제 1산화제 400∼ms/1에 중금속 척리 제10~100mg/1를 혼합시키는 단계; 선택적으로, 상기 제1진공반응탱크에서 공급되는 오·폐수에 제2산화제 400~2000mg/1를 혼합하여 40~90℃로 유지되는 제2진공반응탱크에 유입시킨후, 교반하면서 15~45분동안 진공반응시키는 단계; 및 상기 진공반응 처리된 오·폐수를 여과시키는 단계를 포함하는 오·폐수의 열산화처리방법 및 상기 방법에 적절한 장치에 관한 것이다. 상기 방법 및 장치를 이용하면, 오·폐수를 경제적 및 효율적으로 처리하여 방출되는 오·폐수의 재사용이 가능케하고, 수질의 오염을 방지하여 자연을 보호할 수 있는 효과가 있는 것이다.The present invention relates to a method for thermal oxidation treatment of wastewater and its apparatus, and more particularly, to collect and sewage wastewater into a storage tank for precipitation treatment; Mixing the first oxidant 400 to 2000 mg / 1 to the waste water supplied from the storage tank and introducing the first oxidant into a first vacuum reaction tank maintained at 40 to 90 ° C., and then vacuum-reacting for 15 to 45 minutes while stirring; Optionally, when the heavy metal is contained in the wastewater, mixing the heavy metal chuck 10 to 100 mg / 1 with the first oxidant 400 to ms / 1; Optionally, the second oxidant 400-2000mg / 1 is mixed with the waste water supplied from the first vacuum reaction tank and introduced into the second vacuum reaction tank maintained at 40-90 ° C., and then stirred for 15-45 minutes. Vacuuming during; And it relates to a method for thermal oxidation treatment of the waste water and the apparatus suitable for the method comprising the step of filtering the waste water subjected to the vacuum reaction treatment. By using the method and apparatus, it is possible to reuse the wastewater discharged by treating the wastewater economically and efficiently, and to protect nature by preventing pollution of water quality.

Description

오·폐수의 염산화처리방법 및 그 장치Hydrochlorination treatment method of wastewater and its apparatus

제1도의 (a) 및 (b)는 종래의 오·폐수처리 방법에 따른 개략적인 공정도이고,(A) and (b) of FIG. 1 are schematic process diagrams according to a conventional wastewater treatment method,

제2도는 본 발명의 오·폐수처리 방법에 따른 개략적인 공정도이며,2 is a schematic process diagram according to the waste water treatment method of the present invention,

제3도는 본 발명의 방법에 따른 진공반응탱크의 개략적인 단면도이고,3 is a schematic cross-sectional view of a vacuum reaction tank according to the method of the present invention,

제4도는 제3도의 a-a선에 따라 절단된 단면을 개략적으로 도시한 도면이다.FIG. 4 is a view schematically showing a cross section taken along line a-a of FIG.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10:진공반응탱크 11:약품탱크10: vacuum reaction tank 11: chemical tank

12:주입펌프 13:압력게이지12: Infusion pump 13: Pressure gauge

14:배출벨브 15:교반기14: discharge valve 15: stirrer

16:주입구 17:배출구16: Inlet 17: Outlet

18:가열수단 19:반원형의 칸막이18: heating means 19: semi-circular partition

20:단열재20: Insulation

본 발명은 오·폐수의 열산화처리방법 및 그 장치에 관한 것으로, 좀 더 구체적으로는 일정한 온도와 진공조건에서 오·폐수를 경제적 및 효율적으로 처리하여 방출되는 오·폐수의 재사용이 가능케할 수 있는 오·폐수의 열산화처리방법 및 그 장치에 관한 것이다. 본 명세서에 사용된 용어 오·폐수는 하기에 오수, 생활하수 및 폐수를 포괄하는 의미로 사용된다.The present invention relates to a thermal oxidation treatment method and apparatus therefor, and more particularly, it is possible to reuse waste and waste water discharged by treating waste and waste water economically and efficiently at a constant temperature and vacuum conditions. The present invention relates to a thermal oxidation treatment method of a sewage and wastewater and an apparatus thereof. As used herein, the term sewage and wastewater is used to encompass sewage, domestic sewage, and wastewater.

종래의 폐수처리방법으로는 제1도에 도시된 바와같이, 폐수가 유입되는 저류조 다음에 폐수의 pH조절을 위한 pH조정조를 설치하고, 반응조와 응집조를 거쳐서 침전조 또는 부상조를 거치면서 오염물질을 제거하거나(제1도의 (a)참조). 저류조에서 pH조절후 미생물을 통한 생물학적 처리방법인 폭기조를 거친후 침전조를 거치면서 오염물질을 제거하였고(제1도의 (b)참조), 또는 상기 두가지의 방법을 병행한 처리 방법으로써 오염물질울 제거하였던 것이다.In the conventional wastewater treatment method, as shown in FIG. 1, after the storage tank into which the wastewater flows, a pH adjusting tank for adjusting pH of the wastewater is installed, and the contaminants are passed through the settling tank or the floating tank through the reaction tank and the flocculation tank. Or (see (a) in Figure 1). After adjusting the pH in the storage tank, the contaminant was removed by passing through the aeration tank, which is a biological treatment method through microorganisms, followed by the settling tank (see (b) of FIG. 1), or by removing the contaminants by treating the two methods in parallel. It was.

이러한 오·폐수처리방법의 물리, 화학 및 생물학적 처리방법에 따른 유기물(BOD:Bicohemical Oxigen Demand) 제거율은 물리적 처리가 약30%, 화학적처리는 40~50%, 생물학적처리는 70~90% 정도로서, 설치비용과 가동비용이 많이 소요되는 것에 비해 처리효율이 낮고, 특히 난분해성 폐수라는 염색폐수, 나염, 모방, 또는 피혁폐수 등에 대해서는 그 처리효율도 극히 낮았으며, 경제적이지 못하므로 실질적으로 그 이용가치가 거의 없었던 것이다.The removal rate of BOD (Bicohemical Oxigen Demand) according to the physical, chemical and biological treatment methods of this wastewater treatment method is about 30% for physical treatment, 40-50% for chemical treatment, and 70-90% for biological treatment. The treatment efficiency is low compared to the high installation and operation costs. Especially, the dyeing wastewater, printing, imitation, or leather wastewater, such as non-degradable wastewater, has very low treatment efficiency and is not economical. There was almost no.

이렇게 불완전하게 처리된 오·폐수가 주위의 하천이나 강으로 점진적으로 방류되어 유입되면, 폐수는 자연환경을 오염시키고 생태계를 파괴하며 인류를 위협하게 될 것이다. 또한, 용수의 재활용이 거의 불가능 함으로써 산업용수의 부족으로 인한 산업의 발전에도 큰 저해요인이 될 것이다.If this incompletely treated wastewater is gradually discharged into the surrounding streams or rivers, it will pollute the natural environment, destroy ecosystems and threaten humanity. In addition, the almost impossible recycling of water will be a major impediment to the development of the industry due to the lack of industrial water.

따라서, 본 발명에서는 완전처리가 불가능하거나, 건설비용이 많이 들었던 종래의 오·폐수처리방법을 개선하며, 특히 난분해성 폐수(중금속 및 색도)를 완전무결하게 제거 처리함으로써, 자연생태계의 보전은 물론 처리수의 100% 재사용이 가능케하여 용수의 재사용을 통한 폐수의 무방출과 가동비용의 절감 효과에도 크게 기여할 수 있는 오·폐수의 열산화처리방법을 제공하는데 그 목적이 있다.Therefore, the present invention improves the conventional wastewater treatment method, which cannot be completely treated or has a high construction cost, and in particular, completely removes hardly degradable wastewater (heavy metals and colors), thereby preserving the natural ecosystem. The purpose of the present invention is to provide a thermal oxidation treatment method of wastewater, which can contribute 100% reuse of treated water, which can greatly contribute to the non-emission of wastewater and the reduction of operating cost through reuse of water.

본 발명의 다른 목적은 상기 방법을 수행하는데 적절한 장치를 제공하는데 있다.Another object of the present invention is to provide an apparatus suitable for carrying out the method.

상기 목적을 달성하기 위한 본 발명의 방법은 오·폐수를 저류조에 집수하여 침전처리시키는 단계;상기 저류조에서 공급되는 오·폐수에 제1산화제 100~5000mg/l를 혼합하여 40~90℃로 유지되는 제1진공반응탱크에 유입시킨후, 교반하면서 15~45분동안 진공반응시키는 단계;상기 오·폐수에 중금속이 함유된 경우, 선택적으로 상기 제1산화제 100~5000mg/l와 함께 중금속 처리제 10~100mg/l를 혼합시키는 단계; 선택적으로, 상기 제1진공반응탱크에서 공급되는 오·폐수에 제2산화제 100~5000mg/l를 혼합하여 40~90℃로 유지되는 제2진공반응탱크에 유입시킨후, 교반하면서 15~45분동안 진공반응시키는 단계; 및 상기 진공반응 처리된 오·폐수를 여과시키는 단계를 포함한다.The method of the present invention for achieving the above object is a step of collecting sewage and sewage in the storage tank; mixing the first oxidant 100 ~ 5000mg / l to the waste water supplied from the storage tank to maintain at 40 ~ 90 ℃ After the introduction into the first vacuum reaction tank is a vacuum reaction for 15 to 45 minutes while stirring; If the heavy metal is contained in the waste water, optionally the heavy metal treatment agent with the first oxidant 100 ~ 5000mg / l 10 Mixing ˜100 mg / l; Optionally, 100-5000 mg / l of the second oxidant is mixed with the waste water supplied from the first vacuum reaction tank and introduced into the second vacuum reaction tank maintained at 40-90 ° C., and then stirred for 15-45 minutes. Vacuuming during; And filtering the vacuum treated wastewater.

본 발명의 다른 목적을 달성하기 위한 장치는 밀폐된 원통형 구조물의 일측면에 주입구 및 상대 측면에 배출구가 형성되어 오·폐수가 이동하며, 상기 주입구와 배출구의 입출구에 하부가 개방된 반원형의 칸막이가 설치되어 상기 오·폐수의 체류시간을 일정하게 유지시키고, 상기 구조물의 내부중앙에 교반기가 설치되어 있으며, 외부에는 단열제가 피복외어 있고, 외면 상부 일측면에 압력게이지와 가스배출 벨브가 형성되어 가스의 포화발생시에는 가스배출관을 통하여 저류조로 이송되거나 유입관으로 유입되며, 상기 구조물의 내부에 열을 가할 수 있는 가열수단이 상기 구조물과 병행 설치된다.The device for achieving another object of the present invention is the discharge port is formed on one side of the sealed cylindrical structure and the inlet and the opposite side to move the waste water, the semi-circular partition is opened at the inlet and outlet of the inlet and outlet It is installed to keep the residence time of the waste water is kept constant, the stirrer is installed in the inner center of the structure, the outer insulation is coated outside, the pressure gauge and the gas discharge valve is formed on one side of the upper surface of the gas When saturation occurs, the gas is transferred to the storage tank through the gas discharge pipe or introduced into the inlet pipe, and heating means capable of applying heat to the inside of the structure is installed in parallel with the structure.

이하 본 발명의 방법을 첨부된 도면을 참조하여 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail with reference to the accompanying drawings.

본 발명의 폐수처리공정에 따르면, 제2도에 도시된 바와 같이, 오·폐수를 집수처리한 저류조 다음공정에, 종래의 pH조정조 또는 폭기조 대신에 완전밀폐구조의 진공반응탱크(10)를 단독 또는 직열로 연결하고, 상기 진공반응탱크(10)를 거친 오·폐수를 pH조정 및 침전조와 고, 액분리조를 통과시켜 1차 처리한 다음, 활성탄 여과조 및 방류조를 순차적으로 거쳐 2차 처리시킨다.According to the wastewater treatment process of the present invention, as shown in FIG. 2, the vacuum reaction tank 10 of the fully-sealed structure is used instead of the conventional pH adjustment tank or aeration tank in the next step of collecting the wastewater. Or connected by direct heat, the waste water passed through the vacuum reaction tank (10) through the pH adjustment and sedimentation tank, and the liquid separation tank to the first treatment, and then through the activated carbon filtration tank and discharge tank in order to secondary treatment .

한편, 상기 진공반응탱크(10)에는 혼합제조된 산화제와 중금속 처리제의 약품탱크(11)를 설치하여, 정량 주입펌프(12)에 의해 약품탱크(11)의 산화제 및 중금속 처리제가 반응탱크로 유입되는 오·폐수와 혼합되어 반응하도록 설계하였다. 상기 용어 진공반응탱크는 하기에 반응조 또는 반응탱크와 혼용하여 사용된다.On the other hand, in the vacuum reaction tank 10 is installed a chemical tank 11 of the mixed oxidant and heavy metal treatment agent, the oxidizing agent and heavy metal treatment agent of the chemical tank 11 is introduced into the reaction tank by a metering pump 12. It is designed to react with the mixed waste water. The term vacuum reaction tank is used interchangeably with a reaction tank or a reaction tank below.

이때, 상기 진공반응탱크(10)에 유입되는 오·폐수와 혼합되는 산화제의 반응을 촉진시키도록 가열수단(18)이 부착되어 있으며, 산화제로는 본 발명자가 혼합제조한 제1산화제 및 제2산화제를 사용하였다. 상기 가열수단(18)은 산화제의 반응온도를 40~90℃, 바람직하게 70~90℃로 유지시켜 산화반응을 촉진시키기 위한 것으로, 전기적 가열 또는 스팀 보일러 등의 다양한 가열수단을 이용할 수 있다. 선택적으로, 중금속을 함유하는 폐수를 처리할 경우는 중금속 처리제를 제1산화제와 함께 사용할 수 있다. 한편, 진공반응공정에서의 반응처리 시간은 각각의 반응탱크 마다 15~40분간, 바람직하게 30~40분간 처리하는 것이 처리효율면에서 바람직하다. 한편, 상기 pH조정 및 침전조에 투여되는 pH조절제로는 황산(H2SO4)과 가성소다(NaoH)를 사용하였다.At this time, the heating means 18 is attached to promote the reaction of the oxidant mixed with the waste water introduced into the vacuum reaction tank 10, the first oxidant and the second oxidant prepared by the present inventors as an oxidant An oxidant was used. The heating means 18 is to promote the oxidation reaction by maintaining the reaction temperature of the oxidant at 40 ~ 90 ℃, preferably 70 ~ 90 ℃, it is possible to use a variety of heating means such as electric heating or steam boiler. Optionally, when treating wastewater containing heavy metals, a heavy metal treatment agent may be used with the first oxidant. On the other hand, the reaction treatment time in the vacuum reaction step is preferably treated for 15 to 40 minutes, preferably 30 to 40 minutes for each reaction tank in terms of treatment efficiency. Meanwhile, sulfuric acid (H 2 SO 4 ) and caustic soda (NaoH) were used as the pH adjusting agent administered to the pH adjustment and precipitation tank.

본 발명에 사용된 상기 제1산화제는 H2O2, MnO2, HNO3및 KMnO4로 이루어진 군으로부터 하나 또는 그 이상 선택되며, 오·폐수의 종류에 따라 선택적으로 사용하는 것이 효율면에서 바람직하다. 일반적으로는 H2O2와 KMnO4를 각각 10~40mg/l 및 KMnO44000~80,000mg/l의 농도로 혼합한 제1산화제가 대부분의 오·폐수를 처리할 수 있어 바람직하다. 상기 제1산화제의 폐수에 대한 투입농도는 100~5000mg/l이 통상의 오·폐수를 처리하기에 바람직한 범위이나, 오·폐수의 BOD 및 COD의 농도에 따라 상기 범위를 벗어날 수 있다.The first oxidizing agent used in the present invention is selected from one or more selected from the group consisting of H 2 O 2 , MnO 2 , HNO 3 and KMnO 4 , it is preferable to use selectively depending on the type of waste water. Do. In general, it is preferable to the first oxidizing agent is mixed at a concentration of the H2O2 and KMnO 4, respectively 10 ~ 40mg / l, and KMnO 4 4000 ~ 80,000mg / l handle most wastewater. The concentration of the first oxidant into the wastewater is in a range of 100 to 5000 mg / l is preferable for treating a conventional wastewater, but may be out of the range according to the concentration of BOD and COD of the wastewater.

또한, 상기 제2산화제는 NaClO3, KMnO4, NaOCl, KCr2O7, KNO3, NaNO3, K2S2O8및 H2SO4로 이루어진 군으로부터 하나 또는 그 이상 선택되며, KMnO4, K2S2O8및 H2SO4로 이루어진 혼합물이 각각 4000~80,000mg/l, 1000~3000mg/l 및 70~150mg/l의 농도, 또는 KMnO4, NaOCl 및 K2S2O8로 이루어진 혼합물이 각각 4000~80,000mg/l, 1000~2000mg/l 및 1000~3000mg/l의 농도가 대부분의 오·폐수를 처리할 수 있으며, 상기 제2산화제의 폐수에 대한 투입농도는 제1산화제와 마찬가지로 100~5000mg/l이다. 상기 범위 또한, 통상의 오·폐수를 처리하기에 바람직한 범위이나, 오·폐수의 BOD 및 COD의 농도에 따라 상기 범위를 벗어날 수 있다.In addition, the second oxidizing agent is selected from the group consisting of NaClO 3 , KMnO 4 , NaOCl, KCr 2 O 7 , KNO 3 , NaNO 3 , K 2 S 2 O 8 and H 2 SO 4 , KMnO 4 , The mixture consisting of K 2 S 2 O 8 and H 2 SO 4 is concentrated at 4000-80,000 mg / l, 1000-3000 mg / l and 70-150 mg / l, or KMnO 4 , NaOCl and K 2 S 2 O 8 , respectively. The mixture is composed of 4000 ~ 80,000mg / l, 1000 ~ 2000mg / l and 1000 ~ 3000mg / l respectively can treat most of the waste water, the concentration of the second oxidant to the waste water is the first oxidant Similarly, it is 100-5000 mg / l. The range may also be a preferred range for treating ordinary wastewater, but may be out of the range depending on the concentration of BOD and COD of the wastewater.

부가적으로, 제1산화제와 함께 사용되는 중금속 처리제는 시판되는 어떠한 제품이라도 사용 가능하고, 바람직하게는 영일화학(주)이 EPOFLOC L-1, 안국화학(주)의 ORITOL-S 및 NaOH를 단독 또는 혼합제조하여 중금속을 함유하는 폐수에 대하여 선택적으로 사용하며, 폐수에 대하여 10~100mg/l, 바람직하게는 20~50mg/l의 범위로 사용하는 것이 비용 및 효율면에서 바람직하다. 결론적으로, 상기 제1 및 제2산화제의 종류 및 농도는 폐수의 종류에 따라 변동될 수 있지만, 특별한 경우를 제외하고는 상기에서 언급된 바람직한 예들로 처리될 수 있다.In addition, the heavy metal treatment agent used in conjunction with the first oxidizing agent can be used in any commercially available products, preferably Yeongil Chemical Co., Ltd. EPOFLOC L-1, Anguk Chemical Co., Ltd. ORITOL-S and NaOH alone Alternatively, the mixture may be selectively used for wastewater containing heavy metals, and the wastewater may be used in the range of 10 to 100 mg / l, preferably 20 to 50 mg / l, in terms of cost and efficiency. In conclusion, the types and concentrations of the first and second oxidants may vary depending on the type of wastewater, but may be treated with the preferred examples mentioned above except for special cases.

한편, 본 발명에 따른 반응탱크(10)는 밀폐된 원통형 구조물로서 일측면에 주입구(16) 및 상대 측면에 배출구(17)가 형성되어 있고, 상기 주입구(16)와 배출구(17)의 입·출구에 하부가 개방된 반원형의 칸막이(19)가 설치되어 있으며, 상기 구조물의 내부중앙에 교반기(15)가 설치되어 있고, 외부에는 단열재(20)가 피복되어 있으며, 외면 상부 일측면에 압력게이지(13)와 가스배출 벨브(14)RK 형성되어 있고, 상기 구조물의 외부에 가열수단(18)이 병행 설치된 구조를 갖는다.On the other hand, the reaction tank 10 according to the present invention is a closed cylindrical structure is formed with an inlet port 16 and the outlet port 17 on one side, the mouth of the inlet 16 and the outlet port 17 A semicircular partition 19 having a lower opening is installed at an outlet, a stirrer 15 is installed at an inner center of the structure, a heat insulating material 20 is coated on the outside, and a pressure gauge on one side of an upper surface of the outer surface. 13 and the gas discharge valve 14 RK, and has a structure in which the heating means 18 is installed in parallel to the outside of the structure.

다시말하면, 상기 반응탱크(10)의 내부에는 한 개 또는 여러개의 교반기(15)을 설치할 수 있고, 가열수단(18)이 그 외부에 설치되어 반응조(10)의 온도를 40~90℃로 유지시키며, 외부에는 가스측정을 압력게이지(13)를 부착한 포화가스배출용 배출벨브(14)가 설치되어 가스의 포화발생시에는 가스배출관을 통하여 저류조로 이송되거나 유입관으로 유입되도록 하였다. 즉, 상기 배출벨브(14))는 밀폐된 진공반응탱크(10) 내부에서 오·폐수와 산화제가 혼합반응하면서 발생되는 가스를 유입관에 연결시킴으로써 2차 오염발생을 막을 수 있다. 또한, 상기 반응탱크(10)의 열손실을 줄이기 위하여 단열재(20)를 그 외부에 피복시킴으로서 가동비용의 절감효과를 고려하였다. 상기 단열재(20)는 통상 보온용으로 사용되는 모든 단열재의 사용이 가능하다.In other words, one or several agitators 15 may be installed inside the reaction tank 10, and a heating unit 18 is installed outside thereof to maintain the temperature of the reaction tank 10 at 40 to 90 ° C. In addition, the outside of the gas measurement is equipped with a discharge valve 14 for saturation gas discharge attached to the pressure gauge 13, when the saturation of the gas is sent to the storage tank through the gas discharge pipe or to be introduced into the inlet pipe. That is, the discharge valve 14 may prevent secondary pollution by connecting a gas generated while the waste water and the oxidant are mixed in the sealed vacuum reaction tank 10 to the inlet pipe. In addition, in order to reduce the heat loss of the reaction tank (10) by covering the insulation 20 to the outside to consider the effect of reducing the operating cost. The heat insulating material 20 can be used for all of the heat insulating materials that are usually used for thermal insulation.

또한, 제4도를 참조하면, 상기 반응조에서 산화제와 폐수와의 반응시간을 충분히 부여하기 위하여 저류조에서의 주입구(16)와 반응조의 배출구(17)에 하부가 개방된 반원형의 칸막이(19)를 설치하여 폐수가 상기 반응조의 하부로부터 공급되도록 하였다.In addition, referring to FIG. 4, a semicircular partition 19 having a lower opening is opened to the inlet 16 and the outlet 17 of the reactor in order to give sufficient reaction time between the oxidant and the waste water in the reactor. It was installed so that the waste water was supplied from the bottom of the reactor.

상기 공정에서 진공반응탱크 대신에 종래의 개방형 반응탱크를 사용하거나 40~90℃의 온도범위로 상승시켜 주지않으면 완전한 반응이 일어나지 않으며, 열손실이 많고, 높은 가동비용과 효율이 50%이하로 떨어지므로 이용가치는 현격히 저하된다.In this process, if a conventional open reaction tank is used instead of the vacuum reaction tank or the temperature is not raised to a temperature range of 40 to 90 ° C., a complete reaction does not occur, and heat loss is high, and high operating cost and efficiency drop below 50%. As the use value is significantly reduced.

본 발명에 따르면, 오·폐수가 집수되어 저류조에 유입되면, 레벨 스위치(Level Switch)의 감지에 의해 중앙제어실(도시되지 않음)내의 작동으로 자동 펌핑(Pumping)되면서 모든공정의 기계가 작동하게 되면서 저류조의 폐수가 반응탱크로 유입되기 시작하고, 이와 동시에 약품 탱크(II)에 연결된 주입펌프(12)가 작동하여 약품탱크(II)내의 산화제가 이송공급되어 폐수와 혼합된 상태로 반응탱크내로 유입된후, 완전 밀폐된 진공반응탱크(10) 내부의 교반기(15)에 의해 교반되며, 가열수단(18)에 의한 가열로 완전히 반응이 일어난 다음, pH조절후 침전조로 이송되면서 처리수와 슬러지로 고·액분리된 다음, 여과기(활성탄소 필터 및 이온교환수지탑)을 거쳐서 완전처리된후 재사용조로 방출됨으로써 최종처리가 이루어지는 것이다. 이때, 침전조 하부로 침전된 슬러지는 통상의 슬러지 처리방법으로 처리된다.According to the present invention, when the sewage and waste water is collected and flowed into the storage tank, the pumps are automatically pumped to the operation in the central control room (not shown) by the detection of the level switch, and the machines of all the processes are operated. The wastewater from the storage tank starts to flow into the reaction tank, and at the same time, the injection pump 12 connected to the chemical tank (II) is operated so that the oxidant in the chemical tank (II) is fed and supplied into the reaction tank in a mixed state with the waste water. After the reaction, the mixture is stirred by the stirrer 15 inside the completely sealed vacuum reaction tank 10, and the reaction is completely performed by heating by the heating means 18. Then, the pH is adjusted and transferred to the settling tank to the treated water and sludge. After the solids and liquids are separated, they are completely processed through a filter (active carbon filter and ion exchange resin tower), and then discharged into a reuse tank, where final treatment is performed. At this time, the sludge settled to the lower part of the settling tank is treated by a conventional sludge treatment method.

한편, 상기 재사용조로 이송된 처리수는 생산공정의 용수로서 재사용이 가능하며, 오수의 처리수인 경우에는 각 빌딩이나 공장의 화장실 또는 세차시에도 재사용할 수 없는 것이다.On the other hand, the treated water transferred to the reuse tank can be reused as the water of the production process, in the case of the treated water of sewage can not be reused even in the washroom or wash of each building or factory.

이하 실시에 및 비교예를 통하여 본 발명의 효과를 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Although the effects of the present invention will be described in more detail with reference to the following examples and comparative examples, the scope of the present invention is not limited to the following examples.

[염색폐수]Dye Wastewater

안산시의 반월공단내의 종말처리장으로 유입되는 폐수를 대상으로 종례의 방법 및 본 발명의 방법을 적용하였다. 상기 폐수는 표백, 정련 및 세척시 발생된 폐수로서, 폐수의 일일 발생량은 100,000m3/day이다.The method of the present invention and the method of the present invention were applied to wastewater flowing into the terminal treatment plant in Banwol industrial complex in Ansan-si. The wastewater is wastewater generated during bleaching, refining and washing, and the daily generation amount of the wastewater is 100,000 m3 / day.

이 경우 원폐수의 평균 농도의 실험분석 결과 아래와 같다.In this case, the experimental results of the average concentration of raw wastewater are as follows.

*pH : 6~7* pH: 6 ~ 7

BOD(Biochemical Oxigen Demand) : 약300mg/lBiochemical Oxigen Demand (BOD): about 300mg / l

COD(Chemical Oxigen Demand) : 약400mg/lChemical Oxigen Demand (COD): about 400mg / l

SS(Suspended Solid) : 약120mg/lSS (Suspended Solid): about 120mg / l

N-H(Normal Hexan) : dir35mg/lN-H (Normal Hexan): dir35mg / l

색도 : 800도Chromaticity: 800 degrees

[비교예 1]Comparative Example 1

상기 폐수가 집수된 집수조에 NaOH로 pH를 6~8로 조절한후, 생물학적 처리방법중 표준활성오니법을 도입하여 1차 생물학적 처리한 다음, H2O2, FeCL3및 Al2(SO4)3·17H2O이 1:1:1의 부피비로 혼합된 혼합물로 2차 화학적 처리하였을 경우, 다음과 같은 문제점이 발생되었다.After adjusting the pH to 6-8 with NaOH in the wastewater collection tank, the first biological treatment was carried out by introducing a standard activated sludge method of biological treatment, and then H 2 O 2 , FeCL 3 and Al 2 (SO 4 ) Secondary chemical treatment with a mixture of 3 · 17H 2 O in a volume ratio of 1: 1: 1 causes the following problems.

1) 부지 소요의 부족: 확정시킬 여유부지가 없음.1) Lack of site requirements: There is no room to be confirmed.

2) 처리효율의 한계: 기존처리방법의 처리효율의 한계.2) Limit of treatment efficiency: Limit of treatment efficiency of existing treatment method.

3) 용수의 재활용 불가: 방류수 BOD=50mg/l, 색도=100도3) Water cannot be recycled: effluent BOD = 50mg / l, chromaticity = 100 degrees

4) 폐수처리장의 한계에 따른 단지내공장들의 생산설비 투자 억제등으로 요약될 수 있었다.4) It could be summed up as the suppression of production facility investment by factories in the complex due to the limitation of wastewater treatment plant.

[실시예 1]Example 1

상기 폐수를 제3도 및 제4도에 도시된 본 발명의 제1 및 제2 반응조를 거쳐 고·액분리한 처리결과를 하기 표1과 같았다. 이때, 반응탱크내에 유입되는 폐수와 혼합되는 제1산화제는 35% H2O2와 2.5NKMnO4를 1:20의 부피비로 혼합하였고, 제2산화제는 2.5N KMnO4, 0.01M K2S2O8및 17% H2SO4를 10:1:2.5의 부피비로 혼합한 것을 시용하였고, 중금속 처리제는 영일화학(주)의 EPOFLOC L-1, 안국화학(주)의 ORITOL-S 및 0.1N NaOH를 1:1:100의 비율로 혼합하여 제조하였다. 한편, 제1반응조에는 상기 제1산화제와 중금속 처리제를 투여하였고, 제2반응조에는 제2산화제를 투여하였다. 각 반응조의 온도는 70∼90℃를 유지하였으며, 처리 반응 시간은 각 반응조 마다 약30분간 반응시켰다. 한편, 기존처리방법은 침전조 전단계에 응집제 또는 보조응집제등을 사용하여 고,액 분리시켰으니 본처리방법에서는 슬러지의 침강상태가 양호하여 pH조절후 자연적인 물의 침강법을 사용하였다.The waste water was subjected to solid and liquid separation through the first and second reaction tanks of the present invention shown in FIGS. 3 and 4, as shown in Table 1 below. At this time, the first oxidant mixed with the wastewater introduced into the reaction tank was mixed 35% H 2 O 2 and 2.5NKMnO 4 in a volume ratio of 1:20, the second oxidant 2.5N KMnO 4 , 0.01MK 2 S 2 O 8 and 17% H 2 SO 4 was mixed in a volume ratio of 10: 1: 2.5, and the heavy metal treatment agent was EPOFLOC L-1 of Youngil Chemical Co., Ltd. ORITOL-S and 0.1N NaOH of Anguk Chemical Co., Ltd. Was prepared by mixing in a ratio of 1: 1: 100. Meanwhile, the first oxidant and the heavy metal treatment agent were administered to the first reactor, and the second oxidant was administered to the second reactor. The temperature of each reactor was maintained at 70-90 ° C., and the reaction time was reacted for about 30 minutes in each reactor. On the other hand, the conventional treatment method was used to separate the solid and liquid using a flocculant or a coagulant in the pre-sedimentation tank step, the sedimentation state of the sludge is good in this treatment method, the natural water sedimentation method was used after pH adjustment.

[실시예 2]Example 2

분석처리농도가 BOD=240mg/l인 오수를 본 발명의 방법으로 처리하여, 그 결과를 하기 표2에 기재하였다. 이때의 처리방법은 가열온도에 따른 처리효율을 나타냈으며, 처리방법은 상기 실시예 1에서 사용된 제2산화제와 중화제만 사용하였고(오수는 중금속을 포함하지 않음), 반응조는 1개만을 사용하였다.Sewage with analyte concentration of BOD = 240 mg / l was treated by the method of the present invention and the results are shown in Table 2 below. At this time, the treatment method showed treatment efficiency according to the heating temperature, and the treatment method used only the second oxidizing agent and the neutralizing agent used in Example 1 (sewage does not include heavy metals), and only one reactor was used. .

[실시예 3]Example 3

폐수의 분석처리농도가 cod=400mg/l인 경우 본 발명의 방법으로 처리하여, 그 결과를 하기 표3에 기재하였다. 상기 결과는 폐수를 반응시간별로 처리하였을때를 나타내었다. 이대 처리방법과 산화제의 농도는 상기 실시예1과 동일하게 하였다.When the analytical treatment concentration of the waste water was cod = 400 mg / l, it was treated by the method of the present invention, and the results are shown in Table 3 below. The results show when the wastewater was treated by reaction time. The maximal treatment method and the concentration of the oxidizing agent were the same as in Example 1.

상기 표1,2 및 3에서 알 수 있는 바와 같이, 제1 및 제2산화제, 및 중금속 처리제의 투입농도와 가열온도 및 반응시간에 따라서 제거효율에 차이가 있음을 알 수 있다. 즉, 폐수의 오염도 및 처리수의 재활용 또는 방출수등 필요에 따라서 산화제의 투입농도를 적절량으로 조절하여야 하며 일정시간의 온도와 반응시간을 맞추어 줘야만 요구되는 처리수 또는 재활용 가능한 공업용수를 제공받을 수 있는 것이다.As can be seen in Tables 1, 2 and 3, it can be seen that there is a difference in removal efficiency depending on the input concentration of the first and second oxidizing agents and the heavy metal treatment agent, the heating temperature and the reaction time. In other words, the concentration of oxidant should be adjusted to the appropriate amount according to the pollution degree of wastewater and the recycled or discharged water of wastewater, and the treated water or recyclable industrial water is required only by adjusting the temperature and reaction time of a certain time. You can get it.

예를들어 원폐수가 COD=400mg/l일 경우, 제1 및 제2산화제는 약1,100mg/l, 중화제는 100mg/l를 필요하며, 반응온도는 80℃이상, 반응시간은 35분 이상일 때 COD와 색도까지 거의 완전하게 제거되며, 또한, 중금속 함유 폐수의 경우는 중금속 처리제를 10~100mg/l을 투입시켜 완전 처리함으로써 수처리 효율의 증대할 수 있다.For example, when the raw wastewater is COD = 400mg / l, the first and second oxidizing agents need about 1,100mg / l, the neutralizing agent needs 100mg / l, when the reaction temperature is over 80 ℃ and the reaction time is over 35 minutes. COD and chromaticity are almost completely removed, and in the case of heavy metal-containing wastewater, 10 to 100 mg / l of heavy metal treatment agent is added to complete treatment to increase water treatment efficiency.

따라서, 본 발명의 방법은 오·폐수를 경제적 및 효율적으로 처리하여 방출되는 오·폐수를 거의 재사용이 가능케하고, 수질의 오염을 방지하여 자연을 보호할 수 있는 효과가 있는 것이다.Therefore, the method of the present invention has the effect of economically and efficiently treating the wastewater, which makes it possible to reuse almost the wastewater discharged and to protect nature by preventing pollution of water quality.

Claims (7)

화학적 및 산화처리에 의한 모든 수처리방법에 있어서, 오·폐수를 저류조에 집수하여 침전처리시키는 단계; 상기 저류조에서 공급되는 오·폐수에 제1산화제 100~5000mg/l를 혼합하여 40~90℃로 유지되는 제1진공반응탱크에 유입시킨후, 교반하면서 15~45분 동안 진공반응시키는 상기 오·폐수에 중금속이 함유된 경우, 상기 제 1산화제 100∼5000mg/1에 중금속 처리제 10∼100mg/1를 혼합시킨 단계; 상기 제 1진공반응탱크에서 공급되는 오·폐수에 제 2산화제 100∼5000mg/1를 혼합하여 40∼90℃로 유지되는 제 2진공반응탱크에 유입시킨후, 교반하면서 15∼45분동안 진공반응시키는 단계;및 단계; 및 상기 진공반응 처리된 오·폐수를 여과시키는 단계를 포함하는 것을 특징으로 하는 오·폐수의 열산화처리방법.A method of treating water by chemical and oxidation treatment, the method comprising the steps of: collecting sewage and sewage in a storage tank for precipitation treatment; After mixing the first oxidizing agent 100 ~ 5000mg / l in the waste water supplied from the storage tank into the first vacuum reaction tank maintained at 40 ~ 90 ℃, the vacuum reaction for 15 to 45 minutes while stirring When the heavy water is contained in the waste water, mixing the heavy metal treatment agent 10 to 100 mg / 1 with the first oxidant 100 to 5000 mg / 1; 100-5000 mg / 1 of the second oxidant is mixed with the waste water supplied from the first vacuum reaction tank and introduced into the second vacuum reaction tank maintained at 40-90 ° C., followed by vacuum reaction for 15 to 45 minutes with stirring. And a step; And filtration of the wastewater subjected to the vacuum reaction treatment. 제1항에 있어서, 상기 제1산화제가 H2O2, MnO2, HNO3및 KMnO4로 이루어진 군으로부터 하나 또는 그 이상 선택됨을 특징으로 하는 오·폐수의 열산화처리 방법.The method of thermally treating wastewater according to claim 1, wherein the first oxidant is selected from the group consisting of H 2 O 2 , MnO 2 , HNO 3 and KMnO 4 . 제1항 또는 제2항에 있어서, 상기 제1산화제가 물1L에 대하여 10~40mg H2O2및 4,000~80,000mg KMnO4로 이루어짐을 특징으로 하는 오·폐수의 열산화 처리방법.The thermal oxidation treatment method of waste water according to claim 1 or 2, wherein the first oxidizing agent is comprised of 10-40 mg H 2 O 2 and 4,000-80,000 mg KMnO 4 based on 1 L of water. 제1항에 있어서, 상기 제2산화제가 NaClO3, KMnO4, NaOCl, KCr2O7, KNO3, NaNO3, K2S2O8및 H2SO4로 이루어진 군으로부터 하나 또는 그 이상 선택됨을 특징으로 하는 오·폐수의 열산화처리방법.The method of claim 1, wherein the second oxidant is selected from the group consisting of NaClO 3 , KMnO 4 , NaOCl, KCr 2 O 7 , KNO 3 , NaNO 3 , K 2 S 2 O 8 and H 2 SO 4 Thermal oxidation treatment method of waste water, characterized in that. 제1항 또는 제4항에 있어서, 상기 제2산화제가 물1L에 대하여 4000~80,000 mg의 KMnO41,000~30,000mg의 K2S2O8및 70~150mg의 H2SO4로 이루어짐을 특징으로 하는오·폐수의 열산호처리방법.The method according to claim 1 or 4, wherein the second oxidizing agent is composed of 4000 to 80,000 mg of KMnO 4 1,000 to 30,000 mg of K 2 S 2 O 8 and 70 to 150 mg of H 2 SO 4 based on 1 L of water. Thermal coral treatment method of wastewater. 제1항 또는 제4항에 있어서, 상기 제2산화제가 물 1L에 대하여 4,000~80,000 mg의 KMnO4, 1,000~2,000mg의 NaOCL 및 1,000~3,000mg의 K2S2O8로 이루어짐을 특징으로 하는 오·폐수의 열산화처리방법.The method according to claim 1 or 4, wherein the second oxidizing agent is composed of 4,000-80,000 mg of KMnO 4 , 1,000-2,000 mg of NaOCL and 1,000-3,000 mg of K 2 S 2 O 8 with respect to 1 L of water. Thermal oxidation treatment method of wastewater 제1항에 있어서, 상기 방법이 상기 여과단계 이후에 활성탄 여과단계 및 이온 교환수지 처리단계를 더욱 포함하는 것을 특징으로 하는 오·폐수의 열산화처리방법.The method of claim 1, wherein the method further comprises an activated carbon filtration step and an ion exchange resin treatment step after the filtration step.
KR1019950016794A 1995-06-21 1995-06-21 Apparatus and method for the treatment of waste water KR0151355B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950016794A KR0151355B1 (en) 1995-06-21 1995-06-21 Apparatus and method for the treatment of waste water
GB9612871A GB2302328B (en) 1995-06-21 1996-06-19 Method of and system for disposing sewage and waste water through thermal oxidation
CN96107121A CN1150126A (en) 1995-06-21 1996-06-21 Method of and system for disposing sewage and waste water through thermal oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950016794A KR0151355B1 (en) 1995-06-21 1995-06-21 Apparatus and method for the treatment of waste water

Publications (2)

Publication Number Publication Date
KR960037582A KR960037582A (en) 1996-11-19
KR0151355B1 true KR0151355B1 (en) 1998-08-17

Family

ID=19417815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950016794A KR0151355B1 (en) 1995-06-21 1995-06-21 Apparatus and method for the treatment of waste water

Country Status (3)

Country Link
KR (1) KR0151355B1 (en)
CN (1) CN1150126A (en)
GB (1) GB2302328B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085263A (en) 2014-01-15 2015-07-23 주식회사 메트로엔지니어링 Environmental pollution prevention equipment type steam removal device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190326A (en) * 2010-03-05 2011-09-21 昶昕实业股份有限公司 Methods for recovering copper from copper-containing waste liquor
CN105152300A (en) * 2015-08-05 2015-12-16 同济大学 Method for degrading taste and odor compound in water based on thermally-activated oxidant
CN110357186A (en) * 2019-06-14 2019-10-22 盐城荣平建设工程有限公司 A kind of ground construction environment-friendly sewage purification ancillary equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085263A (en) 2014-01-15 2015-07-23 주식회사 메트로엔지니어링 Environmental pollution prevention equipment type steam removal device

Also Published As

Publication number Publication date
GB9612871D0 (en) 1996-08-21
CN1150126A (en) 1997-05-21
KR960037582A (en) 1996-11-19
GB2302328B (en) 1997-12-03
GB2302328A (en) 1997-01-15

Similar Documents

Publication Publication Date Title
Solmaz et al. Colour and COD removal from textile effluent by coagulation and advanced oxidation processes
US5531865A (en) Electrolytic water purification process
KR100223884B1 (en) Plasma reactor and method for treating water using the same
US20020003116A1 (en) System and method for removal of arsenic from aqueous solutions
JP2013154349A (en) Deeply sewage treating method and apparatus without discharging sludge
JPH06315698A (en) Detoxication of sewage sludge
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
CN107244774A (en) A kind of purifier and its implementation
CN104370418A (en) Treatment method of chemical sewage
CN106830562A (en) A kind of petrochemical industry wastewater treatment integrated technique system and method
CN208995266U (en) A kind of polluted underground water apparatus for extracting
Khelassi-Sefaoui et al. Physico-chemical investigation of wastewater from the Sebdou-Tlemcen textile complex North-West Algeria
CN102642995A (en) Method and system for physicochemical biological combined treatment of drilling wastewater of oil and gas field
KR0151355B1 (en) Apparatus and method for the treatment of waste water
KR19990026365A (en) Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
CN107857444A (en) A kind of environment protection method for handling dyeing waste water
KR101208683B1 (en) Water Re-Cycling System and method thereof
KR20010044325A (en) A waste water treatment apparatus by the advanced oxidation processing method
CN106495416A (en) A kind of hydrogen peroxide manufacture Waste Water Treatment and technique
CN206014610U (en) A kind of dyeing waste water end secondary decolourization system
CN110357372A (en) A kind of underground coal mine wastewater treatment and renovation device and processing method
EP0723938A2 (en) Method for treating water
Goronszy et al. Wastewater (Part 2): A guide to industrial pretreatment
KR100315434B1 (en) Wastewater Disposal Process
CN217947848U (en) Advanced treatment device for printing and dyeing wastewater

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010616

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee