KR0145751B1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
KR0145751B1
KR0145751B1 KR1019930027463A KR930027463A KR0145751B1 KR 0145751 B1 KR0145751 B1 KR 0145751B1 KR 1019930027463 A KR1019930027463 A KR 1019930027463A KR 930027463 A KR930027463 A KR 930027463A KR 0145751 B1 KR0145751 B1 KR 0145751B1
Authority
KR
South Korea
Prior art keywords
weight
parts
monomer
maleimide
latex
Prior art date
Application number
KR1019930027463A
Other languages
Korean (ko)
Other versions
KR950018236A (en
Inventor
김성룡
박봉현
양병태
Original Assignee
성재갑
주식회사엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사엘지화학 filed Critical 성재갑
Priority to KR1019930027463A priority Critical patent/KR0145751B1/en
Publication of KR950018236A publication Critical patent/KR950018236A/en
Application granted granted Critical
Publication of KR0145751B1 publication Critical patent/KR0145751B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

500∼1200Å 및 1800∼2500Å의 입자크기를 갖는 두 종류의 라텍스를 30:70∼70:30으로 라텍스 블렌딩한 말레이미드 중합체 15∼70 중량부, 고무입자크기 1800∼2800Å으로 이루어진 고무함유 스틸렌계 중합체 30∼55 중량부 및 방향족 비닐-시안화 비닐 중합체 35 중량부이하로 구성됨을 특징으로하는 내열 내충격 열가소성 수지 조성물Rubber-containing styrene polymer composed of 15 to 70 parts by weight of a maleimide polymer having latex blended two kinds of latex having a particle size of 500 to 1200 kPa and 1800 to 2500 kPa and a rubber particle size of 1800 to 2800 kPa. Heat-resistant shock-resistant thermoplastic resin composition characterized by consisting of 30 to 55 parts by weight and 35 parts by weight of the aromatic vinyl-vinyl cyanide polymer

Description

열가소성 수지 조성물Thermoplastic resin composition

본 발명은 내열 내충격 열가소성 수지 조성물에 관한 것으로서, 보다 상세하게는 말레이미드계 열가소성 수지를 제조하는데 있어 최종 라텍스의 입자크기를 조절한 말레이미드계 열가소성 수지를 사용하므로써 내열성이 극히 우수하고 내충격성 및 가공성이 양회한 열가소성 수지 조성물에 관한 것이다.The present invention relates to a heat-resistant impact thermoplastic resin composition, and more particularly, to manufacturing a maleimide-based thermoplastic resin, by using a maleimide-based thermoplastic resin in which the particle size of the final latex is adjusted, the heat resistance is extremely excellent, and the impact resistance and processability It relates to the obtained thermoplastic resin composition.

최근 자동차 경량화의 필요성으로 인하여 내열 내충격성등의 제반물성이 우수한 수지의 개발이 요구되고 있다.Recently, due to the necessity of weight reduction of automobiles, development of a resin having excellent physical properties such as heat resistance and impact resistance is required.

그중 수지의 내열성향상을 위하여 스티렌의 일정량을 α-메틸스티렌으로 대체하여 내열성수지를 제조하는 방법이 널리 이용되고 있으며, 그외에 폴리카보네이트와 ABS수지 블렌드 또는 폴리프로필렌수지에 무기물을 충진하여 내열성을 향상시키는 방법이 있다.Among them, in order to improve the heat resistance of the resin, a method of manufacturing a heat resistant resin by replacing a predetermined amount of styrene with α-methyl styrene is widely used.In addition, the heat resistance is improved by filling an inorganic material with a polycarbonate and ABS resin blend or a polypropylene resin. There is a way to.

그러나 α-메틸스티렌을 이용하여 내열성수지를 제조하는 경우 α-메틸스티렌의 종합속도가 느리고 가공시 열안정성이 떨어지는 단점이 있으며, 내열성 향상에 한계가 있다.However, in the case of manufacturing a heat resistant resin using α-methylstyrene, there is a disadvantage in that the overall speed of α-methylstyrene is slow and the thermal stability is poor during processing, and there is a limit in improving heat resistance.

또한 폴리카보네이트와 ABS수지의 블랜트의 경우 가공성에 다소 문제가 있고 가격이 높아 사용에 한계가 있다.In addition, the blend of polycarbonate and ABS resin has a problem in processability and high price, there is a limit to use.

또한 폴리프로필렌 수지등에 무기물을 충진할 경우 내열성은 향상되나 충진량에 비해 내열성 향상효과가 떨어지며 내충격성이 저하되는 단점이 있다.In addition, when the inorganic material is filled in the polypropylene resin, the heat resistance is improved, but the effect of improving heat resistance is lowered and the impact resistance is lowered compared to the filling amount.

최근 내열성을 향상시키는 가장 바람직한 방법으로서 말레이미드계 화합물의 이용이 점차 확대되고 있다.In recent years, the use of a maleimide type compound is gradually expanding as the most preferable method of improving heat resistance.

즉, 일본국 특허 소58-206657, 소63-162708등에서는 말레이미드 화합물과 방향족 비닐 및 시안화 비닐화합물과 공중합한 후 고무함유 종합체와 혼합하여 사용하는 방법이 제안되었으나 일반적인 유화 중합을 이용할 경우 말레이미드 화합물의 중합 반응속도가 빨라 중합초기에 말레이미드 함량이 높은 공중합체가 생성되어 높은 유리전이온도를 갖는 화합물 과다로 인해 내열성은 향상되난 내충격성 및 가공성이 저하된다.In other words, Japanese Patent Nos. 58-206657 and 63-162708 have proposed a method of copolymerizing maleimide compounds with aromatic vinyl and vinyl cyanide compounds and mixing them with rubber-containing composites. Due to the high polymerization reaction rate of the mid compound, a copolymer having a high maleimide content is formed at the beginning of the polymerization, and the impact resistance and processability of which the heat resistance is improved are reduced due to the excessive compound having a high glass transition temperature.

또한 중합된 라텍스의 응고과정에서 응고온도를 상승시켜 제조공정이 복잡해지고 생산 효율이 떨어지는 단점이 있다.In addition, there is a disadvantage in that the manufacturing process is complicated and the production efficiency is lowered by increasing the solidification temperature in the solidification process of the polymerized latex.

또한 미국 특허 4757109호의 경우 방향족 비닐 및 시안화비닐 화합물과 말레이미드 화합물을 투입하여 내열성 수지를 제조하는 방법이 제안되었으나 이 또한 제조공정이 복잡하고 말레이미드 화합물의 함량을 중량시키는데 한계가 있어 고내열성 수지의 제조가 어렵다.In addition, in the case of US Patent 4757109, a method of preparing a heat resistant resin by adding an aromatic vinyl, vinyl cyanide compound, and maleimide compound has been proposed, but this process is also complicated and has a limitation in weighting the content of the maleimide compound. Difficult to manufacture

일본국 특허 소63-235350의 경우 방향족 비닐화합물, 시안화 비닐 화합물 및 말레이미드 화합물을 연속적으로 투입하는 방법이 제안되었으나 이 또한 내충격성은 우수하나 고내열성을 얻는데 한계가 있다.Japanese Patent No. 63-235350 proposes a method of continuously adding an aromatic vinyl compound, a vinyl cyanide compound and a maleimide compound, but this also has excellent impact resistance but has a limit in obtaining high heat resistance.

본 발명자는 상기의 문제점을 해결하여 고내열성을 유지하면서 내충격성이 우수한 수지제조를 위하여 실험한 결과 방향족 비닐단량체 30∼60 중량부, 시안화 비닐 단량체 10∼25중량부 및 말레이미드 단량체15∼60중량부를 사용 중합을 행하는 데 있어서 단량체 투입방법, 유화제 및 이온 교환수의 사용량 및 투입 시기를 조절하여 라텍스 입자크기가 다른 두종류의 말레이미드 종합체를 제조하고 두 라텍스를 일정비율로 블렌딩한 것을 사용하여 최종 내열 내충격성 수지 조성물을 제조할 수 있음을 알게되어 본 발명을 완성하였다.The present inventors have solved the above problems to maintain a high heat resistance while experimenting for the production of a resin having excellent impact resistance, 30 to 60 parts by weight of aromatic vinyl monomer, 10 to 25 parts by weight of vinyl cyanide monomer and 15 to 60 weight of maleimide monomer In the polymerization process, two kinds of maleimide composites having different latex particle sizes were prepared by adjusting the monomer input method, the emulsifier and the ion exchange water, and the timing of the input. It was found that the final heat resistant impact resistant resin composition can be completed to complete the present invention.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에서는 입자크기가 다른 두 종류의 말레이미드 중합체 라텍스를 제조하고 두 종류의 라텍스를 30:70∼70:30으로 블렌팅하고 응집건조하여 분말 형태의 최종 말레이미드 종합체를 제조한다.In the present invention, two types of maleimide polymer latexes having different particle sizes are prepared, and two types of latexes are blended at 30:70 to 70:30 and coagulated and dried to prepare a final maleimide aggregate in powder form.

제조된 말레이미드 중합체15∼70중량부를 고무함량 40%, 고무입자크기 1800∼2800Å으로 이루어진 고무함유 스틸렌계 중합체 30∼55중량부 및 방향족 비닐-시안화 비닐 중합체 35중량부 이하와 혼합하여 최종 내열 내충격 수지를 제조한다.15 to 70 parts by weight of the prepared maleimide polymer is mixed with 30 to 55 parts by weight of a rubber-containing styrene polymer composed of rubber content of 40%, rubber particle size of 1800 to 2800Å and 35 parts by weight or less of an aromatic vinyl-vinyl cyanide polymer Prepare a resin.

이하 본 발명에서 제조되는 말레이미드 중합체에 대하여 보다 상세히 설명하면 다음과 같다.Hereinafter, the maleimide polymer prepared in the present invention will be described in more detail.

말레이미드 중합체 라텍스 I은 중합 1단계 반응에서 단량체 사용량의 15∼30%, 이온교환수 사용량의 30∼60% 및 유화제 사용량의 20∼50%를 반응계 내에 투입하여 중합을 개시하고 중합개시 1∼2시간 후 단량체 잔량, 유화제 사용량의 50∼70% 및 이온교환수 사용량의 20∼40% 혼합액을 연속적 또는 간헐적으로 5∼10시간 투입하여 2단계 중합반응을 진행하고 단량체 혼합물 투입환료후 유화제 및 이온교환수 잔여량을 일괄 투입하여 1800∼2500Å의 입자크기를 갖는 말레이미드 라텍스 I를 제조하며, 중합전사용 이온교환 수량의 60∼90% 및 유화제량의 70∼95%을 일괄투입한 후 시안화비닐 단량체량의 10∼2%를 제외한 단량체 혼합물 전량을 4∼8시간에 걸쳐 연속적으로 반응기에 투입하여 중합을 진행시키고 단량체 투입완료후 이온교환수, 유화제 및 시안화 비닐 단량체 잔량 혼합물을 1∼3시간 연속적으로 투입하여 500∼1200Å의 입자크기를 갖는 중합체 라텍스 Ⅱ를 제조하며 중합체 라텍스 I 및 II 를 30:70∼70:30으로 라텍스상 블렌딩한 후 응집건조하여 분말상태로 제조한다.The maleimide polymer latex I starts the polymerization by injecting 15-30% of the monomer amount, 30-60% of the ion-exchanged water amount and 20-50% of the emulsifier amount in the reaction system in the first stage of the polymerization. After 2 hours, the remaining amount of monomer, 50 to 70% of the amount of emulsifier and 20 to 40% of the amount of ion exchanged water are continuously or intermittently added for 5 to 10 hours to proceed the two-step polymerization reaction. The remaining amount of water was added in a batch to prepare maleimide latex I having a particle size of 1800 to 2500 kPa, in which 60 to 90% of the amount of ion exchanged for polymerization and 70 to 95% of the amount of emulsifier were added in a batch, and the amount of vinyl cyanide monomer The total amount of the monomer mixture except 10 to 2% of the mixture was continuously introduced into the reactor for 4 to 8 hours to proceed with polymerization.After completion of the monomer addition, ion exchanged water, emulsifier and vinyl cyanide were added. After adding the remaining sieve mixture continuously for 1 to 3 hours to prepare a polymer latex II having a particle size of 500 ~ 1200Å, blending the latex phase of polymer latex I and II from 30:70 to 70:30 and coagulation drying to powder To manufacture.

본 발명에서 라텍스의 입자크기가 500Å이하에서는 내충격성은 저하되나 내열성이 우수하며, 2500Å 보다 큰 경우에는 내충격성은 우수하나 내열성이 저하되고 응집시 어려움이 있다.In the present invention, when the particle size of the latex is 500 kPa or less, the impact resistance is lowered, but the heat resistance is excellent. When the particle size of the latex is larger than 2500 kPa, the impact resistance is excellent but the heat resistance is lowered and there is difficulty in aggregation.

또한 최종 내열 내충격 수지를 제조하는데 고무함량 40%, 고무입경 1800∼2800Å의 곰부함유수지가 사용되는데 입자크기 1800Å미만의 고무함유수지를 사용할 경우 광택도는 우수하나 내충격성이 떨어지고 2800Å보다 큰 경우 내충격성은 우수하나 광택도가 떨어진다.In addition, 40% of rubber content and 1800∼2800Å of rubber-bearing resin are used to manufacture the final heat-resisting impact resin. When using rubber-containing resins with particle size less than 1800Å, the gloss is excellent, but the impact resistance is lower than 2800Å. Excellent in performance but poor in gloss.

또한 라텍스 입자크기 1200∼1800Å일 경우 내열성 및 내충격성 모두 양호하나 고내열성 또는 고내충격성을 만족하기 어렵다.In addition, when the latex particle size is 1200 to 1800Å, both heat resistance and impact resistance are good, but it is difficult to satisfy high heat resistance or high impact resistance.

본 발명에서 사용되는 말레이미드 화합물은 N-페닐말레이미드, 시클로 헥실 말레이미드 등이고 사용량은 15∼60 중량부이며, 보다 적절하기로는 20∼50중량부이다.The maleimide compound used in the present invention is N-phenylmaleimide, cyclohexyl maleimide, or the like, and the amount of use thereof is 15 to 60 parts by weight, more preferably 20 to 50 parts by weight.

말레이미드 화합물의 사용량이 15중량부미만에서는 원하는 내열성을 얻기 힘들며 60 중량부보다 큰 경우에는 내충격성 및 가공성이 떨어지고 중합 반응제가 어렵다.If the amount of the maleimide compound is less than 15 parts by weight, it is difficult to obtain desired heat resistance. If the amount of the maleimide compound is greater than 60 parts by weight, the impact resistance and processability are poor, and the polymerization reagent is difficult.

방향족 비닐계 화합물은 스티렌, α-메틸스티렌, α-에틸스티렌, o-에틸스티렌, p-에틸스티렌, 2,4-디메틸스티렌등이며 사용량이 30 중량부 미만일 경우 가공성이 떨어지며 60중량부 보다 큰 경우에는 말레이미드계 화합물 사용량저하로 원하는 내열성을 얻기 힘들다.Aromatic vinyl compounds are styrene, α-methylstyrene, α-ethylstyrene, o-ethylstyrene, p-ethylstyrene, 2,4-dimethylstyrene and the like. In this case, it is difficult to obtain desired heat resistance due to the decrease in the amount of the maleimide compound used.

본 발명에서 사용되는 시안화 비닐계 화합물은 아크릴로니트릴, 메타크릴로 니트릴, 에타그릴로 니트릴 등이며 사용량이 10 중량부 미만에서는 내충격성이 떨어지며 25 중량부 보다 큰 경우에는 라텍스 안정성이 저하되고 열안정성이 극히 저하된다.The vinyl cyanide compound used in the present invention is acrylonitrile, methacrylonitrile, etharylonitrile, and the like, and the amount of impact is less than 10 parts by weight of impact resistance, and greater than 25 parts by weight of latex stability is lowered and thermal stability This is extremely degraded.

본 발명에서는 유화제로서 알킬벤젠 슬폰산 또는 라우릴 황산의 나트륨염 또는 칼륨염을 단량체 100 중량부당 0.7∼2.5 중량부를 사용하며 0.7중량부 미만에서는 라텍스 안정성이 극히 저하되고 응고량 과다로 생산성이 저하되며, 2.5 중량부 보다 큰 경우에는 라텍스 안전성은 향상되나 응집시 문제가 있고 탈수 및 세척시 많은량의 물과 시간이 필요하며 또한 생산성이 저하된다.In the present invention, sodium salts or potassium salts of alkylbenzene sulfonic acid or lauryl sulfate as emulsifiers are used in an amount of 0.7 to 2.5 parts by weight per 100 parts by weight of monomer, and less than 0.7 parts by weight of latex stability is extremely lowered and productivity is reduced due to excessive coagulation amount. In case of greater than 2.5 parts by weight, latex stability is improved, but there is a problem in flocculation, a large amount of water and time are required for dehydration and washing, and productivity is reduced.

또한, 본 발명에서는 이온 교환수량이 단량체 100 중량부당 150∼250 중량부가 사용되며 이온교환수량이 150 중량부 미만에서는 라텍스 안정성이 떨어지며 이온교환수량이 250 중량부 보다 큰 경우에는 라텍스 안정성이 우수하나 생산성이 저하되는 단점이 있다.In addition, in the present invention, the amount of ion exchanged water is 150 to 250 parts by weight per 100 parts by weight of monomer, the latex stability is lower when the ion exchanged water is less than 150 parts by weight, the latex stability is excellent when the ion exchanged water is greater than 250 parts by weight This has the disadvantage of deteriorating.

본 발명에서 중합 촉매로는 과황산 칼륨 및 퍼옥사이트계 레독스 촉매 모두 가능하나 과황산 칼륨이 보다 적절하다.In the present invention, as the polymerization catalyst, both potassium persulfate and peroxite-based redox catalyst may be used, but potassium persulfate is more suitable.

또한 중합계의 PH는 5이하가 적절하며 보다 적절하기로는 1.5∼3.5가 좋다.In addition, the pH of the polymerization system is preferably 5 or less, more preferably 1.5 to 3.5.

또한 분자량 조절제로는 t-도데실 메르캅탄으로 단량체 100 중량부당 0.5 중량부 이하로 사용하며 보다 적절하기로는 0.1∼0.3 중량부가 좋다.In addition, as the molecular weight regulator, t-dodecyl mercaptan is used in an amount of 0.5 parts by weight or less per 100 parts by weight of monomer, and more preferably 0.1 to 0.3 parts by weight.

이하 제조예 및 실시예로서 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail as preparation examples and examples.

[제조예 1][Production Example 1]

말레이미드 라텍스 I. 제조Maleimide Latex I. Manufacture

질소 치환된 중합반응기에 이온교환수 120 중량부 및 알킬벤젠슬폰산 나트륨염을 0.3 중량부, N-페닐마레이미드 5중량부, 스티렌 10중량부, 아크릴로 니트릴 3중량부 혼합액을 넣고 반응기 내온을 70℃로 올리면서 과황산 칼륨 0.1부를 일괄 투입하여 반응을 개시하고 중합개시 1시간 후 반응기 내온을 75℃로 승온하면서 t-도데실 메르캅탄 0.2, 과황산 0.3중량부, 이온교환수 80 중량부 알킬벤젠슬폰산 나트륨염 0.8 중량부와 N-페닐말레이미드 35 중량부, 스티렌 30 중량부, 아크릴로 니트릴 17 중량부 혼합용액을 7시간에 걸쳐 연속적으로 투입하였다.Into the nitrogen-substituted polymerization reactor, 120 parts by weight of ion-exchanged water and 0.3 parts by weight of alkylbenzenesulfonic acid sodium salt, 5 parts by weight of N-phenylmarimide, 10 parts by weight of styrene, and 3 parts by weight of acrylonitrile were added. 0.1 parts of potassium persulfate was added in a batch to raise the temperature to 70 ° C. to start the reaction. After 1 hour of polymerization, the temperature of the reactor was increased to 75 ° C. while t-dodecyl mercaptan 0.2, 0.3 parts by weight of persulfate, and 80 parts by weight of ion-exchanged water. 0.8 parts by weight of an alkylbenzenesulfonic acid sodium salt, 35 parts by weight of N-phenylmaleimide, 30 parts by weight of styrene, and 17 parts by weight of acrylonitrile were added continuously over 7 hours.

투입완료후 반응기 내온을 80℃로 승온하면서 이온교환수 20 중량부, 알킬벤젠 슬폰산 나트륨염 0.1 및 과황산 칼륨 0.1부 혼합액을 일괄투입하고 2시간 교반하여 중합을 완료하였다.After the addition, 20 parts by weight of ion-exchanged water, 0.1 parts of alkylbenzenesulfonic acid sodium salt and 0.1 parts of potassium persulfate were added together in a batch while the reactor inner temperature was raised to 80 ° C, followed by stirring for 2 hours to complete the polymerization.

중합완료후 중합 전환율은 98.35%이고 라텍스 입자크기는 2481Å이었다.After the completion of the polymerization, the polymerization conversion was 98.35% and the latex particle size was 2481 mm 3.

[제조예 2][Production Example 2]

말레이미드 라텍스 Ⅱ. 제조Maleimide latex II. Produce

질소 치환된 중합반응기에 이온교환수 200 중량부 및 알킬벤젠 슬폰산 나트륨 0.8을 일괄투입하고 반응기 내온을 75℃로 승온하면서 N-페닐말레이미드 40 중량부, 스티렌 40 중량부, 아클릴로 니트릴 20 중량부 및 t-도데실 메르캅탄 0.2중량부 혼합액과 과황산 칼륨 0.4중량부 혼합용액을 각각 5시간씩 연속적으로 투입한 후 반응기 내온을 80℃로 승온하면서 이온교환수 20 중량부, 알킬 벤젠 슬폰산 나트륨 0.3 및 과황산 칼륨0.1 중량부 혼합액을 일괄 투입하고 2시간 교반후 중합을 완결하였다.200 parts by weight of ion-exchanged water and 0.8 parts of alkylbenzene sodium sulfonate were added to a nitrogen-substituted polymerization reactor, and 40 parts by weight of N-phenylmaleimide, 40 parts by weight of styrene, and 20 parts by weight of acrylonitrile were heated at 75 ° C. 0.2 parts by weight of a t-dodecyl mercaptan mixture and 0.4 parts by weight of a mixed solution of potassium persulfate were continuously added for 5 hours, and then the temperature of the reactor was raised to 80 ° C., 20 parts by weight of ion-exchanged water, and alkyl benzene sulfonic acid. A mixture of 0.3 part sodium and 0.1 parts by weight of potassium persulfate was added in a batch and stirred for 2 hours to complete the polymerization.

중합완료후 중합 전환율은 95.9%이고 라텍스 입자크기는 924Å이었다.After the completion of the polymerization, the polymerization conversion was 95.9% and the latex particle size was 924 mm 3.

[제조예 3][Manufacture example 3]

질소 치환된 반응기에 이온교환수 80 중량부를 일괄투입하고 반응기 내온을 70℃로 승온하면서 N-페닐말레이미드 40 중량부, 스티텐 40 중량부, 아클릴로니트릴 20 중량부, t-도데실 메르캅탄 0.2중량부, 과황산칼륨 0.4중량부, 알킬벤젠슬폰산 나트륨 0.8 중량부 및 이온 교환수 40 중량부 혼합액을 8시간 연속투입한 후 반응기 내온을 75℃로 승온하고 이온교환수 20 중량부, 알킬벤젠슬폰산 나트륨 0.1 중량부 및 과황산 칼륨 0.1 중량부 혼합액을 일괄투입하고 2시간 교반하여 중합을 완결하였다.80 parts by weight of ion-exchanged water was introduced into a nitrogen-substituted reactor, and 40 parts by weight of N-phenylmaleimide, 40 parts by weight of stytene, 20 parts by weight of acrylonitrile, and t-dodecyl mercaptan were heated at 70 ° C. in the reactor. 0.2 parts by weight, 0.4 parts by weight of potassium persulfate, 0.8 parts by weight of alkylbenzenesulfonic acid and 40 parts by weight of ion-exchanged water were continuously added to the mixture for 8 hours, and the temperature in the reactor was raised to 75 ° C., 20 parts by weight of ion-exchanged water, alkyl 0.1 parts by weight of sodium benzenesulfate and 0.1 parts by weight of potassium persulfate were added together in a batch and stirred for 2 hours to complete the polymerization.

중합완료후 중합 전환율은 93.2%이고 라텍스 입자크기는 3460Å이었다.After the completion of the polymerization, the polymerization conversion was 93.2% and the latex particle size was 3460 Å.

[제조예 4][Production Example 4]

중합초기단계에서 이온교환수 180 중량부 및 알킬벤젠슬폰산나트륨 0.2 중량부를 사용한 것 이외에는 실시예 1과 동일하게 중합을 행하였다.Polymerization was carried out in the same manner as in Example 1, except that 180 parts by weight of ion-exchanged water and 0.2 parts by weight of sodium alkylbenzenesulfate were used in the initial stage of polymerization.

중합완료후 중합전환율은 96.4%이고 라텍스 입자크기는 1560Å이었다.After the completion of the polymerization, the polymerization conversion rate was 96.4% and the latex particle size was 1560Å.

[실시예1-2 및 비교예 1-2]Example 1-2 and Comparative Example 1-2

제조예1,2 및 제조예 3,4에서 제조된 라텍스를 응집·건조하여 말레이미드 중합체를 제조하고 얻어진 중합레 50 중량부, ABS수지 50 중량부, 마그네슘 스테아레이트0.5 중량부 및 디페닐이소옥틸포스파이트 0.5중량부와 혼합하여 압출기에 압출한 다음 물성 시편을 제작하여 물성 측정을 하고 그 결과를 표1에 나타내었다.Agglomeration and drying of the latexes prepared in Preparation Examples 1 and 2 and Preparation Examples 3 and 4 to prepare maleimide polymer, and 50 parts by weight of the obtained polymerization resin, 50 parts by weight of ABS resin, 0.5 parts by weight of magnesium stearate and diphenylisooctyl After mixing with 0.5 parts by weight of phosphite extruded in an extruder to produce a physical specimen to measure the physical properties and the results are shown in Table 1.

[실시예3-7 및 비교예3-4]Example 3-7 and Comparative Example 3-4

제조예 1 및 2에서 제조된 라텍스를 표2의 비율로 변환시키면서 블렌딩하여 응집건조하여 제조된 분말상 중합체 50 중량부, ABS 수지 50중량부, 마그네슘 스테아레이트 0.5 중량부 및 디페닐 이소옥틸포스파이트 0.5 중량부와 혼합하여 압출기에서 압출한 다음 물성시편을 제작하여 물성측정을 하고 그 결과를 표2에 나타내었다.50 parts by weight of the powdered polymer prepared by blending and converting the latexes prepared in Preparation Examples 1 and 2 into the ratios of Table 2, 50 parts by weight of ABS resin, 0.5 parts by weight of magnesium stearate, and diphenyl isooctylphosphite 0.5 After mixing with parts by weight and extruded in an extruder to produce a physical specimen to measure the physical properties and the results are shown in Table 2.

Claims (5)

방향족 비닐 단량체 30∼60 중량부, 시안화 비닐 단량체 10∼25 중량부 및 말레이미드 단량체15∼60 중량부를 포함하는 단량체 혼합물을 그의 15내지 30중량%를 사용하여 1단계 유화중합한 후 1단계 중합생성물에 나머지량을 가하여 2차로 유화중합함으로써 제조된 1800∼2500Å의 입자크기를 갖는 말레이미드 라텍스 I과, 별도로 상기 단량체 혼합물에서 시안화 비닐 단량체 2 내지 10 중량부를 제외한 단량체 혼합물을 사용하여 1단계 유화중합한 후 1단계 유화중합 생성물에 시안화 비닐 단량체 나머지량을 가하여 2차로 유화중합함으로써 제조된 500∼1200Å의 입자크기를 갖는 말레이미드 라텍스 Ⅱ를 30:70∼70:30의 중량비로 블렌딩한 말레이미드 중합체 혼합물 15∼70 중량부, 고무입자 크기 1800∼2800Å으로 이루어진 고무 함유 스티렌계 중합체 30∼55 중량부 및 방향족 비닐-시안화 비닐 중합체 35 중량부 이하로 구성됨을 특징으로 하는 내열 내충격성 열가소성 수지 조성물.One-step polymerization after one-step emulsion polymerization of a monomer mixture comprising 30 to 60 parts by weight of aromatic vinyl monomer, 10 to 25 parts by weight of vinyl cyanide monomer and 15 to 60 parts by weight of maleimide monomer. 1 step emulsion polymerization using a monomer mixture except 2 to 10 parts by weight of vinyl cyanide monomer from the monomer mixture separately from the maleimide latex I prepared by secondary emulsion polymerization by adding the remaining amount to The maleimide polymer mixture obtained by blending maleimide latex II having a particle size of 500 to 1200 mm 2 by adding the remaining amount of the vinyl cyanide monomer to the second step emulsion polymerization product in a weight ratio of 30:70 to 70:30. 30 to 55 parts by weight of a rubber-containing styrene polymer composed of 15 to 70 parts by weight, rubber particle size of 1800 to 2800 mm 3 and Hyangjok vinyl-vinyl cyanide polymer 35 parts by weight or less consists in the characteristics of heat-resistant impact-resistant thermoplastic resin composition. 제1항에 있어서, 말레이미드 단량체는 N-페닐 말레이미드 또는 시클로헥실 말레이미드 임을 특징으로 하는 조성물.The composition of claim 1 wherein the maleimide monomer is N-phenyl maleimide or cyclohexyl maleimide. 제1항에 있어서, 방향족 비닐 단량체는 스티렌, α-메틸스티렌, α-에틸스티렌, o-에틸스티렌, p-에틸스티렌 또는 2,4-디메틸스티렌 임을 특징으로 하는 조성물.The composition of claim 1 wherein the aromatic vinyl monomer is styrene, α-methylstyrene, α-ethylstyrene, o-ethylstyrene, p-ethylstyrene or 2,4-dimethylstyrene. 제1항에 있어서, 시안화비닐 단량체는 아클리로니트릴, 메타크릴로니트릴 또는 에타크릴로니트릴 임을 특징으로 하는 조성물.The composition of claim 1, wherein the vinyl cyanide monomer is acrylonitrile, methacrylonitrile or ethacrylonitrile. 제1항에 있어서, 고무 함유 스티렌계 단량체가 아클릴로니트릴-부타디엔-스티렌 중합체 임을 특징으로 하는 조성물.The composition according to claim 1, wherein the rubber-containing styrene monomer is an acrylonitrile-butadiene-styrene polymer.
KR1019930027463A 1993-12-11 1993-12-11 Thermoplastic resin composition KR0145751B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930027463A KR0145751B1 (en) 1993-12-11 1993-12-11 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930027463A KR0145751B1 (en) 1993-12-11 1993-12-11 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
KR950018236A KR950018236A (en) 1995-07-22
KR0145751B1 true KR0145751B1 (en) 1998-08-17

Family

ID=19370740

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930027463A KR0145751B1 (en) 1993-12-11 1993-12-11 Thermoplastic resin composition

Country Status (1)

Country Link
KR (1) KR0145751B1 (en)

Also Published As

Publication number Publication date
KR950018236A (en) 1995-07-22

Similar Documents

Publication Publication Date Title
CN102311527B (en) Method of rubbery polymer and rubber reinforced thermoplastics using the same
KR100527095B1 (en) Method for Preparing Thermoplastic Copolymer with Excellent Whiteness and Surface Gloss
KR100574324B1 (en) Method for preparing thermoplastic resin with good impact resistance and natural color property
KR100585942B1 (en) Thermoplastic resin composition with good heat resistance and elongation property
JP3191942B2 (en) Method for producing thermoplastic resin having high impact strength
EP0076162B1 (en) A process for producing a thermoplastic resin and a resin composition containing the same
KR0145751B1 (en) Thermoplastic resin composition
KR100358231B1 (en) Manufacturing method of heat resistant thermoplastic resin with excellent impact resistance and thermal stability
KR940004852B1 (en) Preparation of thermoplastic resin composition
KR100452856B1 (en) Thermoplastic resin latex manufacturing method with excellent impact resistance, whiteness and retention gloss
KR100540507B1 (en) The Method of Manufacturing ABS Resin Having Improved Whiteness and Thermal Stability
KR100187551B1 (en) The preparation of thermoplastic resin composition having high impact strength
KR100419230B1 (en) Manufacturing method of thermoplastic resin with excellent whiteness and impact resistance
JPS60258217A (en) Heat-resistant resin
KR100205059B1 (en) A process for preparing heat-resistant thermoplastic in compositions
KR100453875B1 (en) Method of Preparing the New Grafted Copolymer Having High Rubber Contents and High Performance
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
KR100347796B1 (en) Graft copolymer using rubber latex
JPS636106B2 (en)
KR920005670B1 (en) Process for preparing latex suitable for preparation of thermoplastic resin having a impact resistance
KR100188529B1 (en) The preparation of thermoplastic resin composition having high glossness and high impact strength at low temperature
KR100360947B1 (en) Heat Resistant Thermoplastic Resin Composition and Process for Preparing thereof
KR100567406B1 (en) Method for Preparing Impact Modifier for Polystyrene
KR920004212B1 (en) Thermoplastic resin composition and therof a manufacturing process
JPS6328087B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090506

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee