KR0145551B1 - High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus - Google Patents

High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus

Info

Publication number
KR0145551B1
KR0145551B1 KR1019940028543A KR19940028543A KR0145551B1 KR 0145551 B1 KR0145551 B1 KR 0145551B1 KR 1019940028543 A KR1019940028543 A KR 1019940028543A KR 19940028543 A KR19940028543 A KR 19940028543A KR 0145551 B1 KR0145551 B1 KR 0145551B1
Authority
KR
South Korea
Prior art keywords
vacuum
heat exchange
refrigerant
chamber
high vacuum
Prior art date
Application number
KR1019940028543A
Other languages
Korean (ko)
Other versions
KR960018428A (en
Inventor
신호근
이대성
Original Assignee
신호근
이대성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신호근, 이대성 filed Critical 신호근
Priority to KR1019940028543A priority Critical patent/KR0145551B1/en
Publication of KR960018428A publication Critical patent/KR960018428A/en
Application granted granted Critical
Publication of KR0145551B1 publication Critical patent/KR0145551B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 발명은 -20℃까지 결빙하지 않도록 염화칼슘 등의 특수화합물이 첨가된 물을 냉매로 사용하여, 고진공 상태(1∼5Torr)에서 기화(氣化)시켜 잠열(Latent Heat, 539kcal/l)을 빼앗으므로 0℃∼-20℃정도까지 냉매의 온도를 하강시켜 프레온(C.F.C)가스 또는 암모니아 용액 등의 냉매를 사용하지 않고도 냉동 및 냉방기능을 수행할 수 있도록 고안된 물을 냉매로 사용할 수 있는 진공유 재생 공급장치를 이용한 고진공 냉동 냉방장치 및 방법에 관한 것이다.The present invention uses water to which a special compound such as calcium chloride is added so as not to freeze to -20 ° C as a refrigerant, and vaporizes in a high vacuum state (1 to 5 Torr) to remove latent heat (539 kcal / l). Therefore, it is possible to reduce the temperature of the refrigerant from 0 ℃ to -20 ℃ so that the refrigerant can be used as a refrigerant, which is designed to perform the freezing and cooling functions without using refrigerants such as Freon (CFC) gas or ammonia solution. It relates to a high vacuum refrigeration cooling apparatus and method using a feeder.

Description

진공유 재생 공급장치를 이용한 고진공 냉동 냉방장치 및 방법High vacuum refrigeration cooling system and method using vacuum oil regeneration supply device

제1도는 본 발명의 양호한 실시예의 부분단면도.1 is a partial cross-sectional view of a preferred embodiment of the present invention.

제2도는 본 발명의 액상냉매 열교환 냉각챔버의 부분확대 사시도.2 is a partially enlarged perspective view of the liquid refrigerant heat exchange cooling chamber of the present invention.

제3도는 본 발명의 진공유 가열장치의 부분확대 사시도.3 is a partially enlarged perspective view of the vacuum oil heating apparatus of the present invention.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

P1,P2:액상냉매 순환펌프 11:유체 유도 분자펌프P1, P2: Liquid refrigerant circulation pump 11: Fluid-induced molecular pump

2:고진공 증발챔버 12:제1배기통2: high vacuum evaporation chamber 12: first exhaust cylinder

3:열교환 냉각챔버 13:고진공펌프3: Heat exchange cooling chamber 13: High vacuum pump

5:열교환 냉각튜브 15:콘덴서5: Heat exchange cooling tube 15: Condenser

7:분무기 16:진공펌프7: Atomizer 16: Vacuum pump

8:진공압출펌프 18:제2배기통8: vacuum extrusion pump 18: second exhaust cylinder

9:라디에이터 19:진공유 필터9: Radiator 19: True Share Filter

10A,10B:오버플로방지챔버 22:진공유 가열장치10A, 10B: overflow prevention chamber 22: vacuum sharing heater

26:진공유 수분증발챔버 28:진공유 냉각기26: shared vacuum evaporation chamber 28: shared vacuum cooler

R1∼R22:관로 V1∼V7:밸브R1 to R22: Pipe line V1 to V7: Valve

본 발명은 -20℃까지 결빙하지 않도록 염화칼슘 등의 특수화합물이 첨가된 물을 냉매로 사용하여, 고진공 상태(1∼5Torr)에서 기화(氣化)시켜 잠열(Latnet Heat, 539kcal/l)을 빼앗으므로 0℃∼-20℃정도까지 냉매의 온도를 하강시켜 프레온(C.F.C)가스 또는 암모니아 용액 등의 냉매를 사용하지 않고도 냉동 및 냉방기능을 수행할 수 있도록 고안된 물을 냉매로 사용할 수 있는 진공유 재생 공급장치를 이용한 고진공 냉동 냉방장치 및 방법에 관한 것이다.The present invention uses water to which a special compound such as calcium chloride is added so as not to freeze to -20 ° C as a refrigerant, and vaporizes in a high vacuum state (1 to 5 Torr) to remove latent heat (Latnet Heat, 539 kcal / l). Therefore, it is possible to reduce the temperature of the refrigerant from 0 ℃ to -20 ℃ so that the refrigerant can be used as a refrigerant, which is designed to perform the freezing and cooling functions without using refrigerants such as Freon (CFC) gas or ammonia solution. It relates to a high vacuum refrigeration cooling apparatus and method using a feeder.

지금까지의 냉동 및 냉방장치들은 이른바 프레온 가스로 불리우는 CFC 또는 암모니아 용액 등을 냉매로 사용하기 때문에, 대기 환경오염의 원인이 되어 왔고, 온도를 하강시키기 위한 수단으로 압축기와 확산 열교환기 칠러(Chiller)등을 사용함으로써, 많은 장치비용이 필요할 뿐만 아니라 냉매의 손실율이 매우 크기 때문에 유지관리비용 또한 많이 드는 단점들을 가지고 잇다.Conventional refrigeration and cooling systems use so-called CFC or ammonia solution, called Freon gas, as a refrigerant, which has caused air pollution. As a means to lower the temperature, compressors and diffusion heat exchanger chillers are used. By using the light and the like, not only a large apparatus cost is required, but also a maintenance cost is also high because the loss rate of the refrigerant is very large.

그러나, 본 발명은 염화칼슘이나 PCM(Phase convertible Material)등 일정 온도 이하에서만 결빙하는 특수 화합물이 첨가된 물을 냉매로 사용하기 때문에 환경 공해의 요인이 없고, 냉매 비용이 매우 저렴하며, 특히 냉매의 온도를 하강시키기 위한 수단으로 고진공(1∼5Torr)장치들을 이용하기 때문에, 냉동 및 냉방 용량이 클수록 장치비용이 저렴하며 유지 보수가 간단한 장점들을 가지고 있다.However, since the present invention uses water containing a special compound which freezes only below a certain temperature, such as calcium chloride or PCM (Phase convertible material), as a refrigerant, there is no cause of environmental pollution, and the refrigerant cost is very low, especially the temperature of the refrigerant. Since high vacuum (1 to 5 Torr) devices are used as a means for lowering the temperature, the greater the freezing and cooling capacity, the lower the cost of the device and the simpler the maintenance.

제1도에 도시된 바와 같이, 본 발명은 냉동 및 냉방 목적의 냉매 순환 라디에이터(Radiator) 및 냉매 순환 공급관들로 구성된 액상냉매 열교환 순환회로와 상기 열교환으로 온도가 상승한 액상 냉매를 다시 열교환 냉각시키기 위한 액상냉매 열교환 냉각챔버가 내설된 고진공 증발챔버, 고진공 증발챔버 내의 고진공(1∼5Torr)을 발생 및 유지시키는 유체 유도 분자펌프(Guide Stator Molecular Pump or some kind of Vacuum Booster) 및 유(油)회전 실링형 고진공 펌프(Oil Sealing High Vacuum Pump) 그리고 진공유(眞空油)속의 수분과 불순물을 제거하여 진공유 순도를 유지시켜 지속적인 유회전 실링기능을 수행함으로써 고진공펌프의 신뢰성을 제공하는 진공유 재생공급 시스템 등으로 구성된다.As shown in FIG. 1, the present invention provides a liquid refrigerant heat exchange circulation circuit consisting of a refrigerant circulation radiator and a refrigerant circulation supply pipe for refrigeration and cooling purposes, and a liquid refrigerant having a temperature rise due to the heat exchange for heat exchange cooling. High vacuum evaporation chamber with built-in liquid refrigerant heat exchange cooling chamber, guide stator molecular pump or some kind of vacuum booster and oil rotation sealing to generate and maintain high vacuum (1-5torr) in high vacuum evaporation chamber Oil Sealing High Vacuum Pump and vacuum oil regeneration supply system which provides reliability of high vacuum pump by performing continuous flow sealing function by maintaining vacuum purity by removing moisture and impurities in vacuum oil. And the like.

먼저, 본 발명의 고진공 냉동 및 냉방장치에 있어서, 고진공 상태하의 액상냉매 열교환 순환회로는 냉매투입구(1), 밸브(V1) 및 냉매 순환펌프(P1)가 부설되어 있는 관로(R1)를 통하여 유입된 냉매가 고진공 증발챔버(2)의 하부에 내설된 열교환 냉각챔버(3)안으로 투입되며, 상기 액상냉매 열교환 냉각챔버(3)는 투입구(4)에 의해 유입된 또 다른 냉매가 통과하는 다수의 액상냉매 열교환 냉각튜브(5)들이 수직으로 내설되어 있으며, 열교환 능력을 향상시키기 위하여, 상기 열교환 냉각튜브(5)를 가로지르며 일정한 간격으로 수평으로 다수의 격판(6)들이 내설되어 있으며, 상기 열교환 냉각챔버(3)하부에는 상기 냉각튜브(5)를 통과하며 열교환된 냉매가 모일 수 있는 공간(S)이 형성되어 있으며, 상기 고진공 증발챔버(2)하부일측에는 냉매 순환펌프(P2)가 부재되어 있는 관로(R2)가 인출되어 상기 고진공 증발챔버(2)의 상부에서 냉매를 하향 분무하는 다수의 노즐이 일정한 간격으로 수평으로 내설되어 있는 분무기(7)에 연결되어 있으며, 상기 고진공 증발챔버(2)저부에는 진공압출펌프(8)가 부재되어 있는 관로(R3)가 인출되어 있으며, 상기 관로(R1)에 의해 흡입된 냉매가 상기 열교환 냉각챔버(3)안에서 열교환되어 유출되는 관로(R4)가 상기 열교환 냉각챔버(3)상부일측에서 인출되어, 후방전면에 팬(F)이 착설되어 있는 라디에이터(9)에 연결되고, 상기 라디에이터(9)의 하부는 상기 관로(R1)와 연결되며, 상기 고진공 증발챔버(2)상부에는 기화증기가 배출되는 관로(R5)가 인출되어, 하부에 관로(R6)가 인출되고 상기 고진공 증발챔버(2)의 측면상부에 연통되어 있는 오버플로방지챔버(10A)에 연결되고, 상기 오버플로 방지용 챔버(10A)의 상부에서 인출된 관로(R7)는 유체 유도 분자펌프(11)의 상부와 연결되어 있으며, 상기 관로(R7)상에는 밸브(V2)가 부재된 관로(R8)가 인출되어 제1배기통(12)의 상부에 연결되고, 상기 유체 유도 분자펌프(11)의 하부 일측에는 밸브(V3)가 부재되어 있는 관로(R9)가 인출되어 유회전 실링형 고진공펌프(13)에 연결되어 구성된다.First, in the high vacuum refrigeration and cooling device of the present invention, the liquid refrigerant heat exchange circulation circuit under a high vacuum state is introduced through a pipe line (R1) in which a refrigerant inlet (1), a valve (V1), and a refrigerant circulation pump (P1) are installed. The refrigerant is introduced into the heat exchange cooling chamber 3 in the lower portion of the high vacuum evaporation chamber 2, and the liquid refrigerant heat exchange cooling chamber 3 passes through a plurality of refrigerants introduced by the inlet 4. Liquid refrigerant heat exchanger cooling tubes (5) are vertically installed, in order to improve the heat exchange ability, a plurality of plates (6) are installed horizontally at regular intervals across the heat exchange cooling tube (5), the heat exchange The lower portion of the cooling chamber (3) is formed through the cooling tube (5) and the space (S) for collecting the heat exchanged refrigerant is formed, the lower portion of the high vacuum evaporation chamber (2) the refrigerant circulation pump (P2) member Be A plurality of nozzles for drawing out the conduit R2 and spraying the refrigerant downward from the upper portion of the high vacuum evaporation chamber 2 are connected to the nebulizer 7 horizontally installed at regular intervals, and the high vacuum evaporation chamber 2 At the bottom, a conduit (R3) having a vacuum extrusion pump (8) is drawn out, and a conduit (R4) through which the refrigerant sucked by the conduit (R1) exchanges heat in the heat exchange cooling chamber (3) and flows out. The heat exchange cooling chamber 3 is drawn out from one side and connected to a radiator 9 in which a fan F is mounted on a rear front surface, and a lower part of the radiator 9 is connected to the pipe line R1. The upper part of the high vacuum evaporation chamber 2 is drawn with a conduit R5 through which vaporized steam is discharged, and a conduit R6 is drawn out from the lower part and communicated with the upper part of the side of the high vacuum evaporation chamber 2. ), To prevent the overflow The conduit R7 drawn out from the upper part of the chamber 10A is connected to the upper part of the fluid induction molecular pump 11, and the conduit R8 without the valve V2 is drawn out on the conduit R7 to form the first. It is connected to the upper part of the exhaust pipe 12, the lower end side of the fluid induction molecular pump 11, the conduit (R9) having the valve (V3) is drawn out is connected to the flow-type sealing high vacuum pump (13) do.

그리고, 본 발명에 있어서, 고진공을 유지하기 위한 유회전 실링형 고진공 펌프내의 진공유 재생공급시스템의 구성을 살펴보면, 상기 유회전 고진공펌프(13)의 상부에서 인출된 배기관로(R10)가 상기 제1배기통(12)의 상부 측면에 연결되고, 상기 제1배기통(12)의 상부 일측은 관로(R11)에 의해 다수의 열교환 튜브(14)가 수직으로 내설되어 있는 콘덴서(15)의 측면 상부와 연통되어 있으며, 상기 콘덴서(15)의 하부로는 진공압출펌프(8) 및 밸브(V4)가 부재된 관로(R3)가 인출되어 상기 고진공 증발챔버(2)의 하부에 연결되어 있으며, 상기 콘덴서(15)의 일측에서 관로(R12)가 인출되어 오버플로방지챔버(10B)의 상부 일측에 연결되어 있으며, 상기 오버플로방지챔버(10B)의 하부는 관로(R13)에 의해 콘덴서(15)의 측면 하부와 연통되어 있으며, 상기 오버플로방지챔버(10B)의 상부 일측에는 밸브(V5)가 부재된 관로(R14)가 인출되어 진공펌프(16)에 연결되어 있으며, 상기 관로(R14)상에는 밸브(V6)가 부재되어 있는 관로(R15)가 인출되어 제1배기통(12)의 측면 하부에 연결되어 있고, 상기 진공펌프(16)의 상부로는 관로(R16)가 인출되어 상부에 배기구(17)가 있는 제2배기통(18)의 측면 상부와 연결되고 상기 제2배기통(18)의 측면하부에서 관로(R17)가 인출되어 진공유 필터(19)의 측면하부로 연결되고, 상기 진공유 필터(19)의 상부에서 인출된 관로(R18)는 진공유가 통과하는 다수의 진공유 가열튜브(20)가 수평으로 내설되고, 일정한 간격으로 다수의 격판(21)들이 수직으로 내설되어 있는 진공유 가열장치(22)의 일단에 연결되며, 상기 진공유 가열장치(22)의 하부 및 상부 일측에는 진공유를 열교환에 의해 가열시키기 위해 스팀 또는 열매체유가 스팀열교환챔버(23)로 진입하는 유입구(24) 및 배출구(25)가 부재되어 있으며, 상기 진공유 가열장치(22)의 타단에는 밸브(V7)가 부설되어 있는 관로(R19)가 인출되어 진공유 수분증발챔버(26)내부로 삽입·연결되어 있고, 상기 진공유 수분증발챔버(26)의 측면 상부로는 관로(R20)가 인출되어 상기 콘덴서(15)의 상부와 연결되며, 상기 진공유 수분증발챔버(26)의 측면하부로는 관로(R21)가 인출되어 다수의 냉각튜브(27)들이 수직으로 내설되어 있는 진공유 냉각기(28)의 상부와 연결되고, 상기 진공유 냉각기(28)의 측면 하부 및 상부에는 열교환용 냉각수의 유입구(2) 및 배출구(30)가 각각 부재되어 있으며, 하부로는 진공유 공급관로(R22)가 인출되어 관로(R9)와 연통되어 있다.And, in the present invention, when looking at the configuration of the vacuum oil regeneration supply system in the flow-type sealing high vacuum pump for maintaining a high vacuum, the exhaust pipe passage (R10) drawn from the upper portion of the flow-through high vacuum pump 13 is It is connected to the upper side of the first exhaust pipe 12, the upper one side of the first exhaust pipe 12 and the upper side of the side of the condenser 15 in which a plurality of heat exchange tubes 14 are vertically installed by the pipeline (R11) In communication with the lower part of the condenser 15, a conduit R3 without the vacuum extrusion pump 8 and the valve V4 is drawn out and connected to the lower part of the high vacuum evaporation chamber 2. Pipe line R12 is drawn out from one side of 15 to be connected to the upper side of the overflow prevention chamber 10B, and the lower portion of the overflow prevention chamber 10B is connected to the condenser 15 by the conduit R13. Is in communication with the lower side of the overflow prevention chamber (10B) On one side of the pipe line (R14) without the valve (V5) is drawn and connected to the vacuum pump 16, the pipe line (R15) without the valve (V6) on the pipe line (R14) is drawn out and the first It is connected to the lower side of the exhaust cylinder 12, the upper portion of the vacuum pump 16 is connected to the upper side of the second exhaust cylinder 18 having the exhaust port 17 is drawn out of the conduit (R16) and the The pipe line R17 is drawn out from the lower side of the second exhaust cylinder 18 and connected to the lower side of the vacuum oil filter 19, and the vacuum oil passes through the pipe line R18 drawn from the upper portion of the vacuum oil filter 19. A plurality of vacuum oil heating tube 20 is horizontally insulted, and is connected to one end of the vacuum oil heating device 22 in which a plurality of diaphragms 21 are vertically insulted at regular intervals. 22) On the lower and upper one side, steam or heat medium oil is added to heat the vacuum oil by heat exchange. The inlet 24 and the outlet 25 which enter the team heat exchange chamber 23 are absent, and the other end of the vacuum oil heating device 22 has a pipe line R19 in which a valve V7 is installed is drawn out. It is inserted into and connected to the shared moisture evaporation chamber 26, and a conduit R20 is drawn out to an upper side of the vacuum oil moisture evaporation chamber 26 to be connected to an upper portion of the condenser 15. The lower part of the side surface of the water vaporization chamber 26 is connected to the upper part of the vacuum oil cooler 28 in which a plurality of cooling tubes 27 are vertically drawn and the pipe R21 is drawn out, and the vacuum oil cooler 28 is connected thereto. The inlet 2 and the outlet 30 of the cooling water for heat exchange are respectively absent from the lower side and the upper side of the side, and the vacuum oil supply line R22 is drawn out and communicates with the line R9 at the lower side.

상술한 본 발명의 구성에 의해 본 발명의 작용 및 실시예를 첨부된 도면에 의해 상세히 살펴보면 다음과 같다.Looking at the operation and embodiment of the present invention by the configuration of the present invention described above in detail by the accompanying drawings as follows.

먼저, 진공유 재생공급라인의 진공펌프(16)를 작동하여 고진공 증발챔버(2)와 유체 유도 분자펌프(11) 및 고진공펌프(13) 그리고 진공펌프(16)까지에 이르는 전라인에 진공환경을 조성하여 유체 유도 분자펌프(11)의 작동준비를 완료한 다음, 유체 유도 분자펌프(11)와 고진공펌프(13)를 작동시켜 고진공 증발챔버(2)에서 고진공펌프(13)에 이르기까지의 모든 라인에 고진공(1∼5Torr)환경을 조성하여 고진공 증발챔버(2)내의 온도를 0℃∼-20℃까지 하강시키면 고진공 증발챔버(2)내의 액상냉매온도 또한 0℃∼-20℃까지 하강하게 된다. 이때, 냉매 순환펌프(P1)를 작동시키면 냉매 열교환 냉각챔버(3)내에 있는 냉동 냉방목적의 액상냉매가 관로(R4)를 통하여 라디에이터(9)로 보내어지며, 라디에이터(9)의 후방전면에 착설된 팬(F)이 작동하여 대기온도가 30℃일 경우 30℃의 공기가 라디에이터(9)를 통과하는 과정에서 라디에이터(9)내의 0℃∼-20℃의 액상냉매와 열교환하여 5∼10℃ 정도의 적당한 찬공기로 공급되어지며, 30℃의 공기와 열교환한 라디에이터(9)내의 0℃∼-20℃의 액상냉매는 열교환한 만큼 온도가 상승하게 되는데, -20℃에서 -10℃로 또는 0℃에서 10℃로 온도가 상승했다고 가정할 경우에, -20℃에서 10℃로 온도가 상승한 냉매는 액상냉매 순환펌프(P1)에 의해 고진공 증발챔버(2)내의 냉매열교환 냉각챔버(3)에(제2도 참조) 연결된 관로(R1)를 따라 냉매 열교환 냉각챔버(3)저부로 진입하게 되며, 냉매 열교환 냉각챔버(3)저부로 진입한 -10℃의 냉매는 냉매 열교환 냉각챔버(3)내에서 관로(R4)쪽으로 상승하면서 고진공 증발챔버(2)와 냉매 열교환 냉각튜브(5)내에 있는 -20℃의 또 다른 액상냉매와 열교환하여 다시 -20℃로 온도가 하강되어 관로(R4)를 통해 라디에이터(9)로 공급되어지고, 냉매 열교환 냉각챔버(3)내의 -10℃의 냉매와 열교환하여 열교환한 만큼 온도가 상승한 냉매 열교환 냉각튜브(5)속의 냉매가 -20℃에서 -10℃로 온도가 상승했다고 가정할 경우, 냉매 열교환 냉각튜브(5)속의 -10℃로 온도상승한 냉매는 액상냉매 순환펌프(P2)에 의해 관로(R2)를 거쳐 고진공 증발챔버(2)내의 상부에 하향 분무하도록 장치된 분무노즐이 형성된 분무기(7)로 보내어져 분출·분무되어지며 분출·분무된 고진공 증발챔버(2)내의 액상냉매는 1Torr에 달하는 고진공환경에 의해 증발·기화되는 과정에서 잠열(Latent Heat 539kal/l)을 빼앗기게 되고, 잠열을 빼앗긴 고진공 증발챔버(2)내의 분출·분무된 액상냉매는 잠열을 빼앗긴 만큼 온도가 하강하여 다시 -10℃에서 -20℃로 냉각되어지며, -20℃로 다시 냉각된 냉매 열교환 냉각튜브(5)속의 액상 냉매는 라디에이터(9)에서 30℃의 공기와 열교환하여 -20℃에서 -10℃로 온도가 상승한 냉매 열교환 냉각챔버(3)내의 냉매와 열교환 냉각되는 과정을 반복하게 된다.First of all, the vacuum pump 16 of the vacuum oil regeneration supply line operates the high vacuum evaporation chamber 2, the fluid induction molecular pump 11, the high vacuum pump 13 and the vacuum pump 16 to all the lines up to the vacuum environment. After the preparation of the fluid induction molecular pump 11 is completed, the fluid induction molecular pump 11 and the high vacuum pump 13 are operated to operate the high vacuum evaporation chamber 2 to the high vacuum pump 13. By creating a high vacuum (1 to 5 Torr) environment in all lines and lowering the temperature in the high vacuum evaporation chamber (2) to 0 ° C to -20 ° C, the liquid refrigerant temperature in the high vacuum evaporation chamber (2) is also lowered to 0 ° C to -20 ° C. Done. At this time, when the refrigerant circulation pump (P1) is operated, the liquid refrigerant for the purpose of refrigeration cooling in the refrigerant heat exchange cooling chamber (3) is sent to the radiator (9) through the conduit (R4), and installed on the rear front of the radiator (9) If the fan F is operated and the atmospheric temperature is 30 ° C., the air of 30 ° C. passes through the radiator 9 to exchange heat with the liquid refrigerant of 0 ° C.-20 ° C. in the radiator 9 to 5-10 ° C. It is supplied with a suitable cold air of the degree, and the liquid refrigerant at 0 ° C. to −20 ° C. in the radiator 9 heat-exchanged with 30 ° C. air increases as it heat exchanges, from -20 ° C. to −10 ° C. Assuming that the temperature has risen from 0 ° C to 10 ° C, the refrigerant whose temperature has risen from -20 ° C to 10 ° C is cooled by the liquid refrigerant circulation pump P1 in the refrigerant heat exchange cooling chamber 3 in the high vacuum evaporation chamber 2. To the bottom of the refrigerant heat exchange cooling chamber (3) along a conduit (R1) The refrigerant having a temperature of -10 ° C. entering the bottom of the refrigerant heat exchange cooling chamber 3 rises toward the conduit R4 in the refrigerant heat exchange cooling chamber 3 and the high vacuum evaporation chamber 2 and the refrigerant heat exchange cooling tube 5. Heat exchanged with another liquid refrigerant of -20 ° C in the chamber, and the temperature was lowered to -20 ° C and supplied to the radiator 9 through the conduit R4. The refrigerant of -10 ° C in the refrigerant heat exchange cooling chamber 3 was supplied. Refrigerant whose temperature has risen by exchanging heat by heat exchange with the refrigerant Assuming that the temperature of the refrigerant in the heat exchange cooling tube 5 has risen from -20 ° C. to -10 ° C., the refrigerant has risen to -10 ° C. in the refrigerant heat exchange cooling tube 5. Is sprayed and sprayed by a liquid refrigerant circulation pump (P2) to the sprayer (7) formed with a spray nozzle which is arranged to spray downwardly through the pipeline (R2) to the upper portion of the high vacuum evaporation chamber (2). Liquid refrigerant in the high vacuum evaporation chamber (2) reaches 1 Torr The latent heat (Latent Heat 539kal / l) is deprived in the process of evaporation and evaporation by the high vacuum environment. The liquid refrigerant in the refrigerant heat exchange cooling tube (5) cooled from -10 ° C to -20 ° C and cooled back to -20 ° C heat exchanges with air of 30 ° C in the radiator (9) to -10 ° C. The process of exchanging heat and cooling with the refrigerant in the refrigerant heat exchange cooling chamber 3 at which the temperature rises is repeated.

한편, 고진공 증발챔버(2)에서 기화되어 잠열(Latent Heat 539kcal/l)을 흡수한 증발기체는 오버플로방지장치(Overflow Stopper)(10A)를 거쳐 유체 유도 분자펌프(11)를 통하여 고진공펌프(13) 흡입구 직전의 진공유 공급관(R22)에서 공급되는 미량의 진공유와 함께 고진공펌프(13)로 흡입·압축 배기되어 제1배기통(12)으로 배기되게 되는데, 이때 고진공 증발챔버(2)에서 증발한 기체는 고진공 환경으로 냉각된 저온상태에서 고진공펌프(13) 흡입구 직전에 설치된 후술하는 재생진공유 냉각기(28)로부터 공급된 15℃∼20℃의 비교적 높은 온도의 진공유와 함께 고진공펌프(13) 실린더내를 여행하는 동안 일부가 혼합 촉진(온도 차이에 의해)되어 액화되면서 물로 변하여 진공유에 섞이게 되고, 이와 같이 물 또는 기타 불순물이 섞이게 된 순도가 떨어진 진공유는 다시 사용할 경우 실린더 내에서 기화하여 진공도를 떨어뜨리거나 실링(Oil Sealing)기능이 떨어져 고진공을 일으키지 못하므로 고진공 증발챔버(2)내의 고진공 환경을 지속시키지 못하게 된다.Meanwhile, the evaporation gas vaporized in the high vacuum evaporation chamber 2 and absorbing latent heat (Latent Heat 539 kcal / l) is passed through a fluid induction molecular pump 11 through an overflow stopper 10A. 13) The suction and compression exhaust of the high vacuum pump 13 together with a small amount of vacuum oil supplied from the vacuum oil supply pipe R22 immediately before the suction port is exhausted to the first exhaust cylinder 12, in which the high vacuum evaporation chamber 2 The evaporated gas is a high vacuum pump together with a vacuum oil having a relatively high temperature of 15 ° C. to 20 ° C. supplied from a regenerative vacuum sharing cooler 28 described below, which is installed immediately before the inlet of the high vacuum pump 13 at a low temperature cooled by a high vacuum environment. 13) While traveling in the cylinder, some of the mixture is promoted (by temperature difference) to be liquefied and converted into water and mixed in the vacuum oil.The vacuum oil, which has been mixed with water or other impurities, can be used again. Wu drop vaporized in the cylinder to drop the degree of vacuum, or because the sealing (Oil Sealing) feature is located not cause a high vacuum is not able to continue the high vacuum environment within a vacuum evaporation chamber (2).

그러나, 이와 같은 단점들을 개선하기 위해 고안된 진공유 재생공급 시스템의 진공유 재생공급 기능을 살펴보면 다음과 같다.However, the vacuum oil regeneration supply function of the vacuum oil regeneration supply system designed to improve these disadvantages is as follows.

제1배기통(12)으로 배기된 고진공 증발챔버(2)에서 기화된 수분을 포함한 증발기체는 제1배기통(12) 상부 일측에 관로(R11)에 의해 연통된 콘덴서(15)의 상부로 진입하여 콘덴서(15)의 열교환튜브(14)를 거치는 동안 응축액화되어 응축수로 콘덴서(15)저부에 모이게 되고 일부 액화하지 못한 기체는 다시 오버플로방지장치(10B)를 거쳐 진공펌프(16)로 흡입되어 제2배기통(18)으로 배기되어지며, 고진공펌프(13)로부터 제1배기통(12)으로 배출된 물과 기타 불순물들이 혼합된 진공유는 제1배기통(12)과 진공펌프(16) 흡입구 사이의 관로(R15)를 따라 진공펌프(16)로 흡입되어 제2배기통(18)으로 다시 배출되고, 제2배기통(18)에 이르기까지도 액화되지 못한 증발기체는 제2배기통(18)의 최종 배기구(17)를 통하여 대기중으로 배기방출하거나 일부 유독성 가스가 있을 시는 배기정화장치로 보내어지게 되며, 제2배기통(18)의 물과 기타 불순물들이 혼합된 진공유는 진공유 수분증발 챔버(26)내의 진공 흡인력에 의해 진공유 필터(19)를 거쳐 일부 불순물이 제거된 다음, 진공유 가열장치(22)의 일단에서 타단까지 수평하게 내설된 다수의 진공유 가열튜브(20)로 진입하게 되는데(제3도 참조), 이때 진공유는 진공유 가열장치(22)내의 스팀열교환챔버(23)로 투입된 스팀, 열매체유 또는 전열히터 등의 적절한 가열수단에 의하여 진공유 가열장치(22)내의 진공유 열교환튜브를 지나는 동안 100℃ 이상 가열되어진 상태로 진공유 수분증발챔버(26)로 보내어져 수분은 증발·기화하여 관로(R20)를 따라 콘덴서(15)로 흡입되어 콘덴서(15)에서 냉각응축 액화되어 증류수 상태로 콘덴서(15)저부에 모이게 되고, 수분과 불순물이 제거된 진공유 수분 증발챔버(26)내의 재생된 진공유는 진공유 냉각기(28)로 보내어져 15℃∼20℃정도로 냉각되어 재생진공유 공급관(R22)을 통하여 고진공펌프(13)로 필요한 양만큼 재생공급되어 유회전 실링기능을 수행하게 된다.The evaporation gas containing the water vaporized in the high vacuum evaporation chamber 2 exhausted into the first exhaust passage 12 enters the upper portion of the condenser 15 communicated by the conduit R11 on one side of the upper portion of the first exhaust passage 12. During the heat exchange tube 14 of the condenser 15, the condensation liquid is condensed and collected at the bottom of the condenser 15 with condensed water. Partially unliquefied gas is again sucked into the vacuum pump 16 through the overflow prevention device 10B. The vacuum oil which is discharged to the second exhaust cylinder 18 and mixed with water and other impurities discharged from the high vacuum pump 13 to the first exhaust cylinder 12 is disposed between the first exhaust cylinder 12 and the suction port of the vacuum pump 16. The evaporation gas which is sucked into the vacuum pump 16 along the conduit R15 and is discharged back to the second exhaust cylinder 18 and is not liquefied up to the second exhaust cylinder 18 is the final exhaust port of the second exhaust cylinder 18. (17) Exhaust to the atmosphere or exhaust if there are some toxic gases The vacuum oil mixed with water and the other impurities in the second exhaust vessel 18 is removed to some impurities through the vacuum oil filter 19 by the vacuum suction force in the vacuum oil moisture evaporation chamber 26. Next, a plurality of vacuum oil heating tubes 20 horizontally installed from one end to the other end of the vacuum oil heating device 22 are entered (see FIG. 3), wherein the vacuum oil is in the vacuum oil heating device 22. The vacuum oil water evaporation chamber is heated at 100 ° C. or more while passing through the vacuum oil heat exchange tube in the vacuum oil heater 22 by appropriate heating means such as steam, heat medium oil, or electrothermal heater introduced into the steam heat exchange chamber 23. 26), the water is evaporated and vaporized and sucked into the condenser 15 along the pipe line R20. The condensate is cooled and condensed in the condenser 15, and the water is collected at the bottom of the condenser 15 in the form of distilled water. Vacuum oil moisture evaporation The regenerated vacuum oil in the burr (26) is sent to the vacuum oil cooler (28), cooled to about 15 ° C to 20 ° C, and regenerated and supplied as needed by the high vacuum pump (13) through the regeneration vacuum sharing supply pipe (R22). The sealing function will be performed.

한편, 콘덴서 저부의 응축수는 진공압출펌프(8)에 의해 다시 고진공 증발챔버(2)저부로 보충 공급된다.On the other hand, the condensed water at the bottom of the condenser is supplemented and supplied to the bottom of the high vacuum evaporation chamber 2 by the vacuum extrusion pump 8 again.

상술한 본 발명의 구성 및 작용을 토대로 본 발명장치의 작용효과를 살펴보면, 먼저 본 발명의 고진공 냉동 냉방장치는 일정 온도 이하에서만 결빙하는 특수 화합물이 첨가된 물을 냉매로 사용하여 고진공 상태(1∼5Torr)하에 상기 액상냉매를 저온, 즉 0℃∼-20℃까지 액상냉각 가능하며, 기존의 냉동기를 쓰지 않고 -20℃까지 온도를 낮춘다는 것은 고진공 상태(1∼5Torr)가 아니면 거의 불가능하기 때문에, 본 발명에서는 고진공 환경을 만들기 위하여 유회전 실링형 4차곡선 싱글 베인(Single Vane) 고진공펌프(13)를 사용하며, 상기 유회전 실링형 고진공펌프(13)의 지속적인 고진공 기능을 유지하고, 펌프실린더내로 유입되는 물이나 가스상(相) 불순물에 의해 진공유의 순도가 떨어지는 문제점을 보완하기 위하여 상술한 진공유 재생공급 시스템을 이용한다.Looking at the operation and effect of the present invention on the basis of the above-described configuration and operation of the present invention, first, the high vacuum refrigeration cooling apparatus of the present invention is a high vacuum state (1 ~ 1) using water containing a special compound to freeze only a certain temperature is added as a refrigerant Under 5 Torr), the liquid refrigerant can be cooled at low temperature, i.e., 0 ° C. to -20 ° C., and it is almost impossible to lower the temperature to -20 ° C. without using a conventional refrigerator unless it is a high vacuum condition (1 to 5 Torr). In the present invention, the use of a flow sealing sealing four-curve single vane high vacuum pump 13 to create a high vacuum environment, and maintains a continuous high vacuum function of the flow sealing sealing high vacuum pump 13, The above-mentioned vacuum oil regeneration supply system is used to compensate for the problem that the purity of vacuum oil is deteriorated due to water or gas phase impurities introduced into the cylinder.

따라서, 본 발명 장치는 기존의 프레온 가스 또는 암모니아 용액을 냉매로 사용하는 냉동 냉방장치가 가지고 있는 문제점들을 극복하고 비용을 절감시킬 수 있는 장점이 있다.Therefore, the device of the present invention has the advantage of overcoming the problems of the refrigeration cooling device using the existing freon gas or ammonia solution as a refrigerant and reducing the cost.

이상과 같이 작용되는 진공유 재생공급 장치를 이용한 고진공 냉동 냉방장치 및 방법은 필요에 따라 적절한 진공부스터 또는 분자펌프 등을 사용하여 고진공 펌프 기능을 보조할 수 있고 여러 가지 다양한 열교환 수단 및 가열수단을 동원하여 적절한 설계변경으로 대응 적용시킬 수 있는 것으로 본 발명의 요지에 속한 것이며, 동일 분야의 통상의 기술자들이 명확하게 이해할 수 있으리라 사료된다.The high vacuum refrigeration cooling device and method using the vacuum oil regeneration supply device that is operated as described above can assist the high vacuum pump function by using an appropriate vacuum booster or molecular pump as necessary, and mobilize various various heat exchange means and heating means. It can be applied to appropriate design changes to belong to the gist of the present invention, it is believed that those skilled in the art will clearly understand.

Claims (2)

진공유를 재생하여 공급하는 장치를 이용한 고진공 냉동 냉방장치에 있어서, 투입구(1), 밸브(V1) 및 냉매 순환펌프(P1)가 부설되어 있는 관로(R1)를 통하여 유입된 냉동 냉방목적의 냉매가 고진공 증발챔버(2)의 액상 냉매 열교환 냉각챔버(3)안으로 투입되며, 상기 액상냉매 열교환 냉각챔버(3)는 투입구(4)를 통해 유입된 또 다른 열교환용 냉매가 통과하는 다수의 액상냉매 열교환 냉각튜브(5)들이 종설되어 있으며, 상기 열교환 냉각튜브(5)를 가로지르며 일정한 간격으로 다수의 격판(6)이 횡설되어 있으며, 상기 열교환 냉각챔버(3) 하부에는 상기 냉각튜브(5)를 통과하며 열교환된 냉매가 모일 수 있는 공간(S)이 형성되어 있으며, 상기 고진공 증발챔버(2)일측에는 냉매 순환펌프(P2)가 부재되어 있는 관로(R2)가 인출되어 상기 고진공 증발챔버(2)의 상부에서 냉매를 하향 분무하는 다수의 분무노즐이 일정한 간격으로 횡설되어 있는 분무기(7)에 연결되어 있으며, 상기 고진공 증발챔버(2)에는 진공압출펌프(8)가 부재되어 있는 관로(R3)가 인출되어 있으며, 상기 관로(R1)에 의해 흡입된 냉매가 상기 열교환 냉각챔버(3)안에서 열교환되어 유출되는 관로(R4)가 상기 열교환 냉각챔버(3)일측에서 인출되어, 후방전면에 팬(F)이 착설되어 있는 라디에이터(9)에 연결되고, 상기 라디에이터(9)의 하부는 상기 관로(R1)와 순환연결되며, 상기 고진공 증발챔버(2)에는 기화증기가 배출되는 관로(R5)가 인출되어, 하부에 관로(R6)가 인출되고 상기 고진공 증발챔버(2)의 측면상부에 연통되어 있는 오버플로방지챔버(10A)에 연결되어 있으며, 상기 오버플로방지챔버(10A)로부터 인출된 관로(R7)는 유체 유도 분자펌프(11)에 연결되고, 상기 관로(R7)상에는 밸브(V2)가 부재된 관로(R8)가 인출되어 있으며, 상기 유체 유도 분자펌프(11)일측에는 밸브(V3)가 부재되어 있는 관로(R9)가 인출되어 있으며, 상기 관로(R3,R8,R9)는 진공유 재생 공급장치에 연결되어 구성되며; 상기 진공유 재생 공급장치는 제1배기통(12), 유회전 실링형 고진공펌프(13), 콘덴서(15), 오버플로방지챔버(10B), 진공펌프(16), 제2배기통(18), 진공유필터(19), 진공유 가열장치(22), 진공유 수분증발챔버(26) 및 진공유 냉각기(28)로 이루어지는 것으로서, 상기 관로(R8)는 상기 제1배기통(12)에 연결되며, 상기 관로(R9)는 상기 유회전 실링형 고진공펌프(13)에 연결되며, 상기 유회전 실링형 고진공펌프(13)로부터 인출된 관로(R10)는 상기 제1배기통(12)에 연결되고, 상기 제1배기통(12)은 다수의 열교환튜브(14)가 종설되어 있는 콘덴서(15)와 관로(R11)에 의해 서로 연통되어 있으며, 상기 콘덴서(15)로부터 인출된 상기 관로(R3)는 진공압출펌프(8) 및 밸브(V4)가 부재되어 상기 고진공 증발챔버(2)의 일측에 연결되며, 상기 콘덴서(15)로부터 인출된 관로(R12)는 오버플로방지챔버(10B)의 일측에 연결되며, 상기 오버플로방지챔버(10B)는 관로(R13)에 의해 콘덴서(15)의 일측과 연통되어 있으며, 상기 오버플로방지챔버(10B)로부터 인출된 관로(R14)는 밸브(V5)가 부재되어 진공펌프(16)와 연결되며, 상기 관로(R14)상에는 밸브(V6)가 부재되어 있는 관로(R15)가 인출되어 상기 제1배기통(12)의 일측에 연결되며, 상기 진공펌프(16)는 배기구(17)가 형성되어 있는 제2배기통(18)과 관로(R16)에 의해 연결되며, 관로(R17)에 의해 상기 제2배기통(18)과 연결되어 있는 진공유 필터(19)는 진공유가 통과되는 다수의 진공유 가열튜브(20)가 횡설되고 일정한 간격으로 다수의 격판(21)이 종설되어 있는 진공유 가열장치(22)의 일측과 관로(R18)에 의해 연결되며, 상기 진공유 가열장치(22)에는 진공유를 열교환에 의해 가열시키기 위해 스팀 또는 앨매체유가 통과하는 스팀열교환챔버(23)의 유입구(24)와 배출구(25)가 부재되며, 상기 진공유 가열장치(22)의 타측에는 밸브(V7)가 부설되어 있는 관로(R19)가 인출되어 진공유 수분증발챔버(26)내부로 삽입연결되며, 상기 진공유 수분증발챔버(26)는 관로(R20)에 의해 상기 콘덴서(15)와 서로 연결되며, 상기 진공유 수분증발챔버(26)의 일측은 다수의 냉각튜브(27)가 종설되어 있는 진공유 냉각기(28)와 관로(R21)에 의해 연결되며, 열교환용 냉각수 유입구(29) 및 배출구(30)가 형성되어 있는 상기 진공유 냉각기(28)로부터 인출된 관로(R22)는 상기 관로(R9)와 연통되어 구성되는 것을 특징으로 하는 진공유 재생 공급장치를 이용한 고진공 냉동 냉방장치.In a high vacuum refrigeration cooling apparatus using a device for regenerating and supplying vacuum oil, a refrigerant for refrigeration and cooling purposes introduced through a conduit (R1) in which an inlet (1), a valve (V1), and a refrigerant circulation pump (P1) are installed. Is injected into the liquid refrigerant heat exchange cooling chamber 3 of the high vacuum evaporation chamber 2, and the liquid refrigerant heat exchange cooling chamber 3 is a plurality of liquid refrigerants through which another refrigerant for heat exchange introduced through the inlet 4 passes. Heat exchange cooling tubes 5 are arranged in a row, and a plurality of diaphragms 6 are traversed at regular intervals across the heat exchange cooling tubes 5, and the cooling tubes 5 are disposed below the heat exchange cooling chambers 3. A space (S) through which the heat exchanged refrigerant is collected is formed, and at one side of the high vacuum evaporation chamber (2), a conduit (R2) having a refrigerant circulation pump (P2) is drawn out and the high vacuum evaporation chamber ( 2) at the top of A plurality of spray nozzles for spraying the medium downwardly are connected to the sprayer 7 which is laid out at regular intervals, and the high vacuum evaporation chamber 2 has a pipe line R3 without the vacuum extrusion pump 8 therein. In addition, a conduit (R4) through which the refrigerant sucked by the conduit (R1) heat exchanges in the heat exchange cooling chamber (3) and is discharged is drawn out from one side of the heat exchange cooling chamber (3), so that the fan (F) It is connected to the installed radiator (9), the lower portion of the radiator (9) is circulated and connected to the pipe line (R1), the high vacuum evaporation chamber (2) is a pipe (R5) for discharging the vaporized vapor is drawn out, A conduit R7 drawn out from the lower part and connected to the overflow prevention chamber 10A communicating with the upper side of the high vacuum evaporation chamber 2 and drawn out from the overflow prevention chamber 10A. Is connected to the fluid induction molecular pump (11), and A conduit R8 without the valve V2 is drawn out on the conduit R7, and a conduit R9 without the valve V3 is drawn out on one side of the fluid induction molecular pump 11. (R3, R8, R9) are connected to the vacuum oil regeneration supply device; The vacuum oil regeneration supply device includes a first exhaust cylinder 12, a flow sealing high vacuum pump 13, a condenser 15, an overflow prevention chamber 10B, a vacuum pump 16, a second exhaust cylinder 18, It consists of a vacuum oil filter 19, vacuum oil heating device 22, vacuum oil water evaporation chamber 26 and vacuum oil cooler 28, the conduit R8 is connected to the first exhaust pipe (12) The pipe R9 is connected to the flow sealing high vacuum pump 13, and the pipe R10 drawn out from the flow sealing high vacuum pump 13 is connected to the first exhaust pipe 12. The first exhaust pipe 12 is connected to each other by a condenser 15 and a conduit R11 in which a plurality of heat exchange tubes 14 are arranged, and the conduit R3 drawn out from the condenser 15 is vacuumed. An extrusion pump 8 and a valve V4 are absent and connected to one side of the high vacuum evaporation chamber 2, and the conduit R12 drawn from the condenser 15 is an overflow prevention chamber. It is connected to one side of (10B), the overflow prevention chamber (10B) is in communication with one side of the condenser (15) by the conduit (R13), the conduit (R14) withdrawn from the overflow prevention chamber (10B) Is the valve (V5) is absent is connected to the vacuum pump 16, the pipe (R15) with the valve (V6) is drawn on the pipe (R14) is drawn out and connected to one side of the first exhaust pipe (12) The vacuum pump 16 is connected to the second exhaust cylinder 18 in which the exhaust port 17 is formed by the conduit R16, and is connected to the second exhaust cylinder 18 by the conduit R17. The common filter 19 has a plurality of vacuum oil heating tubes 20 through which the vacuum oil passes, and one side of the vacuum oil heating device 22 in which a plurality of diaphragms 21 are arranged at regular intervals. The vacuum oil heating device 22 is connected to the vacuum oil heater 22 through which steam or media oil passes to heat the vacuum oil by heat exchange. The inlet 24 and the outlet 25 of the team heat exchange chamber 23 are absent, and on the other side of the vacuum oil heating device 22, a pipe line R19 on which a valve V7 is attached is drawn out to evaporate vacuum oil moisture. Inserted into the chamber 26, the vacuum oil vapor chamber 26 is connected to the condenser 15 by a conduit (R20), one side of the vacuum oil vapor chamber 26 is a plurality of It is connected to the vacuum oil cooler 28 having a cooling tube 27 connected by a conduit R21, and is withdrawn from the vacuum oil cooler 28 having a heat exchange cooling water inlet 29 and an outlet 30 formed therein. The high-pressure refrigeration cooling device using a vacuum oil regeneration supply device, characterized in that the conduit (R22) is in communication with the conduit (R9). 진공유 재생공급라인의 진공펌프(16)를 작동하여 고진공 증발챔버(2)와 유체 유도 분자펌프(11) 및 고진공펌프(13) 그리고 진공펌프(16)까지에 이르는 모든 라인상에 진공환경을 조성하여 유체 유도 분자펌프(11)의 작동준비를 완료하는 단계; 상기 유체 유도 분자펌프(11)와 고진공펌프(13)를 작동시켜 고진공 증발챔버(2)에서 고진공펌프(13)에 이르기까지 모든 라인에 고진공(1∼5Torr)환경을 조성하여 고진공 증발챔버(2)내의 액상냉매온도가 0℃∼-20℃까지 하강하는 단계; 냉매순환펌프(P1)를 작동시키면 냉매 열교환 냉각챔버(3) 속에 있는 냉동 냉방목적의 액상냉매가 관로(R4)를 통하여 라디에이터(9)로 보내어지며 라디에이터(9)의 후방전면에 착설된 팬(F)의 작동에 의해 대기가 라디에이터(9)를 통과하는 과정에서 라디에이터(9)내의 0℃∼-20℃의 액상냉매와 열교환하여 적당한 찬공기로 공급되어지며, 대기와 열교환한 라디에이터(9)내의 액상냉매가 열교환한 만큼 온도가 상승하여 액상냉매 순환펌프(P1)에 의해 고진공 증발챔버(2)내의 냉매 열교환 냉각챔버(3)저부로 진입하는 단계; 냉매 열교환 냉각챔버(3)저부로 진입한 온도상승된 냉매가 냉매열교환 냉각챔버(3) 상부일측 관로(R4)를 향해 출구쪽으로 상승되면서 고진공 증발챔버(2)내의 냉매열교환 냉각튜브(5)내에 있는 -20℃의 또 다른 액상냉매와 열교환하여 다시 -20℃로 온도가 하강되어 라디에이터(9)로 관로(R4)를 따라 공급되어지는 단계; 냉매 열교환 냉각챔버(3)내의 냉매와 열교환하여 열교환한 만큼 온도가 상승한 냉매 열교환 냉각튜브(5)속의 냉매가 액상냉매 순환펌프(P2)에 의해 고진공 증발챔버(2)내의 상부에 하향분무하도록 장치되어 분무노즐이 형성된 분무기(7)로 보내어져 분출·분무되어지며 분출·분무된 고진공 증발챔버(2)내의 액상냉매는 1∼5Torr에 달하는 고진공환경에 의해 증발·기화되는 과정에서 잠열(Latent Heat 539kal/l)을 빼앗기게 되고, 잠열을 빼앗긴 고진공 증발챔버(2)내의 분출·분무된 액상냉매는 잠열을 빼앗긴 만큼 온도가 하강하여 다시 냉각되어지는 단계; 다시 냉각된 냉매 열교환 냉각튜브(5)내의 액상냉매는 라디에이터(9)에서 대기와 열교환하여 온도가 상승한 냉매 열교환 냉각챔버(3)내의 냉동·냉방목적의 냉매와 열교환하는 과정을 반복하는 단계; 제1배기통(12)으로 배기된 고진공 증발챔버(2)에서 기화된 수분을 포함한 증발기체는 제1배기통(12)상부 일측에 관로(R11)에 의해 연통된 콘덴서(15)의 상부로 진입하여 콘덴서(15)의 열교환튜브(14)를 거치는 동안 응축액화되어 응축수로 콘덴서(15)저부에 모이게 되는 단계; 일부 액화하지 못한 기체는 다시 오버플로방지장치(10B)를 거쳐 진공펌프(16)로 흡입되어 제2배기통(18)으로 배기되어지는 단계; 고진공펌프(13)로부터 제1배기통(12)으로 배출된 물과 기타 불순물들이 혼합된 진공유는 제1배기통(12)과 진공펌프(16)흡입구 사이의 관로(R15)를 따라 진공펌프(16)로 흡입되어 제2배기통(18)으로 다시 배출되는 단계; 제2배기통(18)에 이르기까지도 액화되지 못한 증발기체는 제2배기통(18)의 최종 배기구(17)를 통하여 대기중으로 배기방출하거나 일부 유독성 가스가 있을 시는 배기정화장치로 보내어지게 되는 단계; 제2배기통(18)의 물과 기타 불순물들이 혼합된 진공유는진공유 수분증발챔버(26)내의 진공 흡인력에 의해 진공유 필터(19)를 거치면서 일부 불순물이 제거된 다음, 진공유 가열장치(22)의 일단에서 타단까지 수평하게 내설된 다수의 진공유 가열튜브(20)로 진입하게 되는데, 이때 진공유는 진공유 가열장치(22)내의 스팀열교환챔버(23)로 투입된 스팀 또는 열매체유 또는 전열히터와 같은 적절한 가열수단에 의하여 진공유 가열장치(22)내의 진공유 열교환튜브를 지나는 동안 100℃ 이상 가열되어진 상태로 진공유 수분증발챔버(26)로 보내어져 수분은 증발·기화하여 콘덴서(15)로 흡입되어 콘덴서(15)에서 냉각응축 액화되어 증류수 상태로 콘덴서(15)저부에 모이는 단계; 수분과 불순물이 제거된진공유 수분증발챔버(26)내의 재생된 진공유는 수위차에 의하여 진공유 냉각기(28)로 보내어져 냉각되어 재생진공유 공급관(R22)을 통하여 고진공펌프(13)로 필요한 양만큼 재생공급되어 유회전 실링기능을 수행하는 단계; 콘덴서 저부의 응축수는 진공압출펌프(8)에 의해 다시 고진공 증발챔버(2)저부로 보충 공급되는 단계로 이루어지는 것을 특징으로 하는 진공유 재생 공급장치를 이용한 고진공 냉동 냉방방법.The vacuum pump 16 of the vacuum oil regeneration supply line is operated to generate a vacuum environment on all lines from the high vacuum evaporation chamber 2 to the fluid induction molecular pump 11, the high vacuum pump 13, and the vacuum pump 16. Composition to complete operation preparation of the fluid induction molecular pump 11; By operating the fluid induction molecular pump 11 and the high vacuum pump 13 to create a high vacuum (1 to 5 Torr) environment in all lines from the high vacuum evaporation chamber 2 to the high vacuum pump 13 to the high vacuum evaporation chamber 2 Liquid refrigerant temperature in the step of) to 0 ° C to -20 ° C; When the refrigerant circulation pump P1 is operated, the liquid refrigerant for refrigeration and cooling purposes in the refrigerant heat exchange cooling chamber 3 is sent to the radiator 9 through the conduit R4, and a fan installed on the rear surface of the radiator 9 ( In the process of passing the air through the radiator 9 by the operation of F), it heat-exchanges with the liquid refrigerant of 0 degreeC--20 degreeC in the radiator 9, and is supplied to a suitable cold air, and the radiator 9 which heat-exchanged with air | atmosphere Temperature rises as the liquid refrigerant in the heat exchanger enters into the refrigerant heat exchange cooling chamber (3) bottom in the high vacuum evaporation chamber (2) by the liquid refrigerant circulation pump (P1); In the refrigerant heat exchange cooling tube (5) in the high vacuum evaporation chamber (2) as the elevated temperature refrigerant entering the bottom of the refrigerant heat exchange cooling chamber (3) rises toward the outlet toward the upper one side (R4) of the refrigerant heat exchange cooling chamber (3). Heat-exchanging with another liquid refrigerant having a temperature of -20 ° C and again lowering the temperature to -20 ° C to supply the radiator 9 along the conduit R4; Refrigerant heat exchanger The refrigerant in the refrigerant heat exchange cooling tube (5) whose temperature rises as it exchanges heat with the refrigerant in the cooling chamber (3) is sprayed downward on the upper portion of the high vacuum evaporation chamber (2) by the liquid refrigerant circulation pump (P2). The liquid refrigerant in the high vacuum evaporation chamber (2) ejected and sprayed is sent to the atomizer (7) in which the spray nozzle is formed, and the latent heat in the process of evaporating and evaporating by the high vacuum environment of 1 to 5 Torr. 539 kal / l), and the liquid refrigerant ejected and sprayed in the high vacuum evaporation chamber (2) from which the latent heat is deprived is cooled down again as the temperature is lowered as the latent heat is deprived; Re-cooling the liquid refrigerant in the cooled refrigerant heat exchange cooling tube (5) and heat exchange with the atmosphere in the radiator (9) to repeat the heat exchange process with the refrigerant for refrigeration and cooling purposes in the refrigerant heat exchange cooling chamber (3), the temperature of which is raised; The evaporation gas containing the water vaporized in the high vacuum evaporation chamber 2 exhausted into the first exhaust passage 12 enters the upper portion of the condenser 15 communicated by the conduit R11 on one side of the upper portion of the first exhaust passage 12. Condensing the liquid through the heat exchange tube 14 of the condenser 15 and collecting the condensed water at the bottom of the condenser 15; Some of the gas which has not been liquefied is again sucked into the vacuum pump 16 via the overflow preventing device 10B and exhausted into the second exhaust cylinder 18; The vacuum oil mixed with water and other impurities discharged from the high vacuum pump 13 to the first exhaust cylinder 12 is vacuum pump 16 along the conduit R15 between the first exhaust cylinder 12 and the suction port of the vacuum pump 16. Suctioned into the outlet and discharged back into the second exhaust container 18; The vaporized gas which has not been liquefied even up to the second exhaust cylinder 18 is exhausted to the atmosphere through the final exhaust port 17 of the second exhaust cylinder 18 or sent to the exhaust purification apparatus when there is some toxic gas; The vacuum oil mixed with water and other impurities in the second exhaust vessel 18 is removed some impurities while passing through the vacuum oil filter 19 by the vacuum suction force in the vacuum shared moisture evaporation chamber 26, and then the vacuum oil heater A plurality of vacuum oil heating tubes 20 horizontally installed from one end to the other end of the 22 enters, wherein the vacuum oil is steam or thermal oil introduced into the steam heat exchange chamber 23 in the vacuum oil heating device 22. Or, by passing through the vacuum oil heat exchange tube in the vacuum oil heating device 22 by an appropriate heating means such as an electric heater, it is sent to the vacuum oil moisture evaporation chamber 26 while being heated at 100 ° C. or higher to condense and vaporize the condenser. Sucked into 15 and liquefied by condensation in the condenser 15 to be collected at the bottom of the condenser 15 in the form of distilled water; The regenerated vacuum oil in the vacuum shared moisture evaporation chamber 26 from which moisture and impurities have been removed is sent to the vacuum oil cooler 28 by the level difference and cooled to the high vacuum pump 13 through the regenerated vacuum shared supply pipe R22. Regenerating and supplying the required amount to perform the flow sealing function; The condensed water at the bottom of the condenser is supplemented and supplied to the bottom of the high vacuum evaporation chamber (2) by the vacuum extrusion pump (8).
KR1019940028543A 1994-11-01 1994-11-01 High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus KR0145551B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940028543A KR0145551B1 (en) 1994-11-01 1994-11-01 High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940028543A KR0145551B1 (en) 1994-11-01 1994-11-01 High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus

Publications (2)

Publication Number Publication Date
KR960018428A KR960018428A (en) 1996-06-17
KR0145551B1 true KR0145551B1 (en) 1998-08-17

Family

ID=19396851

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940028543A KR0145551B1 (en) 1994-11-01 1994-11-01 High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus

Country Status (1)

Country Link
KR (1) KR0145551B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138599A (en) * 2015-05-26 2016-12-06 윤인거 Absorption refrigeration type airconditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376220B1 (en) * 1999-04-21 2003-03-15 서명희 Heating and cooling device by using a boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138599A (en) * 2015-05-26 2016-12-06 윤인거 Absorption refrigeration type airconditioner

Also Published As

Publication number Publication date
KR960018428A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
CA2629713A1 (en) Multi-stage hybrid evaporative cooling system
CN100408953C (en) Cryogenic condensation system
US3316727A (en) Absorption refrigeration systems
KR0145551B1 (en) High vacuum refrigerating apparatus nd method using vacuum oil regenerating supplying apparatus
JP3515998B2 (en) Mechanical compressor
CN208751090U (en) Using the refrigeration system of thermal siphon oil return
KR20030088106A (en) Drying machine using heat pump system
CN204555447U (en) Pre-cold mould evaporative condenser
JPH08121911A (en) Absorption refrigerating machine utilizing engine exhaust heat
CN101666567A (en) Liquid-reservoir type steam-liquid heat exchanging device and heat exchanging system using device
JPH06189727A (en) Vacuum cooler
JP3745102B2 (en) Adsorption type refrigerator
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
JP3801232B2 (en) Intake air cooling system for gas turbine
JP2002106359A (en) Natural gas generating and turbine generating system
CN107490206A (en) Transpiration-cooled centrifugal refrigerating machines and its system
SU1134855A1 (en) Refrigerating unit
KR200339686Y1 (en) Drying machine using heat pump system
JPS581346B2 (en) Heat exchange device for heat pump equipment
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JP3554745B2 (en) Refrigerator cooling system
KR100189625B1 (en) Defroster and its method of a refrigerator
JPH06281307A (en) Vacuum ice maker
KR20020023284A (en) Absorbent Circulation Cooling Unit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030506

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee