KR0145306B1 - 영상 신호에 기초를 두고 자동노출조정을 행하는 오토아이리스 기능을 갖춘 촬상 장치 - Google Patents

영상 신호에 기초를 두고 자동노출조정을 행하는 오토아이리스 기능을 갖춘 촬상 장치

Info

Publication number
KR0145306B1
KR0145306B1 KR89006831A KR890006831A KR0145306B1 KR 0145306 B1 KR0145306 B1 KR 0145306B1 KR 89006831 A KR89006831 A KR 89006831A KR 890006831 A KR890006831 A KR 890006831A KR 0145306 B1 KR0145306 B1 KR 0145306B1
Authority
KR
South Korea
Prior art keywords
value
exposure
means
evaluation value
sampling
Prior art date
Application number
KR89006831A
Other languages
English (en)
Other versions
KR900019472A (ko
Inventor
겐이찌 기꾸찌
마사오 다꾸마
도시노부 하루끼
Original Assignee
이우에 사또시
상요 덴기 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12453488 priority Critical
Priority to JP12453388 priority
Priority to JP63-124533 priority
Priority to JP63-124534 priority
Priority to JP63150575A priority patent/JP2645859B2/ja
Priority to JP15057488 priority
Priority to JP63-150574 priority
Priority to JP63-150575 priority
Priority to JP63-193027 priority
Priority to JP63193027A priority patent/JP2547619B2/ja
Application filed by 이우에 사또시, 상요 덴기 가부시끼가이샤 filed Critical 이우에 사또시
Publication of KR900019472A publication Critical patent/KR900019472A/ko
Application granted granted Critical
Publication of KR0145306B1 publication Critical patent/KR0145306B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/235Circuitry or methods for compensating for variation in the brightness of the object, e.g. based on electric image signals provided by an electronic image sensor
    • H04N5/2351Circuitry for evaluating the brightness variations of the object

Abstract

내용 없음

Description

영상 신호에 기초를 두고 초점을 자동 정합을 행하는 오토포커스 기능을 갖춘 촬상 장치

제1도는 본 발명의 한 실시예인 오토포커스/오토아이리스 장치를 개략적으로 도시한 블럭도.

제2도는 촬상 화면상의 샘플링 영역의 설정 상태를 모식적으로 도시한 도면.

제3도는 오토포커스/오토 아이리스 동작의 메인 루틴을 도시한 플로우챠트.

제4도 및 제5도는 본 발명의 아이리스 동작의 루틴을 도시한 플로우챠트.

제6도는 감마 보정치의 설정 동작을 도시한 플로우챠트.

제7도, 제8도 및 제9도는 본 발명의 노출 조정 동작을 설명하는 특성도.

제10도 및 제11도는 본 발명의 감마 보정 동작을 설명하는 특성도.

제12도는 주요 피사체의 이동 상태를 모식적으로 도시한 도면.

제13도는 노출 평가치의 위치 변환 루틴을 도시한 플로우챠트.

제14도는 본 발명의 다른 실시예인 아이리스 동작의 루틴을 도시한 플로우챠트.

제15도는 제14도의 오토 아이리스 동작에 관한 대상 평가치 산출 루틴을 도시한 플로우챠트.

제16도 및 제17도는 제15도의 대상 평가치 산출 루틴에 관한 평가치의 가중 변화를 도시한 도면.

제18도는 대상 평가치 산출 루틴의 다른 예를 도시한 플로우챠트.

제19도 및 제20도는 제18도의 대상 평가치 산출 루틴에 관한 노출 평가치의 가중 변화를 도시한 도면.

*도면의 주요 부분에 대한 부호의 설명

1:비디오 카메라 2:포커스 렌즈

2:포커스 링 4:포커스 모터

6:조리개 기구 7:아이리스 모터

8:촬상 회로 9:고역 통과 필터(HPF)

13:절환 제어 회로 14:절환회로

15:선택 회로 16,17,18,19,20,21:적산회로

22:A/D 변환기 23:가산기

24:메모리 회로 26:마이크로컴퓨터

27:포커스 모터 제어 회로 28:아이리스 모터 제어 회로

본 발명은 촬상 장치에 관한 것으로 특히, 촬상 소자에서 얻어지는 영상 신호에 기초를 두고 노출 조정을 자동적으로 행하는 오토 아이리스(iris) 기능을 갖춘, 예를 들면 비디오 카메라와 같은 촬상 장치에 관한 것이다.

종래, 예를들면 비디오카메라와 같은 촬상 장치에 있어서는, 피사체에 대해서 적절한 명도, 즉 촬상 휘도신호 레벨을 얻는 일이 중요하다. 이와 같은 휘도 신호 레벨로서는, 화면내에서 평균 명도, 즉 촬상 휘도 신호의 절대적 레벨, 및 콘트라스트, 즉 상대 레벨이 있다.

전자는 렌즈의 광학 조리개의 조정, 또는 영상신호의 증폭이득의 제어 등의 노출 조정 동작에 의해 조정되고, 후자는 감마(γ)보정 기구에 의해 조정된다.

더욱 상세하게 설명하면, 비디오카메라등의 촬상 장치에 있어서는, 촬상 영상신호에 자동적으로 노출을 조정하는 기능, 즉 오토 포커스 기능에 기초를 두고 있는 아이리스 기능을 갖춘것이 실용화되고 있다. 이와 같은 종래의 오토 아이리스 방식으로서는, 주로 렌즈의 광학 조리개 조정에 의해서 기구적으로 노출 조절을 행하는 방식과, 및 촬상 영상신호의 레벨을 증폭하는 증폭기의 증폭을 조정에 의해서 전기적으로 노출조정을 행하는 방식의 2종류가 있다.

그러나, 이와 같은 종래의 오토 아이리스 방식으로는, 예를들면 화면내에 광원등의 고휘도 부분을 포함할 경우에는, 조기개량이 증대해서 화면 전체의 이득이 떨어지고, 주요 피사체의 명도가 불충분하게 되며, 반대로 배경이 매우 어두운 경우에는, 조리개량이 떨어져서 화면전체의 이득이 올라가고, 주요 피사체가 너무 밝아진다는 문제점이 있었다.

그래서, 이와 같은 문제점을 해결하기 위한 노출 보정 방법이 일본국 특허 공개(소)제62-110,369호 공보에 제안되어 있다. 이 노출 보정 방법의 경우, 주요 피사체는 화면의 중앙에 배치된다는 것을 감안하여, 화면을 중앙영역과 주변영역의 2개 여역으로 분할하고, 각각의 영역에서 촬상 영상 신호의 신호 레벨을 평가치로서 검출하며, 주변 영역의 평가치에 대해서 중앙 영역의 평가치에 소정의 가중(加重)을 한다(최대의 경우에는, 중앙영역1에 대해서 주변 영역 0). 그리고, 양쪽 평가치의 비에 따라서, 광학적으로 조리개량 및 영상신호의 증폭 이득을 제어함으로써, 노출 결정에 대한 화면 중앙 영역에 기여도를 증가시키고 있다.

한편, 상술한 감마 보정에 관해 더욱 상세하게는 설명하면, 일반적으로 피사체 휘도의 다이나믹(dynamic) 범위(약 10dB)에 대해서, 현재의 촬상 소자의 다이나믹 범위는 매우 작고(대개 40dB), CRT등의 표시 장치는 이와 같거나 또는 더 작다(약 30내지 40dB 정도). 이로 인해, 화면의 명도, 즉 휘도신호의 절대 레벨만을 제어하는 것으로는 화면의 고휘도부에서의 포화 또는 저 휘도부에서의 검은 부분이 생겨서, 피사체 전체에 대해 적합한 명도를 얻기 힘들다.

통상적으로, 촬상 장치는, 촬상 장치의 광전 변환 특성 (감마 특성)과 표시장치의 비 선형 광전 변환 특성에 기초를 두고, 촬상 소자에서 표시 장치까지를 포함하는 시스템 전체의 총합 감마 특성이 항상 1이 되도록 카메라측 회로에서 휘도신호의 감마 보정을 행하도록 되어있다.

그러나, 상술한 바와 같이, 화면 중앙 영역을 우선영역으로서 노출조정을 행하고, 화면 중앙부에 있는 주요 피사체에 대해 항상 가장 적합한 노출을 얻으며, 화면 중앙과 주변부사이에 현저하게 휘도차가 있는 경우에는 다음과 같은 문제가 생긴다. 즉, 중앙부가 주변부에 비해 상대적으로 상당히 밝은 경우에, 이 중앙부를 제일 적합한 휘도 레벨로 제어하면, 주변부의 비-우선부는 상당한 노출부족 현상이 발생하고, 반대로 중아부가 주변부에 비해 상대적으로 상당히 어두운 경우에, 이 중앙부를 가장 적합한 휘도 레벨로 제어하면, 주변부의 비-우선부는 상당한 노출 과다 현상이 발생된다.

또한, 우선 영역내의 휘도 레벨이 매우 작은 경우에는, S/N비가 열화하여, 잡음의 영향에 의한 휘도 레벨의 변동이 자주 발생되기 때문에, 노출 제어가 불안정하게 된다는 문제가 있었다.

그러므로, 본 발명의 목적은 화면내에 발생된 노출 과다 현상 또는 노출 부족 현상을 경감할 수 있는 촬상장치를 제공하기 위한 것이다.

본 발명의 다른 목적은 휘도 레벨이 작을 때라도, 잡음등의 영향을 받지 않고 안정된 노출 제어을 행할 수 있는 촬상 장치를 제공하기 위한 것이다.

본 발명의 또 다른 목적은, 자동 노출 제어를 다시 보정해서, 고 휘도부의 노출 과다 현상 및 저 휘도부의 노출 부족 현상을 방지하는 감마 보정이 가능한 촬상 장치를 제공하기 위한 것이다.

본 발명을 요약하면, 피사체에 대해서 노출의 자동조정을 행하는 촬상 장치로서, 렌즈와 촬상 소자를 갖고 있는 피사체로 부터의 입사광에 따라서 영상신호를 발생시키는 촬상회로, 피사체에 대한 노출을 변경하는 장치, 영상 신호의 시분활에 의해서 촬상 화면상에 분할된 샘플링 영역을 설정하는 회로, 다수의 샘플링 영역의 각각의 영상 신호의 휘도 신호 레벨을 검출해서, 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출회로, 다수의 샘플링 영역의 어느 것인가를 노출제어를 위한 우선 영역으로서 선택하고, 선택된 영역의 노출 평가치에 기초를 두고 촬상 화면 전체에 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출회로, 대상 평가치가 소정의 목표 휘도 레벨에 접근하도록, 노출 변경 장치를 제어하는 노출 제어 회로, 및 대상 평가치 및 우선 영역 이외의 다른 샘플링 영역의 노출 평가치의 관계에 따라서, 목표 휘도 레벨을 변화시키는 회로를 갖추고 있다.

본 발명의 다른 면에 따르면, 피사체에 대해서 노출의 자동 조정을 행하는 촬상장치는, 렌즈와 촬상 소자를 갖고 있는 피사체로 부터의 입사광에 따라서 영상신호를 발생시키는 촬상회로, 피사체에 대한 노출을 변경하는 장치, 영상 신호의 시분할에 의해 촬상 화면상에 분할된 다수의 샘플링 영역을 설정하는 회로, 다수의 샘플링 영역의 각각의 영상신호의 휘도 신호 레벨을 검출해서 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출회로, 다수의 샘플링 영역들 중 한 영역을 노출 제어를 위한 우선 영역으로서 선택하고, 선택된 영역의 노출 평가치를 다른 영역의 노출 평가치에 대해서 소정의 가중을 하거나, 이들이 노출 평가치에 기초를 두고 촬상 화면 전체에 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출 회로, 및 대상 평가치가 소정의 목표 휘도 레벨에 접근하도록 노출 변경장치를 제어하는 노출 제어회로 대상 평가치 및 우선 영역 이외의 다른 샘플링 영역의 노출 평가치와의 관계에 따라서, 가중량을 변화시키는 회로를 갖추고 있다.

본 발명의 또 다른면에 따르면, 피사체에 대해서 노출의 자동 조정을 행하는 촬상 장치는, 렌즈 및 촬상소자를 갖고 있는 피사체로 부터의 입사광에 따라서 영상 신호를 발생시키는 촬상 회로, 피사체에 대한 노출을 변경하는 장치, 영상신호의 시분할에 의해 촬상 화면상에 분할된 다수의 샘플링 영역을 설정하는 회로, 다수의 샘플링 영역의 각각의 영상 신호의 휘도 신호 레벨을 검출해서, 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출 회로, 노출 평가치 검출회로에서 공급되는 노출 평가치를 소정의 기준치와 비교해서, 노출 평가치가 기준치보다도 작을 때에는 이 노출 평가치를 이미 정해진 고정치로 치환하는 회로, 다수의 샘플링 영역들중 한 영역을 노출 제어를 위한 우선 영역으로서 선택하고, 선택된 영역의 노출 평가치에 기초를 둘고 촬상 화면 전체를 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출회로 및 대상 평가치가 소정의 목표 휘도 레벨에 접근하도록 노출 변경장치를 제어하는 노출 제어회로를 갖추고 있다.

본 발명의 또 다른면에 따르면, 피사체에 대해서 노출의 자동 조정을 행하거나, 영상 신호의 감마 보정을 자동저으로 행하는 촬상 장치는 렌즈 및 촬상 소자를 갖고 있는 피사체로 부터의 입사광에 따라서 영상 신호를 발생시키는 촬상 회로, 피사체에 대한 노출을 변경하는 장치, 영상 신호의 시분할에 의해 촬상 화면상에 분할된 다수의 샘플링 영역을 설정하는 회로, 다수의 샘플링 영역의 각각의 영상 신호의 휘도 신호 레벨을 검출해서, 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출회로, 다수의 샘플링 영역들중 한 영역을 노출 제어를 위한 우선 영역으로서 선택하고, 전체의 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출 회로, 대상 평가치가 소정의 목표 휘도 레벨에 접근하도록 노출 변경 장치를 제어하는 노출 제어회로, 노출평가치 검출 회로에서 공급되는 노출 평가치에 기초를 두고 촬상 화면의 콘트라스트를 나타내는 값을 산출하는 회로, 콘트라스트를 나타내는 값에 기초를 두고 감마 보정치를 결정하고, 이 감마 보정치에 의해 영상신호에 대해서 감마 보정을 행하는 회로, 및 대상 평가치 및 우선 영역 이외의 다른 샘플링 영역의 노출 평가치와의 관계에 따라서 감마 보정치를 변경하는 회로를 갖추고 있다.

본 발명의 주요 잇점은, 우선 영역의 휘도 레벨과 비우선 영역의 휘도 레벨의 관계에 기초를 두고, 노출 조정의 목표 휘도 레벨을 변화시킴으로써, 화면내의 노출 과다 현상 및 노출 부족 현상을 경감할 수 있다는 것이다.

본 발명의 또 다른 잇점은, 우선 영역의 휘도 레벨과 비우선 영역의 휘도 레벨의 관계에 기초를 두고, 우선 영역의 노출 평가치의 가중량을 변화시킴으로써, 화면내의 노출 과다 현상 및 노출 부족 현상을 경감할 수 있다.

본 발명의 또 다른 잇점은, 각 샘플링 영역의 노출 평가치 중에 가장 작은 값이 있으면, 이를 미리 고정치로 치환해 둠으로써, 이 가장 작은 노출 평가치의 잡음이 노출 조정에 영향을 미치는 것을 방지할 수 있다는 것이다.

본 발명의 또 다른 잇점은, 우선 휘도 레벨과 비우선 영역의 휘도 레벨의관계에 기초를 두고 감마 보정치를 변화시킴으로써, 화면내의 노출 과다 현상 및 노출 부족 현상을 경감할 수 있다.

이하, 첨부 도면을 참조하여 본 발명에 대해서 상세하게 설명하겠다.

제1도는 본 발명의 한 실시예인 오토포커스/오토아이리스 장치를 개략적으로 도시한 블럭도이다. 제1도에 있어서, 비디오 카메라부(1)은, 포커스 렌즈(2), 및 포커스 렌즈(2)를 지지하고 이를 광축 방향으로 진퇴시키는 포커스링(3), 이 포커스링(3)을 구동하는 포커스 모터(4), 노출을 제어하기 위한 조리개 기구(6), 이 조리개 기구(6)을 구동하는 아이리스 모터(7), 및 피사체로 부터의 입사광을 촬상 영상 신호로 변환하는 고체 촬상 소자를 갖고 있는 촬상 회로(8)을 갖추고 있다.

촬상 회로(8)에 의해 얻어지는 영상 신호중 휘도 신호는 고욕 통과 필터(HPF)9), 저역 통과 필터(LPF)(11), 및 동기 분리 회로(12)에 부여된다.

동기 분리 회로(12)에 의해 휘도신호에 분리된 수직 동기 신호(VD) 및 수평 동기 신호(HD)는 샘플링 영역을 설정하기 위한 절환 제어 회로(13)에 공급된다. 이 절환 제어 회로(13)은, 수직 및 수평의 각 동기신호(VD, HD 및 CCD)를 구동시키는 클럭으로 되는 발진기(도시하지 않음)의 고정 출력에 기초를 두고, 제2도에 도시된 바와 같이, 화면 중앙의 장방형인 제1 샘플링 영역(a1), 이 영역(a1)을 포함하고, 면적이 영역(a1)의 4배인 제2 샘플링 영역(a2), 이 영역(a2)의 주위에 제2 샘플링 영역(a2), 이 영역(a2)의 주위의 제3 내지 제6 샘플링 영역(a3, a4, a5 및 a6)을 설정하도록 선택신호(S2)를 출력하여 후단의 선택회로(15)에 부여한다. 또한, 절환 제어회로(13)은, HPF(9)의 출력과 LPF(11)의 출력을 선택하기 위한 절환 신호(S1)을 출력해서 절환회로(14)에 부여한다.

이 결과, 절환회로(14)는 절환 신호(S1)을 받아, 예를 들면 31필드마다 제 1 HPF(9) 출력을 선택해서 후단의 선택회로(15)로 출력하고, 32필드에 1번만 LPF(11) 출력을 선택해서 선택 회로(15)에 부여한다.

한편, 선택 회로(15)는, 절환회로(14)에서 선택된 출력을, 절환 제어 회로(13)에서의 선택신호(S2)에 응답해서, 각 샘플링 영역에 대응하는 적산회로(16,17....,21)에 선택적으로 부여한다. 즉, 제1 샘플링 영역(a1)에 관한 각 필터 출력은 적산회로(16)에, 제2 샘플링 영역(a2)에 관한 각 필터 출력은 적산회로(17)에, 이하 동일하게 제3 내지 제6 샘플링 영역(a3, a4, a5 및 a6)에 관한 각 필터 출력은, 각각 적산회로(18,19,20 및 21)에 부여한다.

적산회로(16)은 A/D 변환기(22), 가산기(23), 메모리회로(24)로 구성되고, a/D 변환기(22)는 선택 회로(15)를 통과해 오는 필터 출력을 차례로 A/D 변환해서, 가산기(23)에 부여한다. 가산기(23)은 전단의 A/D 변환기(22)와 후단의 메모리 회로(24)와 함께 디지탈 적분기를 구성하고 있고, 메모리 회로(24)의 출력과 A/D 변환기(22)의 출력을 가산해서, 그 가산 결과를 메모리 회로(24)에 공급한다.

메모리 회로(24)는, 필드마다 리셋트되고, 따라서, 가산기(23)의 출력, 즉 필터를 거친 제1 샘플링 영역(a1)에 대해서 휘도신호 레벨의 디지탈 변환치의 1필드분을 보존한다.

적산회로(17,18,....,21)에 대해서도, 적산회로(16)과 모두 동일한 구성을 갖고 있고, 따라서 적산회로의 각각에 내장되는 메모리 회로에는, 각가의 샘플링 영역에 관해서 현 필드에 있어서 선택되고 있는 필터를 통과한 휘도신호 레벨의 1필드분에 대해서 적분치가 보존되게 된다. 이들 각 메모리 회로의 적분치는, 또한 후단의 메모리 회로(25)에 부여되어 거기에 일괄해서 기억된다.

HPF(9)는 200 KHz - 2.4 MHz 의 대역을 통과시키고, LPF(11)은 0-2.4MHz의 대역을 통과시키도록 설계되어 있다.

이 2.4MHz는 휘도 신호와는 그다지 관계가 없는 극히 높은 주파수이고, 따라서 LPF(11)에 대해서는 무시할 수 있다.

따라서, HPF(9), 및 LPF(11)의 어느 것을 통과한 휘도 신호의 고역 또는 저역 성분이, 1필드분에 대해서 디지탈적으로 적분되고, 각 샘플링 영역마다 현 필드의 평가치로서 메모리 회로(25)에 기억되게 한다. 여기에서, 메모리 회로(25)에 기억되고 있는 적분치 중, LPF(11)이 선택된 각 필드에 있어서의 저역 성분의 적분치는 노출 제어용의 노출 평가치로서, 또한 HPF(9)가 선택된 각 필드에 있어서의 고역 성분의 적분치는 포커스 제어용의 초점 평가치로서, 후단의 마이크로컴퓨터(26)에 의해 연산 처리된다.

이들 평가치는, 마이크로컴퓨터(26)에 의해 소프트웨어적으로 처리되고, 이 처리 결과에 기초를 두고 마이크로컴퓨터(26)은 포커스 모터 제어 회로(27)에 지령을 발생시켜서, 포커스 모터(4)를 구동시켜 포커스 렌즈(2)를 진퇴시키고, 초점 평가치가 최대로 되게 오토포커스 동작을 실행한다. 또한, 마이크로컴퓨터(26)은 아이리스 모터 제어 회로(28)에도 지령을 발생시켜, 아이리스 모터(7)을 구동시켜 조리개 기구(6)을 작동시켜서, 노출 평가치가 소정치로 되도록 자동 조정을 실행한다.

다음으로, 제3도의 플로우챠트를 참조하여, 마이크로 컴퓨터(26)에 의한 오토포커스 동작 및 오토 아이리스(자동노출조정) 동작의 메인루틴에 대해서 설명한다.

비디오 카메라가 동작 상태로 되면, 마이크로 컴퓨터(26)은 우선 제3도의 메인 루틴을 실행한다.

우선, 스텝(30)에서 각 샘플링 영역에 대해서 현상태의 1필드분의 적분치가 메모리 회로(25)에서 마이크로 컴퓨터(26)내에 독입된다.

다음으로, 오토포커스 동작과 오토 아이리스 동작을 시분할로 행하도록 설치된 카운터 AECNT의 카운트값을 감소, 즉 1만큼 감산하고(스텝 32), 카운트 값이 0인지의 판정을 행한다(스텝 33). 그리고, 카운트값이 0이 아니면, 오토포커스 동작을 실행하고, 카운트 값이 0인 때만 오토 아이리스 동작을 실행한다.

이 오토포커스 동작은, HPF(9)의 출력 적분치인 초점평가치에 기초를 두고 포커스 렌즈(2)를 합초 위치에 보존하기 위한 오토포커스 루틴(스텝 35)를 실행함으로써 행해진다.

더욱 상세하게 설명하면, 오토포커스루틴 실행중에는, HPF(9)가 선택된 때의 제1 및 제2 샘플링 영역(a1,a2)의 적분치 DaTa(1), DATA(2)가 현 필드에서의 각 영역의 초점 평가치 X(1), 및 X(2)로서 취출된다. 그리고, 우선 포커스 영역으로서 제1 샘플링 영역(a1)을 지정하고, 포커스 모터(4)를 구동시켜서 포커스 렌즈(2)를 광축 방향으로 변위시키면서, 지정된 제1 샘플링 영역(a1)에서의 초점 평가치 X(1)이 갱신될 때마다, 현 필드에서의 초점 평가치와 전 필드에서의 초점 평가치를 비교한다. 그리고, 이 초점 평가치가 커지는 방향으로 포커스 모터(4)의 회전을 지속하고, 산의 정점, 즉 초점 평가치가 최대치로 되는 위치를 검출한다. 이 위치에 렌즈가 도달하는 곳을 합초 위치로 판단해서 포커스 모터(4)를 정지시키고, 포커스 렌즈(2)의 위치를 고정시켜서 합초 동작을 완료하다.

또한 산 정점의 검츨 동작시에, 무한 원점에서 근점까지 렌즈 위치가 변했음에도 불구하고, 제1 샘플링 영역(a1)에서 초점 평가치 X(1)에 명확한 극대점이 검출되지 않고, 제2 샘플링 영역(a2)에서 초점 평가치 X(1)의 최대치쪽이, 제1 샘플링 영역(a1)에서의 초점 평가치 X(1)의 최대치보다도, 즉 단위 면적당보다 큰 경우에는, 제2 샘플링 영역(a2)를 포커스 영역으로서 지정한 다음, 초점 평가치 X(2)가 최대치로 취해진 렌즈 위치를 합초 위치로 판단해서, 이 렌즈 위치에 렌즈를 보존해서 합초 동작을 완료한다.

또한, 오토포커스 루틴에서는, 초점 평가치의 산 장점에 도달해서, 이 위치에 렌즈를 일단 고정해서 합초 동작이 완료된 후에도, 초점 평가치의 변화를 감시하고, 초점 평가치가 크게 변화한 경우에는, 피사체가 이동해서 포커스 영역에서 벗어난 것으로 판단하여 다시 합초 동작을 처음부터 재개한다. 이와 같은 피사체 변화 감시 동작에 있어서, 제1 샘플링 영역(a1)을 포커스 영역으로서 선택해서 합초 동작을 종료하면, 우선 이 제1 샘플링 영역(a1)에 대해서 감시 동작을 행하고, 임시로 제1 샘플링 영역(A1)의 초점 평가치 X(1)에 큰 변화가 발생될 때 제2 샘플링 영역(a2)의 초점 평가치 X(2)에 변화가 다시 발행했는지를 판단하고, 변화가 발생된 경우에는 합초 동작의 재개를 지시한다. 그러나 이 초점 평가치 X(2)에 큰 변화가 없는 경우에는, 제12도에 도시된 바와 같이, 주요한 피사체는, 단지 쇄선 위치에서 실선 위치로 좌우방향으로, 즉 제2 샘플링 영역(a2) 내에서 제1 샘플링 영역(a1)에서 벗어난 위치로 이동한 것으로 판단해서, 포커스 영역의 선택을 제1 샘플링 영역(A1)에서 제2 샘플링 영역(a2)로 절환해서, 감시 동작을 계속한다.

상술한 오토포커스 루틴이 종료되면, 카운터(AECNT)의 내용에서 1만큼 감산된 것이 0이 되는지의 여부가 판정된다.(스텝 36). 그리고, 카운터 값이 0이 되면, 마이크로컴퓨터(26)에서 절환 제어 회로(13)으로 제어 신호가 발생하고, 이를 받아 절환 제어 회로(13)은, LPF(11)의 출력을 선택하기 위한 절환 신호(S1)을 절환 회로(14)에 부여하고, 이로 인해 LPF(11)의 출력이 선택된다(스텝 37).

이와 같이 평가치 LPF(11)의 출력이 선택되면, 마이크로컴퓨터(26)은, 이 선택된 LPF 필터 출력에 대응해서 얻어지는 평가치가 메모리 회로(25)에 독입되는 것을 기다린다.

한편, 스텝(33)에서 오토 아이리스 동작이 선택되면, 오토 아이리스 동작의 기본적인 오토 아이리스 루틴(스텝 38)이 실행된다. 그 다음, 카운터(ACENT)를 초기 상태로 복귀시키고(스텝 39), HPF(9)의 출력을 선택해서(스텝 40), 다음 필드 평가치의 적산을 기다린다.

여기에서, 카운터(AECNT)의 초기 상태란, 32필드마다 1필드만큼 LPF(11)을 통과한 휘도 신호에 기초를 두고 노출 평가치를 산출하기 위해 초기치 32가 설정된 상태를 말한다.

다음으로, 본 발명의 한 실시예에 의한 오토 아이리스 동작을 제4도 및 제5도의 플로우챠트를 참조해서 설명한다.

제3도에 도시된 메인 루틴의 스텝(33)에서 카운터(ACENT)의 카운트값이 0으로 되었음이 판단될 때, 즉 합초 동작의 개시에서 32필드가 경과할 때에, 제4도에 도시된 오토 아이리스 루틴이 실행된다. 우선, 메인 루틴의 스텝(30)에서 독입된 LPF(11)을 통과한 휘도신호의 제1 및 제3 내지 제6의 각 샘플링 영역(a1, a3,....,a6)에서 1필드분의 적분치 DATA(1), DATA(3),...., DATA(6)을 대응하는 각 영역의 면적에 의해 정규화된 값, 즉 제1 및 제3 내지 제6 샘플링 영역(a1, a3,...., a6)의 면적(SM1, SM3,....,SM6)으로 제산해서 얻어지는 단위 면적당의 적분치를, 각 영역에서의 노출 평가치[Z(1), Z(3),...., Z(6)]으로 스텝(200)에서 산출한다. 단, 제2 샘플링 영역(a2)는, 상술한 바와 같이 제1 샘플링 영역(a1)을 포함하는 영역이기 때문에, 상술한 산출방법으로는, 제2 샘플링 영역(a2)의 노출 평가치(Z(2)]가 제1 샘플링 영역(a1)의 영향도 받게 된다. 그래서,

Z(2) = (DATA(2)-(DATA(1))/(SM2-SM1)

로서 포커스 제2 샘플링 영역(a2)에서 제1 샘플링 영역(a1)을 제외한 영역에서의 노출 평가치 Z(2)를 산출한다.

또한, 화면 전체에서의 노출 평가치의 평균치, 즉

[Z(1)+Z(2)+Z(3)+Z(4)+Z(5)+Z(6)]/6

을 평균 노출된 평가치 ZA로서, 스텝(201)에서 산출한다.

다음으로, 이 화면의 휘도 레벨을 대표하고, 노출 제어의 기준이 되는 대상 평가치 ZT를 결정한다.

우선, 상술한 오토포커스 동작에 있어서 통상적인 포커스 영역으로서 지정되는 제1 샘플링 영역을 노출제어를 위한 우선 영역으로서 지정하고, 이 제1 샘플링 영역(a1)의 노출 평가치Z[1]이 평균 노출 평가치(ZA)에 대해서, 소정 허용 범위내에 있는지를 판별이 행해진다.

즉, 스텝(202)에서, 양 노출 평가치의 대수비의 절대치인 │LOG(Z(1)/ZA│가 소정치(a)이하라고 판단되면, 스텝(203)에서 이 노출 평가치[Z(1)]을 대상 평가치(ZT)로 한다.

또한, 스텝(202)에서 │LOG(Z(1)/ZA│가 소정치(a) 이상이라고 판단되고, 스텝(204)에서 상술한 오토포커스 동작에 있어서 포커스 영역으로서 제2 샘플링 영역이 지정되었다고 판단될 때에는, 스텝(205)에서 노출 평가치[Z(2)]가 평균 노출 평가치(ZA)에 대해서 어떤 소정 범위내에서 들어가 있는지를 여부를 판단한다. 그리고, │LOG(Z(1)/ZA│가 소정치(a) 이하인 것이 스텝(205)에서 판단될 때에는, 스텝(206)에서 이 노출 평가치([Z(2)]를 대상 평가치로(ZT)로 한다.

또한, 스텝(205)에서 │LOG(Z(1)/ZA│ a가 만족되지 않았다고 판단될 때, 또한 스텝(204)에서 포커스 영역로서 제2 샘플링 영역이 지정되지 않았다고 판단될 때, 각 영역의 노출 평가치[Z(i)](i=1-6)중, 평균 노출 평가치(Z)에 대해서 소정 범위내에 있는 것, 즉 │LOG(Z(1)/ZA│가 소정치(a) 이하의 평균을, 평가치로(ZT)로서 스텝(207)에서 산출한다. 또한, 전체 영역에서의 노출 평가치가 모두 소정치(a) 이하가 아니라는 것이 스텝(290)에서 판단될 때, 제1 샘플링 영역(a1)의 노출 평가치 [Z(1)]을 대상 평가치(ZT)로 한다. 또한, 스텝(208)에서는 노출 평가치 치[Z(i)](i=1-6) 중의 최대치, 및 최소치를, 각각 노출 결정에 필요한 값(Zmax 및 Zmin)으로서 설정한다.

스텝(202, 205 및 207)에서, 각 노출 평가치가 평균 노출 평가치(ZA)에 대해서 이미 설정된 허용 범위내외에 있어서 크게 다른 값인가를 판단함에 있어서, 단지 양쪽의 비를 사용해도 문제는 없으나, 본 실시예에서는 이 양쪽의 비의 다이나믹 범위가 매우 넓은 것을 고려해서, 대수(對數)압축한 다음 소정치(a)와 비교하도록 하고 있다.

이상과 같이 다수의 샘플링 영역의 노출 평가치중에서, 오토 아리리스 동작을 실행할 때에 사용되는 영역의 노출 평가치인 대상 평가치를 결정할 때에는, 제1샘플링 영역에서의 노출 평가치가 또한, 이 제1 샘플링 영역(a1)에, 광원등의 매우 놓은 휘도부 또는 짙은 녹색의 매우 낮은 휘도부, 즉 휘도부가 존재하고, 평균 평가치(ZA)와 노출 평가치의 비인 대수 압축치가 소정치(a) 이상인 경우에는, 포커스 영역이 제2 샘플링 영역이면 이 영역의 노출평가치 [Z(2)]를 우선한다.

또한, 이 제2 샘플링 영역에도 이상 휘도부가 존재하는 경우에는, 이상 휘도부가 존재하지 않은 영역의 노출 평가치의 평균치를 대상 평가치로 결정하고, 이에 해당하는 영역을 오토 아이리스 동작의 기초로 한다.

상술한 바와 같이 설정된 값에 기초를 둔 조리개의 결정은 제5도의 플로우챠트와 같이 실행된다. 우선, 스텝(210)에서, 대상 평가치(ZT)와 최대평가치(Zmax)의 비인 대수 LOG(Zmax/ZT) 및 대상 평가치 Z 와 최소치 Zmin의 비의 대수 LOG(ZT/Zmin)을 산출하고, 다시 양쪽의 차인 LOG(ZT/Zmin)-LOG(Zmax/ZT)를 명암 판별치(d)로서 도출한다. 이 명암 판별치(d)는, 대상 평가치(ZT)를 결정하는 주요 피사체가 화면내에서 상대적으로 밝은지 어두운지를 판별하는 파라메터이고, 주요 피사체가 밝고, 대상 평가치(ZT)가 상대적으로 큰 경우에는, 제1항인 LOG(ZT/Zmin)이 커지고, 제2항인 LOG(Zmin/ZT)는 작아져서, 명암 판별치(d)는 커진다. 반대로, 대상 평가치(ZT)가 상대적으로 작은 경우에는, 제1항은 작아지고, 제2항은 커져서, 명암 판별치(d)는 작아진다.

또한, 이 명암 판별치(d)의 산출에 있어서, 평가치의 비의 대수를 사용하는 이유는, 인간의 시각에 있어서 명도의 인식은 보통, 실제 피사체의 휘도 레벨이 지수 함수적, 예를 들면 휘도 레벨이 2배→4배→8배로 커지면, 시각상의 명도는 선형으로 변하는점에 착안하고 있기 때문이다.

스텝(211)에서 판별치(d)가, 소정치b(b0)에 대해서, │D│b가 성립되었다고 판단될 때에는, 화면내의 피사체 휘도는 중간 명도라고 판단되고, 대상 평가치(ZT)를 제어하기 위한 목표치의 상한(ZU) 및 하한(ZL)을 스텝(213)에서 각각, V, v로 정한다. 또한, 판별치(d)가 성립하지 않고 (스텝 211), 판별치(D)가 +b 이상으로 판단될 때에는 (스텝 212), 화면내의 피사체 휘도는 상대적으로 밝다고 판단해서, 상한(ZU) 및 하한(ZL)을 스텝(214)에서 각각 U, u로 정한다. 또한, 판별치(D)가 -b이하라고 판단될 때에는 (스텝 212), 화면내의 피사체의 휘도는 상대적으로 어둡다고 판단해서, 상한(ZU) 및 하한(ZL)을 스텝(215)에서 각각, W, w로 정한다. 여기에서, 이들 상한 및 하한에는, 각각, U≥V≥W, u≥v≥w의 관계를 미리 유지시켜 둔다.

이로 인해, 대상 평가치(ZT)의 화면내의 상대적인 명도에 대응하는 목표 범위가 설정되게 된다.

또한, 상술한 소정치(b)는, 주요 피사체의 휘도 레벨이 화면 전체의 휘도 레벨에 대해서, 밝거나 어둡다는 것이 시각상으로 인식될 때의 한계치이고, 이미 실험적으로 구해졌다.

다음으로, 스텝(216 및 217)에서 대상 평가치(ZT)와 목표치의 상한 및 하한(ZU및 ZL)을 비교하고, ZUZTZL이 성립한다면, 적절한 노출이 얻어졌다고 판단해서, 광학 조리개 기구(6)을 구동시키는 아이리스 모터(7)을 정지상태로 유지하여, 현재의 조리개 상태를 유지한다. 한편, 대상 평가치(ZT)가 상한(ZU)보다 크면, 노출 과다라고 판단해서, 스텝(219)에서 조리개 기구의 조리개량을, 1스텝만큼 폐쇄 방향으로 아이리스 모터(7)을 구동시키고, 반대로 대상 평가치(ZT)가 하한(ZL)보다 작으면, 노출 부족이라고 판단해서, 스텝(218)에서 조리개량을, 1스텝만큼 개방 방향으로 아이리스 모터(7)을 구동시킨다

또한, 아이리스 모터(7)은 스텝핑 모터로 구성되어 있다.

이 아이리스 모터(7)에 의한 조리개량의 조정 중에는, 스텝(222)에서 촬상 영상신호를 증폭하는 AGC 증폭기(301) (제1도)의 이득은 일정치(0을 포함)에 고정되어 있다(이 상태를 AGC 동작의 오프 상태라 한다). 또한, 입사광량만을 조정해서 작합한 노출을 얻는 일이 곤란한 경우, 즉 피사체가 매우 낮은 휘도이기 때문에 스텝(218)을 반복하는 사이에 조리개 기구가 개방 상태인 것이 스텝 (220)에서 판단되고, 또한 이 상태에서도 적합한 노출을 얻을 수 없는 경우에는, 스텝(221)에서 AGC(301)을 작동시킨다. 그리고, AGC 증폭기(301)은, 입력되는 촬상 영상 신호 레벨의 대소에 따라서, 그 출력이 일정 레벨로 되도록 그 이득을 증감한다(이 상태를 AGC 동작의 온 상태라 부른다).

또한, 광학 조리개 기구(6)의 개방 상태는, 아이리스 모터(7)의 전체 회전량(전체 스텝수)를 감시하기도 하고, 광학 조리개 기구(6) 자체의 동작을 크게 검출함으로써 검지할 수 있다.

다음으로, 제7도 내지 제9도는, 상술한 바와 같이 명암 판별치(d)의 대소에 따라서, 목표 휘도 레벨의 상한 및 하한을 미세하게 변화시킴으로써 행해지는 노출 조정 동작의 특성도이다. 또한, 각 도면에 있어서 대상 평가치(ZT)는, 포커스 영역인 제1 샘플링 영역(a1)에서 얻어지고, 주요 피사체는 이 제1 샘플링 영역(a1)에 존재하며, 따라서 주요 피사체의 휘도 레벨은 대상 평가치(ZT)에 해당된다.

각 도면 중, 횡축은, 주요 피사체 및 배경을 포함하는 전체 피사체에 대해서 노출 조정이 행해지고 있지 않은 실제 휘도 레벨이고, 화면 전체의 휘도 영역은 L(도면에는 화살표로 도시됨)로 도시되어 있다. 특히 주요 피사체의 실제 휘도 레벨은

Figure kpo00001
로 도시되어 있다. 또한, 종축은, 조리개 기구(6) 및 AGC 증폭기(301)에 의해 노출 조정이 행해진 후의 촬상 영상 신호의 휘도 레벨이 도시되어 있고, 인간의 시각상으로 품위가 양호한 영상이라고 인식할 수 있는 허용 범위인 적정 노출 범위(n)이 화살표로 도시되어 있다.

여기에서, 제7도는, 명암 판별치(d)와 소정치(b)사이에 │d│b의 관계가 성립하고, 대상 평가치(ZT)에 대응하는 주요 피사체의 실제 휘도 레벨(

Figure kpo00002
)가, 화면 전체의 휘도 영역(L)의 거의 중앙에 위치하고 있는 경우, 즉 주요 피사체가 상대적으로 중간 명도를 갖고 있는 경우가 도시되어 있다. 또한, 제7도에는, D -b의 관계가 성립하고, 주요 피사체의 실제 휘도 레벨(
Figure kpo00003
)가 영역(L)의 약간 낮은 부분에 위치하는 경우, 즉 주요 피사체가 상대저으로 어두운 경우가 도시되어 있다. 또한, 제9도에는, D+b의 관계가 성립하고, 주요 피사체의 실제 휘도 레벨(
Figure kpo00004
)가 영역(L)의 약간 높은 부분에 위치하는 경우, 즉 주요 피사체가 상대적으로 밝은 경우가 도시되어 있다.

각 도면에서, P는, 화면 전체의 평균 휘도 레벨에만 기초를 두고 노출 조정을 실행하는 종래의 방법을 채용한 경우의 전체 피사체에 의한 노출 조정 후의 촬상 영상 신호의 휘도 레벨 영역이고, 전체 피사체의 실제 휘도 레벨 및 이때의 촬상 영상 신호의 휘도 레벨은 직선(P)로 도시된 관계가 성립된다. 이 영역(P)의 평균치(AV)(P의 중점)을 적정 노출 범위(M)의 중점인 가장 적합한 값(m)에 일치시킴으로써, 화면 전체에 대해서는 적성 노출 범위(M)을 쇄상(P)의 중앙에 위치시킬 수 있다. 그렇지만, 제8도 및 제9도에 도시된 바와 같이, 주요 피사체의 실제 휘도 레벨(

Figure kpo00005
)가, 화면 전체의 실제 휘도 영역(L)에 대해서 상대적으로 낮거나 높은 위치에 있으면, 주요 피사체의 촬상 휘도 레벨은 t1로 되고, 적정성 노출 범위(M)에서 벗어나면 중요 피사체는 노출 부족 또는 노출 과다하게 된다.

또한, 각 도면에 있어서, Q는 주요 피사체의 촬상 휘도 레벨 또는 이 주요 피사체를 포함하는 영역의 촬상 휘도 레벨을 최적치(m)에 일치시키는 종래의 방법을 채용한 경우의 전체 피사체에 의한, 즉 화면 전체에 대한 촬상 영상 신호의 휘도 레벨 영역이고, 전체 피사체에 의한 실제 휘도 레벨과, 이 때의 촬상 휘도 레벨은, 직선(q)로 도시된 바와 같이 된다. 이 방식에 의하면, 주요 피사체에는 제일 적합한 노출 얻어지지만, 제8도나 제9도의 경우에는, 배경등의 다른 부분의 휘도 레벨이 크게 적정 노출 범위(M)을 벗어나서 어둑어둑한 부분 또는 하얗게 포화된 부분을 포함하는 화면으로 된다.

각 도면에 있어서, R은 본 실시예의 방법에 의해 얻어지는 전체 피사체에 의한 촬상 영상신호의 휘도 레벨 영역이고, 화면 전체의 실제 휘도 레벨 및 노출 조정 후의 촬상 영상신호의 휘도 레벨은 직선(r)로 도시되어 있다.

본 [실시예]는, 후술한 바와 같이, 이 직선(r)을 상하 방향으로 쉬프트시킴으로써, 목표 휘도 레벨을 미세하게 변화시킨다.

제5도의 플로우챠트에서 명암 판별치(d)의 절대치가 소정치(b)이하인 주요 피사체가 화면 전체에 대해서 중간 명도를 갖고 있으면, 목표치의 상한 및 하한을 각각, V, V로 정함으로써, 주요 피사체가 포함되는 영역의 대상 평가치(ZT)가 이 상한(V)와 하한(v)사이에 위치하도록 조리개 기구가 동작한다. 그 결과, 제7도에 도시된 바와 같이, 주요 피사체의 촬상 휘도 레벨(t3)은, 상술한 영역(Q)와 동일하게, 최적치(m)에 일치하고, 전체 피사체에 의한 화면 전체의 촬상 휘도 레벨 영역(R)의 거의 중앙에 적정 노출 범위(M)이 위치하게 되어, 적합한 노출 조정이 행해진다.

한편, 명암 판별치(d)와 소정치(b) 사이에 D-b의 관계가 성립하고, 주요 피사체의 휘도 레벨이 상대적으로 어둡다고 인정될 때 대상 평가치의 목표치인 상한 및 하한 (ZU및 ZL)을 각각, V, v보다 작은 W, w로 변경하고, 조리개 기구를 작동시켜서, 대상 평가치(ZT)를 이 상한 (ZU)와 하한(ZL) 사이에 위치시킨다. 그 결과, 제7도의 직선(r)은 하향으로 쉬프트되어, 제8도에 도시된 바와 같이 주요 피사체의 촬상 휘도 레벨은 적정 노출 범위(W)의 하한 근방에 위치되고, 화면 전체의 촬상 휘도 레벨 영역(R)은 적정 노출 범위(M)에 가능한 합치되게 된다. 그 결과, 피사체에 대해서 시각상으로 충분히 품위가 양호한 적합한 노출이 얻어지고, 다른 화면의 휘도 레벨도 크게 적정 노출 범위(M)을 을 벗어나지 않는 전체적으로 양호한 화면이 얻어진다.

또한, 명암 판별치(D)와 소정치(b) 사이에 D +b의 관계가 성립되고, 주요 피사체의 휘도 레벨이 상대적으로 밝다고 인정될 때 대상 평가치의 목표치인 상한 및 하한 (ZU 및 ZL)을 각각, V, v보다 큰 U, u로 변환해서, 조리개 기구를 작동시키고, 제8도의 직선(r)을 상향으로 쉬프트 시킨다. 이로 인해, 제9도에 도시된 바와 같이 주요 피사체의 촬상 휘도 레벨은 적정 노출 범위(M)의 상한 근방에 위치되고, 화면 전체의 촬상 휘도 레벨 영역(R)은 적정 노출 범위(M)에 가능한 합치되게 한다. 그 결과, 주요 피사체에 대해서 시각상으로 충분히 품위가 양호한 적합한 노출이 얻어지고, 다른 화면의 휘도 레벨도 크게 적정 노출 범위(M)을 벗어나지 않는 전체적으로 양호한 화면이 얻어진다.

다음으로, 제6도의 플로우챠트에 기초를 두고, 감마 보정치의 결정에 대해서 설명한다. 우선, 스텝(203)에서, 화면의 콘트라스트(

Figure kpo00006
)를, 노출 평가치중의 최대치(Zmax)과 최소치(Zmin)의 비로서 산출된다. 그리고, 스텝(231)에서 이미 설정되어 있는 감소 함수f(
Figure kpo00007
)에 상기 콘트라스트(
Figure kpo00008
)를 대입함으로써 보정용 감마(γ)를 최적한 값으로 변화시키는 연산이 실행되고, 구체적으로는, 실험적으로 결정된 다음 식, 즉,

=a0LOG(Zmax/Zmin) + b0

=a0LOG(

Figure kpo00009
) + b0

(단, a0, b0는 정수, a00, b00)의 식을 이용해서 목표로 하는 보정용 감마가 도출된다(스텝 231).

다음으로, 스텝(232)에서, 피사체가 매우 낮게 휘도되게 때문에 제5도의 플로우챠트의 스텝(221)에서 AGC증폭기(301)의 이득이 일정치로 고정되어 있지 않으며, 따라서 보통 AGC 동작이 온(on)으로 판단되면, 스텝(233)에서 감마 보정치(γ)를 소장량(d1) 만큼 감소시키고, 화면 콘트라스트를 압축한다. 이로 인해, 실질적으로 낮게 휘도된 피사체의 신호 레벨을 끌어 올리게 된다.

또한, 스텝(234)에서 대상 평가치(ZT)(통상적으로 포커스 영역의 노출 평가치)에 대한 명암 판별치(d)와 소정치(b) 사이에 D-b 또는 D +b의 관계가 성립할 때 스텝(235)에서, 감마 보정치(γ)를 소정량(d2)만큼 감소시키고, 화면 콘트라사트를 압축한다.

예를 들면, D-b가 성립하고, 주요 피사체의 휘도 레벨, 즉 대상 평가치가 화면 전체의 휘도 레벨에 대해서 상대적으로 상당히 낮은 경우에는, 광학 조리개 기구(6)에 의해 노출 조정이 행해지고,상술한 제8도 R로 도시된 바와 같이, 주요 피사체의 휘로 레벨이 적정 노출 범위(M)의 하한 근방에 위치함과 동시에 화면 전체의 휘도 영역 중앙에 적정 노출 범위(M)이 위치하게 되고, 주요 피사체와 화면 전체에 대해서도 적합한 노출을 얻게 되어 있었으나, 노출 조정후의 영역(R)중 고 휘도 영역(r0)는 적정 노출 범위(M)에서 벗어나게 된다. 그래서, 이 때에, 상술한 바와 같이 감마 보정치(γ)를 소정량(d2)만큼 감소시킴으로써, 화면 콘트라스트가 압축되면, 제10도에 도시된 바와 같이, 직선(γ)이 곡선(γ')와 같이 변하고, 화면 전체의 휘도 영역은 R에서 R'로 변한다. 그 결고, 주요 피사체의 휘도 레벨을 적정 노출 범위(M)의 하한 근방에 위치시키면서 화면 전체의 휘도 영역(R')을 적정 노출 범위(M)에 거의 일치시킬 수 있고, 광학 조리개기구(6)에 의한 노출 조정을 재보정해서 더욱 적합한 노출이 실현된다.

또한, D+b가 성립하고, 주요 피사체의 휘도 레벨이 화면 전체의 휘도 레벨에 대해서 상대적으로 상당히 높은 경우에는, 제9도에 도시된 바와 같이, 노출 조정후의 영역(R)중 저 휘도 영역(r1)은 적정 노출 범위(M)에서 벗어나게 된다. 이때, 감마 보정치(γ)를 소정량(d2)만큼 감소시킴으로써, 화면 콘트라스트가 압축되면, 제11도에 도시된 바와 같이, 직선(r)이 곡선(r)와 같이 변하고, 화면 전체의 휘도 영역은 R에서 R로 변한다. 그 결과, 주요 피사체의 휘도 레벨을 적정 노출 범위(M)의 상한 근방에 위치시키면서 화면 전체의 휘도 영역 R을 적정 노출 범위(M)에 거의 일치시킬 수 있고, 광학 조리개 기구(6)에 의한 노출 조정을 재보정해서 더욱 적합한 노출이 실현되고, 따라서 고휘도 부분의 노출 과다 현상 및 저 휘도 부분의 노출 부족 현상이 방지된다.

또한, 제8도 및 제10도에서와 휘도 영역(L,R) 및 직선 (r)은 동일하고, 제9도 및 제11도의 휘도 영역(L,R) 및 직선(r)은 동일하다. 이와 같이 결정된 현 필드의 감마 보정(γ)는, 감마 보정회로(302)(제1도)에 공급되지만, 이것이 전번의 감마 보정치 γ0와 크게 다르면, 한번에 감마 보정이 행해지게 되어, 오히려 화면은 보기 흉하게 되어 버린다. 그래서, 감마 보정치(γ)는 서서히 변화시킬 필요가 있다.

그래서, 스텝(236)에서, 현 필드에서 감마 보정치 (γ)와 이전에 결정된, 즉 32필드 전에 결정된 감마 보정치 (γ0)가 비교되고, 현 필드에서의 감마 보정치 쪽이 크면, 스텝(241)에서 감마 보정치를 1스텝분 dr만큼 크게 하고, 반대로 전번의 감마 보정치(r0)쪽이 크면, 스텝(242)에서 있어서, 감마 보정치를 1스텝분 dr은 감마 보정치(γ)가 취할 수 있는 최대치와 최소치의 차이를, n등분(n:자연수) 함으로써 설정되고, 다시 말하면, 감마 보정치(γ)는 n단계로 변하게 된다.

감마 보정치(γ)를 절환함에 있어서, 전번의 감마 보정치(γ0)에서 한 방향으로 크게 변화시키기 위해서 γ을 32필드마다 연속적으로 변화시키는 것이 유효하다.

그런, 금번과 전번으로 감마 보정치가 접근하고 있는 경우에는, 흔들림등에 의한 미세한 휘도 레벨의 변화에 따라서 감마 보정치가 상하로 변동되기 때문에 감마 보정치의 절환이 자주 일어나 화면이 보기 흉하게 된다.

그래서, 이 복잡한 절환을 방지하기 위해, 전번의 감마 보정치의 변화 방향과, 금번의 변화방향을 스텝(237 및 238)에서 플래그(SX) 상태에 의해 비교하고, 동일하면 스텝(239 및 240)을 넘어서, 스텝(241 및 242)로 진행한다.

한편, 양쪽이 다르면, 전번과 현 필드에서의 감마 보정치 (γ0,γ)의 차이 │γ0-γ│가, 보정이 불가결하다고 인식되는 소정치(C)이상일 때만, 감마 보정치를 변화시키고, 반대로, 소정치(C) 이하일 때에 스텝(245)에서 감마 보정치(γ)를 γ0로 유지시킴으로써, 감마 보정치의 변화 방법에 히스테리시스를 유지시키고 있다. 또한, 전원 투입 직후에는 감마 보정치(γ0)는 초기 설정된다.

이와 같이 해서 결정된 감마 보정치에 대응하는 제어 신호는, AGC(301)의 후단에 접속된 감마 보정 회로(302)에 제어신호로서 입력된다. 그리고, 이 감마 보정치에 기초를 두고, 촬상 영상신호의 입력 레벨에 따라서 증폭율이 변경되어, 최적한 감마 보정이 실행된다. 그 결과, 화면 콘트라스트가 높은 피사체에 대해서도 화면 전체에 적합한 명도가 어지게 된다. 또한, 감마 보정 회로(302)에 의해 감마 보정이 행해진 촬상 영상신호는, CRT(도시하지 않음)상에 표시되기도 하고, VRT(도시하지 않음)에 의해 녹화된다.

그런데, 화면상에 설정된 영역내가 매우 어두운 경우에는, 레벨이 낮은 촬상 영상 신호가 촬상 회로(8)내의 증폭 회로를 통과하고, 촬상 영상 신호의 S/N이 열화해서, 휘도 레벨값이 오차가 커진다. 따라서, 상술한 실시예와 같이, 촬상 영상 신호의 휘로 레벨을 A/D 변환해서 영역 마다의 노출 평가치 Zi(i=1-6)로서 산출할 때, 이 노출 평가치가 매우 적은 경우에는, 노출 평가치 자체의 오차도 커진다. 따라서, 동일 피사체를 동일 조건하에서 촬영하는 경우에도, 노출 평가치는, 적은 값의 영역으로 항상 변화해서 안정되지 않는다. 그와 같은 상태로, 상기 실시예와 같이, 각 영역의 평가치비에 기초를 두고 노출을 제어하면, 광학 조리개 기구(6)에 의한 조리개 량이 잡음에 따라 자주 변하여, 매우 불안정한 화면이 될 우려가 있다.

그래서, 제4도의 스텝(200)과 스텝(201)사이에, 제13도에 도시된 바와 같이 노출 평가치 치환 루틴(250)을 삽입하고, 스텝(200)에서 산출된 영역마다의 노출 평가치 [Z(i)](i=1-6)중에 매우 작은 값이 있으면, 그 값을 미리 고정치로 치환해줌으로써, 잡음에 따라 자주 발생하는 매우 작은 노출 평가치의 변화가 노출 제어 또는 감마 보정에 영향을 미치지 않도록 할 수 있다.

이 노출 평가치 치환 루틴(250)에서 스텝(251)에서 노출 평가치 [Z(i)](i=1-6)중에서 한계치(Pm)을 하회한다고 판단될 때는 스텝(252)에서 이미 설정된 고정치(ho)로 치환된다. 그 결과, 매우 적은 노출 평가치만이 고정치(ho)로 치환된 후에, 상술한 바와 같이 스텝(201)이후의 플로우챠트를 실행함으로써, 잡음의 영향에 의해 자주 발생하는 노출 평가치의 변화가 노출 제어 또는 감마 보정에 영향을 끼치는 일이 방지된다. 또한, 한계치(Pm)은 휘도 레벨이 매우 적을 때 잡음 때문에 노출 평가치가 상당히 변화되어 노출 제어에 악영향이 발생되기 시작한다고 인식되는 값이고, 고정치(ho)는 ho=Pm 또는 ho=(1/2)·Pm과 같이, 한계치(Pm) 이하 또는 근방의 값이고, 동시에 이미 실험적으로 구해진 값이다.

상술한 실시에에 있어서는, 제1 샘플링 영역(a1)에 이상 휘도부가 존재하지 않는다고 스텝(202)에서 판단된 경우에는, 노출 평가치 ZT=Z(1)로서 제1 샘플링 영역(a1)의 노출 평가치 [Z(1)]이 먼저 선택되고, 제1 샘플링 영역(a1)에 이상 휘도부가 존재하거나, 포커스 영역이 제2 샘플링 영역(a2)에 이상 휘도부가 존재하지 않는다고 스텝(205)에서 판단된 경우에는, 노출 평가치 ZT=Z(2)로서, 제2 샘플링 영역(a2)에서 제1 샘플링 영역(a1)을 제외한 영역이 노출 평가치 [Z(2)]가 먼저선택된다.

그러나, 화면 중앙의 우선도를 높이면, 중앙부와 주변부에서 휘도차가 있는 화면은, 중앙부가 주변부보다도 밝으면 주변부는 노출 부족 현상이고, 어두우면 노출 과다 현상으로 된다. 또한, 중앙부의 우선 영역에 피사체의 출입이 있는 경우에는, 화면 전체로서는 피사체가 동일함에도 불구하고, 우선 영역의 휘도 레벨이 크게 변하기 때문에, 화면 전체의 노출이 불안정하게 된다.

따라서, 화면 중앙과 주변부와의 휘도차에 따라서, 노출 제어의 기초가 되는 대상 평가치의 산출에 있어서의 화면 중앙 영역의 우선도를 변화시키는 방법은, 최적한 노출 제어시에 유효하다. 제14도는 이 점을 고려한 다른 실시예에 의한 오토 아이리스 동작을 도시한 플로우챠트이다. 또한, 제14도에 있어서, 제4도와 동일 부분에는 동일 부호를 붙여서 설명을 생략한다. 제14도의 플로우챠트에 있어서, 스텝(202,205)에서, 우선 영역이 제1 또는 제2 샘플링 영역(a1,a2)로 지정되면, 상술한 점을 고려한 대상 평가치 산출 루틴(300,301)이 실행된다.

이 대상 평가치 산출 루틴(300,301)에서는, 제15도에 도시된 바와 같이, 스텝(202,205)에서 사용된 노출 평가치[Z(1), Z(2)]의 평균 노출 평가치(ZA)에 대한 비의 대수 압축비│ LOG(Z(1)/ZA)│,│LOG(Z(2)/ZA)│ 및 소정치(b0,c0)와의 관계가 스텝(310,311)에서 판별된다. 여기에서 소정치(b0c0)와 소정치(a)사이에는, a b0c0가 성립한다.

예를 들면, 스텝(202)에서 우선 영역으로서 제1 샘플링 영역(a1)이 지정되고, 스텝(310)에서 │ LOG(Z(1)/ZA)│가 소정치(b0)보다 크다는 것이 판단되면, 함수(f)에 각 영역의 노출 평가치 [Z(Z),Z(2),....Z(6)]을 대입하면 대상 평가치(ZT)가 산출된다. 또한, c0 │ LOG(Z(1)/ZA)│≤ b0로 판단되면, 함수(g)에 Z(1), Z(2),....Z(6)을 대입하면 대수 평가치(ZT)가 산출되고, │ LOG(Z(1)/ZA)│≤ c0로 판단되면, 함수(h)에 Z(1)을 대입함으로써 대상 평가치(ZA)가 산출된다. 여기에서, │ LOG(Z(1)/ZA)│는, 영역간의 휘도차가 클수록 커지는 성질을 갖고 있는, 휘도차가 매우 큰 경우에는 함수(f)를 사용하며, 이보다 약간 적은 경우에는 함수(g)를 사용하고, 휘도차가 거의 없는 경우에는 함수(h)를 사용하면 대상 평가치(ZT)가 산출되게 된다.

함수(f,g,h)는, 각각

Figure kpo00010

로서 산출된다.

이들 산출방법에 의해 명백해 진 것과 같이, 휘도차가 크면 클수록 대상 평가치(ZT)에 있어서의 노출 평가치 Z(1)의 영향이 경감된다. 즉, 우선 영역인 제1 샘플링 영역(a1)의 대상 평가치(ZT)의 산출에 있어서의 우선도를 저하시킨다.

이와 마찬가지로, 스텝(205)에서, 우선 영역으로서 제2 샘플링 영역(a2)가 지정되면, 대상 평가치(ZT)의 산출 루틴(301)에서 영역간의 휘도차가 크면 클수록 대상 평가치(ZT) 산출용의 함수는 h→g→f로 절환한다 단, 산출 루틴(301)은 루틴(300)과 거의 동일한 플로우챠트로 도시되어 있으나, 연산식 중에서, Z(1)과 Z(2)와는 치환된다. 즉,

Figure kpo00011

로서 산출된다.

상술한 바와 같이, 우선 영역의 휘도 레벨인 화면 전체의 휘도 레벨에 대한 비인 휘도차가 크면 클수록 대상 평가치(ZT)에 있어서의 각 노출 평가치의 가중량을 단계적으로 절환함으로서, 휘도차가 큰 화면에서도 과도한 보정에 의한 비우선 영역의 노출 과다·부족 현상을 방지할 수 있다. 또한, 피사체 동작 등으로 인한 대상 평가치의 변화를 작게 하고, 노출 평가치의 불안정한 변화가 경감된다. 상술한 바와 같이, 함수(f,g,h)들 중 어느 한 함수에 의해 산출된 대상 평가치에 기초를 두고 스텝(208)이후의 플로우챠트에서 제5도의 실시예와 동일하게 노출 제어가 행해진다.

또한, 스텝(310,311)에서의 산출용의 연산식 선택에 있어서는, 스텝(310,311)의 조건이, 예를 들면 3필드 연속해서 만족될 때에만 연산식의 절환을 실행하면, 불안정한 노출 제어는 경감된다.

그러나, 제14도 및 제15도에 도시된 바와 같이, 대상 평가치(ZT)를 함수(f,g,h)에 기초를 두고 산출하는 방법으로는 │ LOG(Z(1)/ZA)│와 각 영역의 노출 평가치[Z(1),Z(2),....Z(6)]에 대한 가중 비율과의 관계 및 │ LOG(Z(2)/ZA)│와 각 영역의 노출 평가치[Z(1), Z(2),....Z(6)]에 대한 가중 비율과의 관계는 제16도 및 제17도에 도시되어 있다. 즉, 대상 평가치(ZT)에 있어서의 각 노출 평가치의 가중 비율은 소정치(b0,c0)를 역치로 하여, 3개의 영역에 따라서 단계적으로 변하게 된다. 따라서, │ LOG(Z(1)/ZA)│ 또는 │ LOG(Z(1)/ZA)│가 소정치(b0,c0) 근방의 값일 때에는, 손놀림이나 피사체의 동작등에 기초를 둔 화면의 적은 변화로, 사용하는 함수가 자주 절환하고, 대상 평가치(ZT)가 크게 변동한다. 노출의 변동을 일으켜서, 불안정한 화면이나, 때로는 헌팅의 원인이 된다.

그래서, 이 점을 개량하는 방법으로서, 제15도의 대상 평가치 산출 루틴을 대신해서, 제18도의 루틴을 실행하는 다른 실시예가 유효하다. 예를 들면, 스텝(202)에서 우선 영역으로서 제1 샘플링 영역(a1)이 지정되고, 스텝(300)에서 대상 평가치(ZT)의 산출이 행해질 경우에는, 제18도의 산출 루틴이 실행된다. 우선, 스텝(401)에서 │ LOG(Z(1)/ZA)│를 변수(X)로 하고, 이 (X)를 영역마다 6개의 연속적 무게를 주는 함수 fi(X)(i=1,2,....6)을 각각 대입해서, 각 노출 평가치에 대한 가중 비율을 결정한다(스텝 402). 이들 6개의 함수에는

Figure kpo00012
(단, X=0-∞)의 관계가 항상 성립하고, 제19도에 각각 도시된 바와 같이 변수(X)에 따라서 원활한 곡선 형태로 변하고, 제16도와 같이 단계적으로 변하는 일은 없다. 즉, 스텝(402)에서, 변수(X)를 함수[fi(x)]에 대입해서 각 영역의 노출 평가치의 가중율 d(i)(i=1-6)을 산출하고, 스텝(403)에서

Figure kpo00013

의 연산식에 기초를 두고 영역마다의 가중율 d(i) (i=1-6)에 의해 각 노출 평가치 [Z(i)]를 가중(加重) 평균해서, 대상 평가치(ZT)를 산출한다.

이와 마찬가지로, 스텝(205)에서 우선 영역으로서 제2 샘플링 영역(a2)가 지정되면, 대상 평가치 산출 루틴(301)에서 제18도의 상술한 │ LOG(Z(1)/ZA)│를 대신해서 │ LOG(Z(1)/ZA)│를 변수(X)로 하고, 제20도에 도시된 바와 같이, 제19도의 함수 f1(X)와 f2(X)를 다시 치환함으로써, 제18도의 루틴에서 대상 평가치(ZT)의 산출이 행해진다.

이와 같이, 함수 fi(X)가 변수(X)에 대해서 연속적으로 변하므로, 화면의 변화에 대해서 대상 평가치(ZT)의 변화를 원활하게 할 수 있고, 안정한 화면을 얻을 수 있다.

상술한 바와 같은 본 발명의 실시예에 의하면, 우선 영역이 휘도 레벨과 비우선 영역의 휘도 레벨과의 관계에 기초를 두고 노출 조정용의 목표 휘도 레벨을 변화시키고, 우선 영역의 노출 평가치의 가중량을 변화시키며, 감마 보정치를 변화시킴으로써 화면 내의 노출과다 현상 및 노출 부족 현상을 경감시킬 수 있다. 또한, 샘플링 영역의 노출 평가치중 매우 작은 값이 있으면, 이를 먼저 고정치로 치환하므로써 잡음 등이 노출 제어에 영향을 미치는 일을 방지할 수 있다.

Claims (14)

  1. 촬상 화면을 분할하므로써 설정된 우선 영역을 포함하는 복수의 영역마다, 촬상 영상 신호의 휘도 레벨을 검출하는 레벨 검출 수단, 상기 복수의 영역마다 설정된 가중량으로, 상기 복수의 영역마다의 휘도 레벨을 가중시키는 가중 수단, 및 상기 가중된 각 영역의 휘도 레벨에 의해 산출되는 대상 레벨이 목표 휘도 레벨에 근접하도록 노출을 제어하는 노출 제어 수단을 구비하고, 상기 가중 수단에 의한 가중시에, 상기 우선 영역과 다른 영역과의 휘도차가 작은 경우에는 상기 우선 영역의 가중량을 다른 영역보다 크게 하고, 반대로 상기 휘도차가 큰 경우에는 상기 우선 영역의 가중량을 상기 다른 영역에 근접하도록 저감시키는 것을 특징으로 하는 촬상 장치.
  2. 피사체에 대해서 노출의 자동 정합을 행하는 촬상 장치에 있어서, 렌즈와 촬상 소자를 갖고 있으며, 상기 피사체로부터의 입사광에 따라 영상 신호를 발생시키는 촬사 수단, 상기 치사체에 대한 노출을 변경하는 수단, 상기 영상 신호의 시분할에 의해 촬상 화면상에 분할된 다수의 샘플링 영역을 설정하는 수단, 상기 다수의 샘플링 영역의 각각의 영상 신호의 휘도 신호 레벨을 검출해서 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출 수단, 상기 노출 평가치 검출 수단으로부터 공급되는 노출 평가치를 소정의 기준치와 비교해서 상기 노츨 평가치가 상기 기준치보다 작을 때에 이 노출 평가치를 예정된 고정치로 치환하는 수단, 상기 다수의 샘플링 영역들 중 1개 이상의 영역을 노출 제어하기 위한 우선 영역으로서 선택하고 이 선택된 영역의 노출 평가치에 기초하여 촬상 화면 전체의 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출 수단, 및 상기 대상 평가치가 소정의 목표 휘도 레벨에 근접하도록 상기 노출 변경 수단을 제어하는 노출 제어 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  3. 제14항에 있어서, 상기 대상 평가치와 상기 우선 영역 이외의 다른 샘플링 영역이 노출 평가치와의 관계에 따라 상기 목표 휘도 레벨을 변화시키는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  4. 제14항에 있어서, 상기 대상 평가치 산출 수단이, 상기 다수의 샘플링 영역의 각각의 상기 노출 평가치에 기초해서 대응하는 샘플링 영역내에 이상(異常) 휘도부가 존재하는지를 판정하는 수단, 및 상기 이상 휘도부가 존재하는 샘플링 영역이 상기 우선 영역으로서 선택되는 것을 방지하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  5. 제14항에 있어서, 상기 다수의 샘플링 영역이 적어도, 촬상 화면 중앙에 위치하는 제1 샘플링 영역, 및 상기 제1 샘플링 영역을 포함하며 상기 제1 샘플링 영역보다 큰 면적을 갖고 있는 제2 샘플링 영역을 포함하는 것을 특징으로 하는 촬상 장치.
  6. 제14항에 있어서, 상기 고정치는 잡음에 의한 노출 평가치의 변화에 의해 노출 제어의 영향이 인식되어 얻어진 값에 기초하여 결정되는 것을 특징으로 하는 촬상 장치.
  7. 제14항에 있어서, 상기 노출 평가치 검출 수단으로부터 공급되는 노출 평가치에 기초하여 촬상 화면의 콘트라스트를 나타내는 값을 산출하는 수단, 및 상기 콘트라스트를 나타내는 값에 기초하여 감마 보정치를 결정하고 상기 감마 보정치에 따라 상기 영상 신호에 대해 감마 보정을 행하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  8. 피사체에 대해서 노출의 자동 정합을 행하며 영상 신호의 감마 보정을 자동적으로 행하는 촬상 장치에 있어서, 렌즈와 촬상 소자를 갖고 있으며 상기 피사체로부터의 입사광에 따라 영상 신호를 발생시키는 촬상 수단, 상기 피사체에 대한 노출을 변경하는 수단, 상기 영상 신호의 시분할에 의해서 촬상 화면상에 분할된 다수의 샘플링 영역을 설정하는 수단, 상기 다수의 샘플링 영역의 각가의 영상 신호의 휘도 신호 레벨을 검출해서 대응하는 샘플링 영역의 노출 평가치로서 공급하는 노출 평가치 검출 수단, 상기 다수의 샘플링 영역들 중 1개 이상의 영역을 노출 제어하기 위한 우선 영역으로서 선택하고 이 선택된 영역의 노출 평가치에 기초하여 촬상 화면 전체의 노출을 대표하는 대상 평가치를 산출하는 대상 평가치 산출 수단, 상기 대상 평가치가 소정의 목표 휘도 레벨이 근접하도록 상기 노출 변경 수단을 제어하는 노출 제어 수단, 상기 노출 평가치 검출 수단으로부터 공급되는 노출 평가치에 기초하여 촬상 화면의 콘트라스트를 나타내는 값을 산출하는 수단, 상기 콘트라스트를 나타내는 값에 기초하여 감마 보정치를 결정하고 이 감마 보정치에 따라 상기 영상 신호에 대해 감마 보정을 행하는 수단, 및 상기 대상 평가치와 상기 우선 영역 이외의 다른 샘플링 영역의 노출 평가치와의 관계에 따라 상기 감마 보정치를 변경하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  9. 제20항에 있어서, 상기 대상 평가치 산출 수단이, 상기 다수의 샘플링 영역의 각가의 상기 노출 평가치에 기초해서 대응하는 샘플링 영역내에 이상 휘도부가 존재하는지를 판정하는 수단, 및 상기 이상 휘도부가 존재하는 샘플링 영역이 상기 우선 영역으로서, 선택되는 것을 방지하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  10. 제20항에 있어서, 상기 다수의 샘플링 영역이 적어도, 촬상 화면 중앙에 위치하는 제1 샘플링 영역, 및 상기 제1 샘플링 영역을 포함하며 상기 제1 샘플링 영역보다 큰 면적을 갖고 있는 제2 샘플링 영역을 포함하는 것을 특징으로 하는 촬상 장치.
  11. 제20항에 있어서, 상기 콘트라스트를 나타내는 값을 산출하는 수단이, 상기 노출 평가치 중 최대치와 최소치의 비를 상기 콘트라스트를 나타내는 값으로서 공급하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  12. 제23항에 있어서, 상기 감마 보정을 행하는 수단이, 상기 콘트라스트를 나타내는 값
    Figure kpo00014
    에 기초해서,
    γ = a0LOG
    Figure kpo00015
    + b0(a0, b0는 부의 정수)
    에 기초하여 감마 보정치 γ를 결정하는 수단을 갖고 있는 것을 특징으로 하는 촬상 장치.
  13. 제20항에 있어서, 상기 감마 보정치를 변경하는 수단이, 상기 대상 평가치와 다른 샘플링 영역의 초점 평가치와의 관계에 따라 상기 감마 보정치를 단계적으로 증감시키는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
  14. 제25항에 있어서, 상기 감마 보정치를 변경하는 수단은 상기 감마 보정치의 최신 증감의 방향이 전회(前回)의 방향과 상이할 때에 최신의 감마 보정치와 전회의 감마 보정치와의 차가 소정의 값을 초과할 때에만 상기 감마 보정치의 변경을 허용하는 수단을 포함하는 것을 특징으로 하는 촬상 장치.
KR89006831A 1988-05-20 1989-05-19 영상 신호에 기초를 두고 자동노출조정을 행하는 오토아이리스 기능을 갖춘 촬상 장치 KR0145306B1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP12453488 1988-05-20
JP12453388 1988-05-20
JP63-124533 1988-05-20
JP63-124534 1988-05-20
JP63150575A JP2645859B2 (ja) 1988-05-20 1988-06-17 撮像装置
JP15057488 1988-06-17
JP63-150574 1988-06-17
JP63-150575 1988-06-17
JP63-193027 1988-08-02
JP63193027A JP2547619B2 (ja) 1988-05-20 1988-08-02 撮像装置

Publications (2)

Publication Number Publication Date
KR900019472A KR900019472A (ko) 1990-12-24
KR0145306B1 true KR0145306B1 (ko) 1998-07-15

Family

ID=67840846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR89006831A KR0145306B1 (ko) 1988-05-20 1989-05-19 영상 신호에 기초를 두고 자동노출조정을 행하는 오토아이리스 기능을 갖춘 촬상 장치

Country Status (1)

Country Link
KR (1) KR0145306B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781160B1 (ko) * 2005-07-15 2007-11-30 삼성테크윈 주식회사 디지털 영상 처리장치에서 사용자 선택에 따른 노출 제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781160B1 (ko) * 2005-07-15 2007-11-30 삼성테크윈 주식회사 디지털 영상 처리장치에서 사용자 선택에 따른 노출 제어방법

Also Published As

Publication number Publication date
KR900019472A (ko) 1990-12-24

Similar Documents

Publication Publication Date Title
EP0409161B1 (en) Method and apparatus for controlling exposure changes of a video camera
US7583297B2 (en) Image processing method, image processing apparatus, and computer program used therewith
US5194960A (en) Optical image signal control device
US5335075A (en) Image sensing apparatus having exposure level and dynamic range control circuit
EP0341692A2 (en) Image sensing apparatus having automatic focusing function for automatically matching focus in response to video signal
US7656436B2 (en) Flicker reduction method, image pickup device, and flicker reduction circuit
US5473374A (en) Exposing apparatus for performing exposure control corresponding to the luminance level of an object
JP3607509B2 (ja) オートフォーカス装置
KR20020005005A (ko) 별개의 광 측정 회로없이 자동으로 고체 카메라의 최종노출 설정값을 결정하는 장치 및 방법
KR100821344B1 (ko) 노출을 조정하는 디지털 이미징의 방법 및 시스템, 그리고그에 상응하는 장치
JP3804617B2 (ja) 画像処理装置及び方法
JP4657457B2 (ja) 別個の測光回路なしで固体カメラに対して自動的に最終露出設定を決定する方法
US7518643B2 (en) Camera device and shooting method
JP4210021B2 (ja) 画像信号処理装置および画像信号処理方法
US8121404B2 (en) Exposure control apparatus and image pickup apparatus
JP3510868B2 (ja) 画像合成装置
US5272538A (en) Exposure control device
KR100199322B1 (ko) 촬상 소자에서 얻어지는 색정보 신호에 기초하여 백색 밸런스 조정을 자동적으로 행하는 백색 밸런스 조정 장치
KR0132407B1 (ko) 화질제어기능을 갖는 촬상장치 및 촬상장치의 화질제어방법
US7925047B2 (en) Face importance level determining apparatus and method, and image pickup apparatus
JP2766067B2 (ja) 撮像装置
JP3938833B2 (ja) 露出制御装置
US5455685A (en) Video camera exposure control apparatus for controlling iris diaphragm and automatic gain control operating speed
US6570620B1 (en) Exposure control device
US7245320B2 (en) Method and apparatus for automatic gain and exposure control for maintaining target image brightness in video imager systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080425

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee