KR0143473B1 - Manufacturing method for zn vapor deposited layer with uniform thickness - Google Patents

Manufacturing method for zn vapor deposited layer with uniform thickness

Info

Publication number
KR0143473B1
KR0143473B1 KR1019950023894A KR19950023894A KR0143473B1 KR 0143473 B1 KR0143473 B1 KR 0143473B1 KR 1019950023894 A KR1019950023894 A KR 1019950023894A KR 19950023894 A KR19950023894 A KR 19950023894A KR 0143473 B1 KR0143473 B1 KR 0143473B1
Authority
KR
South Korea
Prior art keywords
substrate
zinc
evaporation source
film
vacuum deposition
Prior art date
Application number
KR1019950023894A
Other languages
Korean (ko)
Other versions
KR970011010A (en
Inventor
홍재화
강정수
송영익
Original Assignee
김종진
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김종진
Priority to KR1019950023894A priority Critical patent/KR0143473B1/en
Publication of KR970011010A publication Critical patent/KR970011010A/en
Application granted granted Critical
Publication of KR0143473B1 publication Critical patent/KR0143473B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Abstract

본 발명은 진공증착 방법으로 강판상에 아연을 피복시키는 방법에 관한 것으로, 기판상에 아연 피막을 진공증착시 증발원으로 망사형의 덮개가 구비된 흑연재질의 저항가열 증발원을 사용하고 기판의 공자전비 및 공전수를 적절히 제어하므로서 균일한 두께를 가지는 아연 진공증착 피막을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for coating zinc on a steel plate by vacuum deposition method, using a graphite-type resistive heating evaporation source equipped with a mesh cover as a vaporization source when vacuum depositing a zinc film on a substrate. And to provide a method for producing a zinc vacuum deposition film having a uniform thickness while appropriately controlling the revolving water, an object thereof.

상기한 목적을 달성하기 위한 본 발명은 기판 공자전 장치 및 저항 가열증발원을 포함하여 구성되는 진공증착장치를 이용하여 기판상에 아연 진공증착 피막을 형성시키는 방법에 있어서, 상기 저항가열 증발원으로 망사형의 덮개가 구비된 증발원을 사용하고, 상기 기판 공자전 장치에 장착된 기판의 공전비가 1:6.5 이고, 공전수가 분당 15-30의 회전수가 범위가 되도록 기판을 공전시키는 것을 포함하여 이루어지는 증착두께가 일정한 아연 진공증착 피막 제조방법을 그 요지로 한다.The present invention for achieving the above object is a method for forming a zinc vacuum deposition film on a substrate by using a vacuum deposition apparatus comprising a substrate co-rotating device and a resistance heating evaporation source, a mesh type as the resistance heating evaporation source Using a vaporization source equipped with a lid of the substrate, the deposition thickness of the substrate mounted on the substrate revolving device is 1: 6.5, and the deposition thickness comprising revolving the substrate so that the revolution number is in the range of 15-30 revolutions per minute The method of manufacturing a constant zinc vacuum deposition film is made into the summary.

Description

증착두께가 일정한 아연 진공증착 피막 제조방법Method for Manufacturing Zinc Vacuum Deposition Film with Constant Deposition Thickness

제1도는 본 발명의 방법에 부합되는 저항가열 증발원 및 덮개의 사시도1 is a perspective view of a resistive heating evaporation source and cover in accordance with the method of the present invention;

제2도는 본 발명의 방법에 부합되는 아연피막 진공증착 장치의 개략도2 is a schematic diagram of a zinc film vacuum deposition apparatus in accordance with the method of the present invention.

제3도는 본 발명의 방법의 일실시예에 의한 기판표면의 거리 변화에 따른 아연 피막두께 분포를 나타낸 그래프3 is a graph showing the distribution of zinc film thickness according to the distance change of the substrate surface according to an embodiment of the method of the present invention

제4도는 종래의 방법에 의한 기판표면의 거리 변화에 따른 아연 피막두께 분포를 나타낸 그래프4 is a graph showing the zinc film thickness distribution according to the distance change of the substrate surface by a conventional method.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1:공전축 기어 2:서보 모터1: idle shaft gear 2: servo motor

3:진공실링 4:내치 기어 고정대3: Vacuum sealing 4: Internal gear holder

5:기판가열 장치 6:내치기어5: Substrate heating device 6: Pinch

7:공전축 8:자전기어7: idle shaft 8: electric gear

9:기판 10:기판홀더9: Substrate 10: Substrate holder

11:셔터 12:두께 측정장치11: Shutter 12: Thickness measuring device

13:덮개 14:증발원13: Cover 14: Evaporator

15:증발물질(아연 덩어리) 16:전류공급단자15: Evaporation material (zinc lump) 16: Current supply terminal

17:진공조 18:증발원 지지대17: vacuum 18: evaporator support

A:기판 공자전장치A: substrate revolution

본 발명은 진공증착방법으로 강판상에 아연을 피복시키는 방법에 관한 것으로써, 보다 상세하게는, 저항 가열원을 이용하여 아연을 증착시키되 덮개가 있는 증발원을 사용하고 기판을 공 자전시킴으로써 피막의 두께가 일정한 아연진공층착 피막을 제조하는 방법에 관한 것이다.The present invention relates to a method of coating zinc on a steel sheet by vacuum deposition, and more particularly, to deposit zinc using a resistance heating source, but using a vaporization source with a cover and corotating the substrate to make the thickness of the film. Relates to a method for producing a constant zinc vacuum layered coating.

진공증착방법은 전기도금이나 용융도금법에 비하여 소재 및 도금물질의 선택폭이 넓고 도금부착량의 제어범위가 커서 점차 그 용도가 확대되고 있다. 그러나 우수한 성질의 피막을 얻기 위하여서는 증발물질의 특성에 알맞는 증발원의 선택이 중요하며, 균일한 도금부착량을 얻기 위하여서는 기판의 적절한 온도 및 적절한 이송장치가 필요하다.Compared to the electroplating or hot-dip plating method, the vacuum deposition method has a wider selection range of materials and plating materials and has a wider control range of plating deposition amount, and thus its use is gradually expanding. However, in order to obtain an excellent coating film, it is important to select an evaporation source suitable for the properties of the evaporation material, and to obtain a uniform coating amount, an appropriate temperature of the substrate and an appropriate transfer device are required.

현재 진공증착용 증발원으로써는 전자빔 증발원과 저항 가열 증발원이 주로 사용되고 있다. 이중, 전자빔 증발원은 고 융점 물질의 증발에 유리하며, 증착율이 높고 제어가 간판하다는 장점이 있으나, 가격이 바싸며, 증기압이 높은 물질을 증착시키는 경우 필라멘트의 수명이 단축되는 등의 문제점이 있다.Currently, as an evaporation source for vacuum deposition, an electron beam evaporation source and a resistance heating evaporation source are mainly used. Of these, the electron beam evaporation source is advantageous for the evaporation of the high melting point material, the high deposition rate and the control is the advantage of the sign, but the price is expensive, there is a problem such as shortening the life of the filament when depositing a high vapor pressure material.

따라서 아연과 같이 융점이 낮고 증기압이 높은 물질을 단속적으로 증발시킬 때에는 용기모양의 저항체에 직접 전류를 흘려 가열하여 당겨진 증발물질을 증발시키는 저항 가열 증발원을 주로 사용한다.Therefore, when intermittently evaporating a material having a low melting point and a high vapor pressure, such as zinc, a resistance heating evaporation source that mainly evaporates the evaporated material by flowing a current directly through a container-shaped resistor is used.

그러나, 이 경우에도 증발물질인 아연의 특성에 알맞은 저항 가열 증발원을 사용하지 않으면 피막의 특성이 저하되며, 고정된 기판 홀더를 사용할 경우 피막의 두께가 두꺼워지면 피막층의 두께 분포가 고르지 못하여 균일한 피막이 형성되지 못한다는 단점이 있으므로 회전식 기판 홀더를 주로 사용한다.However, even in this case, if the resistive heating evaporation source suitable for the evaporation material is not used, the film properties are deteriorated. If the fixed substrate holder is used, if the film thickness becomes thick, the thickness distribution of the film layer is uneven, resulting in a uniform film. Rotatable substrate holder is mainly used because of the disadvantage of not being formed.

기판 회전장치로는 자전만이 가능한 것과 공자전이 함께 가능한 것 등이 있는데, 기판에 증발물질을 균일하게 코팅하려면 공전과 자전이 동시에 가능한 것이 바람직하다. 그러나 기존의 공,자전 장치는 기계적구조가 복잡하며, 수직방향으로 이동이 용이하지 않을 뿐만 아니라 공전과 자전의 회전비 및 회전수가 적절하지 않아 피막의 두께 분포가 균일하지 못한 단점이 있다.Substrate rotating apparatuses include only rotation and corotation, and the like, and in order to uniformly coat the evaporation material on the substrate, it is preferable that both the rotation and the rotation are possible. However, the conventional ball and rotating device has a complicated mechanical structure, not only easy movement in the vertical direction, but also has a disadvantage in that the thickness distribution of the film is not uniform because the rotation ratio and the rotation speed of the revolution and rotation are not appropriate.

이에, 본 발명자는 상기한 단점들을 해결하여 기판상에 균일한 증착두께를 갖는 아연피막을 진공증착시키기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것이다.Accordingly, the present inventors have conducted research and experiments to solve the above disadvantages and vacuum deposit a zinc film having a uniform deposition thickness on a substrate, and propose the present invention based on the results.

본 발명은 기판상에 아연 피막을 진공증착시 증발원으로 망사형의 덮개가 구비된 흑연재질의 저항가열 증발원을 사용하고 기판의 공자전비 및 공전수를 적절히 제어하므로서 균일한 두께를 가지는 아연 진공증착 피막을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.According to the present invention, a zinc vacuum deposition film having a uniform thickness is obtained by using a resistive heating evaporation source made of graphite material with a mesh-type cover as an evaporation source when vacuum depositing a zinc film on a substrate and controlling the co-electron ratio and the number of revolutions of the substrate appropriately. To provide a method for producing, the purpose is.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 기판 공자전 장치 및 저항 가열증발원을 포함하여 구성되는 진공증착장치를 이용하여 기판상에 아연 진공증착 피막을 형성시키는 방법에 있어서, 상기 저항가열 증발원으로 망사형의 덮개가 구비된 증발원을 사용하고, 상기 기판공자전 장치에 장착된 기판의 공자전비가 1:6.5이고, 공전수가 분당 15-30의 회전수 범위가 되도록 기판을 공전시키는 것을 포함하여 이루어지는 증착두께가 일정한 아연진공 증착 피막을 제조하는 방법에 관한 것이다.The present invention provides a method for forming a zinc vacuum deposition film on a substrate by using a vacuum deposition apparatus including a substrate co-rotating device and a resistance heating evaporation source, wherein the resistance heating evaporation source has an evaporation source having a mesh cover. Using a vacuum deposition film having a uniform deposition thickness comprising a revolving substrate having a revolving ratio of 1: 6.5 and a revolving number of revolutions of 15-30 revolutions per minute; It relates to a manufacturing method.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 목적을 달성하기 위하여 본 발명에서는 증발원으로는 제1도에 나타낸 바와같은 망사형 덮개가 구비된 흑연재질의 저항가열 증발원을 사용함이 바람직하다.In order to achieve the above object, in the present invention, it is preferable to use a resistive heating evaporation source of graphite material having a mesh cover as shown in FIG.

이때 증발원의 용적을 700g/㎡ 이상의 아연도금이 가능하도록 350cc 이상으로 하였으며, 벽의 두께는 전력을 고려하여 1-2mm 범위로 함이 보다 바람직하다.At this time, the volume of the evaporation source was set to 350cc or more to enable zinc plating of 700g / m 2 or more, and the thickness of the wall is more preferably in the range of 1-2mm in consideration of electric power.

증발원으로 망사형 덮개가 구비된 것을 사용하는 이유는 증착율을 높여 후막을 제조할 경우 증발물질 표면의 산화물이 튀어 증발물질과 동시에 기판상에 증착되므로써 피막의 표면에 결함이 발생되는 현상을 막고 증착기체의 분포를 균일하게 하기위해서이며, 그 재질은 스테인레스가 바람직하다.The reason for using a mesh cover as an evaporation source is that when the thick film is manufactured by increasing the deposition rate, the oxide on the surface of the evaporation material is splashed and deposited on the substrate at the same time as the evaporation material to prevent defects on the surface of the film. In order to make the distribution of uniform, the material is preferably stainless.

본 발명에서는 기판 회전장치로 제2도에 나타낸 바와같은 기판 공자전장치를 사용하고, 이때, 기판(9)의 공자전비는 1:6.5 및 공전수는 분당 15-30의 회전수 범위를 만족하도록 함이 바람직하며 그 이유는 다음과 같다.In the present invention, a substrate revolving device as shown in FIG. 2 is used as the substrate rotating device, wherein the revolving ratio of the substrate 9 is 1: 6.5 and the revolving water satisfies the rotational speed range of 15-30 per minute. It is preferable that the reason is as follows.

공자전전비가 1:6.5가 되도록 한 것은 증발된 아연증기 입자의 기판(9)에의 궤적이 전체 증착시간동안 고르게 기판(9) 위를 휩쓸고 지나가게 하며, 기어 상호간의 간섭의 영향이 없도록 고려하였기 때문이다.The co-rotation ratio was 1: 6.5 because the trajectory of the vaporized zinc vapor particles on the substrate 9 was evenly swept over the substrate 9 during the entire deposition time, and the effect of interference between gears was considered. to be.

그리고 공전회전수를 분당 15-30 회전수 범위로 제한한 것은 공전회전수가 분당 15회 미만으로 회전속도가 늦을 경우에는 증착두께가 균일하지 못하여 두께 편차가 심해질 우려가 있으며, 30회 이상으로 회전속도가 빠를 경우에는 증발기체들이 기판(9)의 표면에 원할한 부착이 어려워 증착율이 저하될 우려가 있기 때문이다.In addition, the limit of idle revolutions in the range of 15-30 revolutions per minute is less than 15 revolutions per minute, and if the rotation speed is slow, the deposition thickness may be uneven and the thickness variation may increase. This is because when the evaporation gas is fast, the evaporation gases are difficult to adhere to the surface of the substrate 9, and the deposition rate may be lowered.

한편, 본 발명에서 기판(9)은 제2도에 나타낸 바와같이, 코팅층의 성장이 가능한한 수직 방향으로 이루어지고 최대의 증착속도를 낼 수 있도록 증발원(14) 방향으로 소정의 각도로 경사지게 설치된다.On the other hand, in the present invention, as shown in FIG. 2, the substrate 9 is installed to be inclined at a predetermined angle in the direction of the evaporation source 14 so that the growth of the coating layer is made in the vertical direction as much as possible and the maximum deposition rate can be achieved. .

이하, 본 발명에 의한 기판(9)상에 아연 진공증착 피막을 제조하는 방법을 제2도를 참고하여 설명한다.Hereinafter, a method for producing a zinc vacuum deposition film on the substrate 9 according to the present invention will be described with reference to FIG.

본 발명에 있어서 증발원(14)과 기판 공자전 장치(A)를 이용하여 아연피막을 제조하기 위해서는 증발원(14)과 덮개(13)를 대기중에서 충분히 청정 및 건조시킨 후, 진공조(17)내에 설치되어 있는 수냉이 되는 증발원 지지대(18)에 고정시키고 기판(9)은 통상의 방법에 의하여 탈지 및 세정후, 기판 홀더(10)에 부착시킨다.In the present invention, in order to manufacture the zinc coating using the evaporation source 14 and the substrate co-rotating device A, the evaporation source 14 and the cover 13 are sufficiently cleaned and dried in the air, and then the vacuum chamber 17 The substrate 9 is attached to the substrate holder 10 after being degreased and washed by a conventional method.

증발원(14)에는 증발물질인 각형의 금속 아연덩어리(15)를 넣고 덮개(13)를 씌운후, 셔터(11)를 닫고 유회전 펌프(도면에 미도시)와 부스터 펌프(도면에 미도시)를 사용하여 진공조(17)내의 진공도가 10-2Torr 까지 되도록 배기한 후, 유확산 펌프(도면에 미도시) 또는 터보펌프(도면에 미도시)를 사용하여 진공조(17)내의 진공도가 10-4Torr 이하가 될때까지 배기시킨다.In the evaporation source 14, a rectangular metal zinc chunk 15 of evaporation material was put and a lid 13 was put thereon, the shutter 11 was closed and a flow pump (not shown) and a booster pump (not shown). After evacuating the vacuum in the vacuum chamber 17 to 10 -2 Torr using a vacuum pump, the vacuum degree in the vacuum chamber 17 using a diffusion pump (not shown) or a turbo pump (not shown) is used. Exhaust until it is below 10 -4 Torr.

기판(9)과 피막과의 밀착성이 중요시되는 경우, 글로우 방전 또는 고진공 스퍼터링에 의해 기판 청정을 행한 후 기판(9)을 회전시키며 가열을 시작한다.When the adhesion between the substrate 9 and the film is important, heating is started by rotating the substrate 9 after cleaning the substrate by glow discharge or high vacuum sputtering.

상기한 기판(9)의 온도가 150-180℃ 범위에 달하면 증발원(14)에 전류를 가하여 증발시의 전력의 약 80% 전력에서 충분히 탈개스 시킨다. 탈개스 공정중에는 증발원(14)의 표면과 증발물질(15)에 잔류하는 불순물들이 제거되게 된다. 탈개스 공정이 끝나면 원하는 온도와 증발율의 전력으로 맞춘후 셔터(11)를 열고 기판(9)에 증착시킨다.When the temperature of the substrate 9 reaches 150-180 ° C., a current is applied to the evaporation source 14 to sufficiently degas at about 80% of the power at the time of evaporation. During the degassing process, impurities remaining on the surface of the evaporation source 14 and the evaporation material 15 are removed. After the degassing process is set to the power of the desired temperature and evaporation rate, the shutter 11 is opened and deposited on the substrate 9.

상기와 같이 행해지는 아연 진공증착 피막의 제조시 본 발명에서는 기판 홀더(10)에 기판(9)을 2개 이상 설치하여 동일한 두께를 가지는 아연피막을 동시에 2개 이상 제조할 수도 있다.In the production of the zinc vacuum deposition coating carried out as described above, in the present invention, two or more substrates 9 may be provided in the substrate holder 10 to manufacture two or more zinc coatings having the same thickness.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

본 발명의 저항 가열 증발원과 기판 공자전 장치를 사용하여 아연을 진공증착하였다. 소재로는 두께 0.9mmt 의 냉연강판을 사용하였으며, 증발율은 2g/㎡/min, 기판의 온도는 150℃ 를 유지하였으며 내치와 외치의 기어비를 196:30으로 하여 공전과 자전의 비가 약 1:6.5가 되도록 하여 시료의 공전 주기는 20rev/min 자전 주기는 130rev/min 으로 하였다. 그리고 기판은 증발원 방향으로 20°각도를 가지고 기울어지도록 하였다. 피막의 두께를 무게차 측정방법으로 측정한 결과 제3도에 나타낸 바와같이 +/-0.2%/cm 이내에서 균일하게 증착되었음이 확인되었다.Zinc was vacuum-deposited using the resistive heating evaporation source of the present invention and the substrate co-rotating device. Cold rolled steel plate with a thickness of 0.9mmt was used as the material, the evaporation rate was 2g / ㎡ / min, the temperature of the substrate was maintained at 150 ℃, and the ratio of revolution and rotation was about 1: 6.5 with the gear ratio between internal and external teeth being 196: 30. The rotation period of the sample was set to 20 rev / min, and the rotation period of the sample was set to 130 rev / min. The substrate was inclined at an angle of 20 ° toward the evaporation source. As a result of measuring the thickness of the film by the method of measuring the weight difference, it was confirmed that the film was uniformly deposited within +/- 0.2% / cm as shown in FIG.

[실시예 2]Example 2

상기 실시예 1과 같은 방법으로 아연을 진공 증착하였으며, 기판 홀더에 2개의 기판을 고정하였다. 증착후 무게차 측정방법으로 두 기판의 두께차를 비교한 결과 +/-1% 오차 범위에서 균일하게 증착되었음이 확인되었다.Zinc was vacuum deposited in the same manner as in Example 1, and two substrates were fixed to the substrate holder. As a result of comparing the thickness difference between the two substrates by the weight difference measurement method after deposition, it was confirmed that the deposition was uniform in the +/- 1% error range.

[비교예 1]Comparative Example 1

상기 실시예 1과 같은 방법으로 아연을 증착하였으나 시료의 공전 주기를 5rev/min 으로 하고 자전 주기를 32.5rev/min 으로 하여 증착후 피막의 위치별 두께차를 비교한 결과 +/-2%/cm 의 두께편차를 보여 균일하지 않음을 알 수 있다.Zinc was deposited in the same manner as in Example 1, but the retardation period of the sample was 5 rev / min and the rotation period was 32.5 rev / min. It can be seen that the thickness deviation of the film is not uniform.

[비교예 2]Comparative Example 2

상기 실시예 1과 같은 방법으로 아연을 증착하였으나 시료의 공전 주기를 40rev/min 으로 하고 자전 주기를 260rev/min 으로 하였을 경우, 증착률이 현저히 감소하는 문제점이 발생하여 원하는 두께의 피막을 얻을 수가 없었다.Although zinc was deposited in the same manner as in Example 1, when the revolving period of the sample was 40 rev / min and the revolving period was 260 rev / min, the deposition rate was significantly reduced, so that a film having a desired thickness could not be obtained. .

[비교예 3]Comparative Example 3

저항 가열증발원을 종래 사용하던 통상의 증발원을 사용하여 진공 증착하였다. 덮개를 사용하지 않았으며, 기판은 고정한 후 증착하고 기판의 부위별 두께를 무게차 방법에 의해 측정하여 그 결과를 제4도에 나타내었다. 제3도에서 알 수 있는 바와 같이, 두께 편차가 최대 35% 까지 나고 있음을 확인할 수 있다.The resistive heating evaporator was vacuum deposited using a conventional evaporation source. No cover was used, the substrate was fixed and deposited, and the thickness of each part of the substrate was measured by a weight difference method, and the results are shown in FIG. 4. As can be seen in Figure 3, it can be seen that the thickness deviation is up to 35%.

상술한 바와같이, 본 발명에서는 저항 가열 증발원으로 망사형의 덮개가 구비된 흑연재질의 증발원을 사용하고, 시편 공자전 장치의 공자전비 및 회전수를 적절히 제어하므로서 증착 두께가 2% 이내에서 균일한 피막을 얻을 수 있었으며 동일한 두께의 증착 강판을 다수개 얻을 수 있는 효과가 있다.As described above, the present invention uses a graphite evaporation source equipped with a mesh cover as a resistive heating evaporation source, and the deposition thickness is uniform within 2% by appropriately controlling the co-rotation ratio and rotation speed of the specimen co-rotation device. The film was obtained, and there is an effect of obtaining a plurality of deposited steel sheets of the same thickness.

Claims (1)

기판 공자전 장치 및 저항 가열증발원을 포함하여 구성되는 진공증착장치를 이용하여 기판상에 아연 진공증착 피막을 형성시키는 방법에 있어서, 상기 저항가열 증발원으로 망사형의 덮개가 구비된 증발원을 사용하고, 상기 기판 공자전 장치에 장착된 기판의 공자전비가 1:6.5이고, 공전수가 분당 15-30의 회전수 범위가 되도록 기판을 공전시키는 것을 포함하여 이루어짐을 특징으로 하는 증착두께가 일정한 아연 진공증착 피막 제조방법In the method for forming a zinc vacuum deposition film on a substrate by using a vacuum deposition apparatus comprising a substrate co-rotating device and a resistance heating evaporation source, using the evaporation source having a mesh cover as the resistance heating evaporation source, A vacuum deposition film having a uniform deposition thickness, comprising: revolving the substrate so that the revolving ratio of the substrate mounted on the substrate revolving device is 1: 6.5 and the revolving water is in the range of rotation speed of 15-30 per minute. Manufacturing method
KR1019950023894A 1995-08-02 1995-08-02 Manufacturing method for zn vapor deposited layer with uniform thickness KR0143473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950023894A KR0143473B1 (en) 1995-08-02 1995-08-02 Manufacturing method for zn vapor deposited layer with uniform thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950023894A KR0143473B1 (en) 1995-08-02 1995-08-02 Manufacturing method for zn vapor deposited layer with uniform thickness

Publications (2)

Publication Number Publication Date
KR970011010A KR970011010A (en) 1997-03-27
KR0143473B1 true KR0143473B1 (en) 1998-08-17

Family

ID=19422709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950023894A KR0143473B1 (en) 1995-08-02 1995-08-02 Manufacturing method for zn vapor deposited layer with uniform thickness

Country Status (1)

Country Link
KR (1) KR0143473B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497623B1 (en) * 2004-12-21 2005-07-01 (주)브이씨티 Deposition device and method for near infrared transmitting multi-layered thin film on the surface of quartz lamp heater

Also Published As

Publication number Publication date
KR970011010A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
Lugscheider et al. Comparison of the structure of PVD-thin films deposited with different deposition energies
KR20090122247A (en) Method for coating a substrate and metal alloy vacuum deposition facility
CN101518935A (en) PVD nano composite ceramic coating screw and method for manufacturing same
US7541070B2 (en) Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
KR20130060544A (en) Method and apparatus for forming coating layer with nano multi-layer
CN1018021B (en) Solar energy selective absorption film and preparation method thereof
KR0143473B1 (en) Manufacturing method for zn vapor deposited layer with uniform thickness
CN111908803B (en) Super-hydrophilic and high-wear-resistance film layer and preparation method thereof
JPH1072666A (en) Formation of apatite thin coating
WO2022047948A1 (en) Method for preparing aluminum-based conductive thin film with multilayer composite structure
KR100711488B1 (en) Method for manufacturing aluminum-magnesium alloy films
Musil et al. Deposition of copper films by unbalanced dc magnetron sputtering
KR20150076467A (en) Aluminum coating layer with controllable structure and the method thereof
JP3396943B2 (en) Manufacturing method of gas barrier metal vapor deposited film
KR100258056B1 (en) The method for making tin oxide film of gas sensor by sn target with ion beam sputtering
JPH0850815A (en) Transparent conductor and manufacture thereof
KR100957928B1 (en) Method for manufacturing Al-Mg alloy films
KR100268216B1 (en) An ion plating apparatus and method using large sized hollow cathod discharge gun
KR100256331B1 (en) Method of manufacturing zn-coated steel
KR100258055B1 (en) The method for making tin oxide film of gas sensor with tin oxide target by ion beam sputtering
EP1722006A1 (en) Method for the anticorrosion surface treatment of containers for fluids, container provided by means of the method, and apparatus for performing the method
CN213624350U (en) Film coating device for metal ceramic composite nano coating
JPS6157905B2 (en)
US3963839A (en) Method for the preparation of thin layers of tungsten and molybdenum
WO2022141168A1 (en) Metal nitride film for oxygen sensor and preparation method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010327

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee