KR0139130B1 - Method of preparing cubic ferrite powder for magnetic tape - Google Patents

Method of preparing cubic ferrite powder for magnetic tape

Info

Publication number
KR0139130B1
KR0139130B1 KR1019950015039A KR19950015039A KR0139130B1 KR 0139130 B1 KR0139130 B1 KR 0139130B1 KR 1019950015039 A KR1019950015039 A KR 1019950015039A KR 19950015039 A KR19950015039 A KR 19950015039A KR 0139130 B1 KR0139130 B1 KR 0139130B1
Authority
KR
South Korea
Prior art keywords
substitution
coercive force
hexagonal ferrite
magnetic
ions
Prior art date
Application number
KR1019950015039A
Other languages
Korean (ko)
Other versions
KR970001271A (en
Inventor
홍양기
박상준
정홍식
Original Assignee
권석명
동양화학공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권석명, 동양화학공업주식회사 filed Critical 권석명
Priority to KR1019950015039A priority Critical patent/KR0139130B1/en
Publication of KR970001271A publication Critical patent/KR970001271A/en
Application granted granted Critical
Publication of KR0139130B1 publication Critical patent/KR0139130B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2691Other ferrites containing alkaline metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Abstract

육방정계 페라이트의 자기적 물성을 제어하기 위한 치환이온 중k-sn의 독특한 특성을 이용하여 기존의 육방정계 페라이트에 비해 포화자화 값의 감소없이 보자력의 온도계수가 제로일 뿐만 아니라 0.05㎛이하의 비표면적 50㎡/g이상이며 보자력 분포도가 뛰어난 물성을 가지는 육방정계 페라이트 미분말 제조방법.By using the unique properties of k-sn among substituted ions to control the magnetic properties of hexagonal ferrites, the coefficient of coercivity is zero as well as the specific surface area of 0.05 µm or less without decreasing the saturation magnetization value compared to conventional hexagonal ferrites. Hexagonal ferrite fine powder manufacturing method having more than 50㎡ / g and having excellent coercive force distribution.

Description

자기기록용 육방정계 페라이트 미분말의 제조방법Manufacturing method of hexagonal ferrite fine powder for magnetic recording

본 발명은 자기기록용 육방정계 페라이트 미분말의 제조방법에 관한 것으로서, 더욱 상세하게는 k-sn의 독특한 특성을 이용하는 유리결정화법에 의한 자기기록용 육방정계 페라이트 미분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a hexagonal ferrite fine powder for magnetic recording, and more particularly, to a method for producing a hexagonal ferrite fine powder for magnetic recording by glass crystallization using the unique characteristics of k-sn.

고밀도 자기기록용 테이프는 표면이 극도로 매끄럽고, 보자력이 높으며 단파장 특성이 우수한 것이 요구되어진다. 이때 사용되는 자성분말은 보자력과 입자의 비표면적이 높고 단파장에서의 자기감자현상이 작아야 한다. 고밀도 자기기록재료로 채택되고 있는 육방정계 페라이트는 0.1㎛이하의 초미립자로 자화반전분포가 뛰어나며 단파장 출력이 우수하고 결정자기 이방성을 제어에 따른 보자력의 범위가 넓은 장점을 가지고 있다. 또한 화학적으로 안정한 산화물로서 양산화 및 취급하기가 쉬우며, 기존의 테이프 도포기술 및 장치를 그대로 이용할 수 있는 장점을 아울러 가지고 있다.High density magnetic recording tapes are required to have extremely smooth surfaces, high coercive force and excellent short wavelength characteristics. At this time, the magnetic powder used should have high coercivity and specific surface area of particles, and small magnetic field phenomenon at short wavelength. Hexagonal ferrite, which is adopted as a high density magnetic recording material, has ultra-fine particle size of less than 0.1㎛, has excellent magnetization inversion distribution, excellent short wavelength output, and wide range of coercivity by controlling magnetic anisotropy. In addition, it is easy to mass-produce and handle as a chemically stable oxide, and has the advantage that the existing tape coating technology and apparatus can be used as it is.

그러나 포화자화값이 낮고 보자력의 온도계수가 3∼5 Oe(Oersted)/℃로 높은 단점을 가지고 있다.However, it has a disadvantage of low saturation magnetization value and high coercive temperature coefficient of 3 to 5 Oe (Oersted) / ℃.

이러한 육방정계 페라이트의 물성제어의 조성주의 치환이온의 종류와 치환량 및 제조방법에 따라 달라진다. 순수한 바륨페라이트의 경우 큰 값의 결정자기 이방성 때문에 높은 보자력을 가지며, 입자크기 또한 수㎛이상으로 크기 때문에 자기기록용 자성분말로는 부적합하다.The composition of the hexagonal ferrite properties control depends on the type of the substitution ion, the substitution amount and the production method. Pure barium ferrite has high coercive force due to large crystallite anisotropy, and its particle size is also larger than several micrometers, which is not suitable for magnetic recording magnetic powder.

바륨 페라이트 높은 보자력을 갖는 것은 결정구조적으로 큰 이온 반경을 가진 Ba이온이 포함된 면내의 5배위 자리가 결정비대칭선을 나타내 큰 결정자기 이방성 값을 나타내기 때문이다. 이렇게 높은 보자력 값을 낮추기 위해서는 5배위 자리의 Fe+3이온을 다른 치환이온으로는 Co, Ni, Zn의 2가 이온과 Ti, Sn, Nb 등의 4, 5가 이온들이다.Barium ferrite has a high coercivity because the fifth coordination site in the plane containing Ba ions having a large ionic radius in crystal structure exhibits crystal asymmetry and shows large crystal magnetic anisotropy. In order to reduce such high coercivity, Fe + 3 ions of the 5th coordination site are divalent ions of Co, Ni, and Zn, and tetravalent ions such as Ti, Sn, and Nb.

2가이온만 치환할 경우 육방정계 페라이트의 구조내부에 스피넬(spinel) 블럭이 불규칙적으로 삽입되거나 유리된 상태의 스피넬 페라이트 및 치환량이 일정하지 않은 육방정계 페라이트가 생성되어 보자력을 낮추고 포화자화갑의 증가 및 보자력의 온도계수가 향상되는 효과는 있지만 입자크기 및 보자력의 분포도는 매우 불균일한 상태가 된다.When only divalent ions are substituted, spinel ferrites with irregular insertion or release of spinel blocks are formed inside the structure of hexagonal ferrites and hexagonal ferrites with inconsistent substitutions are generated to lower coercivity and increase saturation magnetization. And the effect of improving the temperature coefficient of the coercive force, but the particle size and the distribution of the coercive force become very nonuniform.

반면에 Ti, Sn, Nb 등의 4, 5가 이온들만 치환하는 경우에는 입자크기는 감소되고 불균일한 것은 나타나지 않으며, 포화자화갑의 감소와 높은 보자력갑을 유지하는단점이 있다. 따라서 +2가 이온과 +4가 또는 +5가이온의 치환은 구조내에서 각기 다른 역할을 행하기 때문에 원자가 보상을 이루면서 치환량을 조절하여야 한다.On the other hand, in the case of replacing only tetravalent and tetravalent ions such as Ti, Sn, and Nb, the particle size is reduced and does not appear to be non-uniform, and there are disadvantages of reducing the saturated magnetization pack and maintaining a high coercivity pack. Therefore, since the substitution of +2 and +4 or +5 ions plays different roles in the structure, the substitution amount must be adjusted while achieving valence compensation.

고밀도 자기기록용 육방정계 폐라이트의 제조방법에 관한 기술은 수열합성-가열결정화법(일본 특허공개 소63-164203, 특허공고 평3-3361, 대한민국 특허공보 89-1120, 89-5137 등), 공침-소성법(일본 특허공고 소63-12107, 평1-278425 등), 유리-재결정화법(일본 특허공고 소56-169128, 소61-36685, 평1-22205, 대한민국 특허공개공보 89-5660 등) 등이 공지된 바 있다.Techniques for manufacturing a hexagonal waste light for high density magnetic recording include hydrothermal synthesis-heat crystallization method (Japanese Patent Publication No. 63-164203, Japanese Patent Publication No. 3-3361, Korean Patent Publication 89-1120, 89-5137, etc.), Coprecipitation-firing method (Japanese Patent Publication No. 63-12107, Hei 1-278425, etc.), Glass-Recrystallization Method (Japanese Patent Publication No. 56-169128, No. 61-36685, Hei 1-22205, Republic of Korea Patent Publication No. 89-5660 And the like) have been known.

상기 공지기술 중 유리-재결정화법은 다른 방법에 의해 제조된 육방정계 폐라이크 자에 비해 입자크기가 작고 포화자화가 크며 원소치환이 용이하여 보자력을 정밀하게 제어할 수 있으며 또한 분산성이 양호한 장점을 가지고 있다. 따라서 유리-재결정화법에 의거하여 우수한 기록특성을 갖는 자성 미분말을 제조하는 것이 가장 유리한 것으로 알려져 있다.The glass-recrystallization method of the above-mentioned known technology has the advantages of small particle size, large saturation magnetization, and easy elemental substitution, so that the coercive force can be precisely controlled and good dispersibility, compared to hexagonal waste lye produced by other methods. Have. Therefore, it is known that it is most advantageous to prepare a magnetic fine powder having excellent recording characteristics based on the glass-recrystallization method.

알려진 가장 효과적인 치환이온으로는 Co-Ti계로서 보자력을 획기적으로 감소시키지만 보자력의 온도계수가 3∼50e/℃로 높아지는 단점을 가지고 있다.The most effective substitution ion known is Co-Ti-based, which significantly reduces the coercive force, but has the disadvantage of increasing the temperature coefficient of the coercive force to 3 to 50e / ° C.

보자력 온도계수가 높아지는 원인은 치환원소인 Co와 Ti 때문이며 또한 결정의 결정화도도 밀접한 관계를 갖고 있다.The reason why the coercive temperature coefficient increases is due to the substitution elements Co and Ti, and the crystallinity of the crystal is closely related.

결정의 결정화도는 조성 이외에 열처리온도에 의존하며 열처리온도가 높을수록 결정화도는 좋아지고, 아울러 보자력의 분포도도 향상되지만 보자력의 온도계수가 상승하는 단점이 있다. 또한 보자력의 온도 계수가 큰 값을 나타내면 주위환경에 따른 자기기록 및 재생특성이 달라져 안정한 데이타의 보존이 어려운 단점이 있다.The crystallinity of the crystal depends on the heat treatment temperature in addition to the composition. The higher the heat treatment temperature, the better the crystallinity and the better the distribution of the coercive force, but the temperature coefficient of the coercivity increases. In addition, if the temperature coefficient of the coercivity is large, the magnetic recording and reproducing characteristics are changed according to the surrounding environment, which makes it difficult to preserve stable data.

따라서 기존의 육방정계 페아이트에 비해 포화자화갑의 감소없이 보자력의 온도계수가 제로일 뿐만 아니라 비표면적이 50m2/g 이상이고 보자력 분포도가 뛰어난 육방정계 페라이트 자성분말의 개발이 요구되고 있다.Therefore, it is required to develop hexagonal ferrite magnetic powders having a specific surface area of more than 50 m2 / g and excellent coercive force distribution, as well as zero coercive temperature coefficients, without decreasing the saturation magnetization, compared to conventional hexagonal pate.

육방정계 페라이트의 보자력 온도계수를 향상시키기 위한 공지기술로는 과량의 +2가 이온을 사용9일본 특허공고 평3-108303)하거나 Co-Sn, Zn-Sn, Co-W 혹은 Co-Mo의 치환계를 사용(일본 특허공고 소63-193505, 소62-91425, 평2-23601) 및 육방정계 페라이트 표면에 스피넬 페라이트를 피복하는 방법(일본 특허공고 소61-197426, 소63-250103)이 있다.As a well-known technique for improving the coercive temperature coefficient of hexagonal ferrites, an excess of +2 valent ions are used. 9 Japanese Patent Publication No. Hei 3-108303) or substitution of Co-Sn, Zn-Sn, Co-W or Co-Mo. System (Japanese Patent Publication Nos. 63-193505, 62-91425, Hei 2-23601) and a method of coating spinel ferrite on a hexagonal ferrite surface (Japanese Patent Publication Nos. 61-197426 and 63-250103). .

상기 공지기술 중 과량의 +2가 이온을 사용하는 기술의 경우 상슬한 육방정계 페라이트의 구조내부에 스피넬 블럭이 불규칙적으로 삽입되거나 유리된 상태의 스피넬 페라이트 및 치환량이 일정하지 않은 육방정계 페라이트가 생성되어 보자력을 낮추고 포화자화값의 증가 및 보자력의 온도 계수가 향상되는 효과는 있지만 입자크기 및 보자력의 분포도가 매우 불균일해지는 단점이 있는 것이다.In the case of the technique using an excess of +2 ions in the known technology, the spinel ferrite in which the spinel block is irregularly inserted or released in the structure of the sharp hexagonal ferrite, and the hexagonal ferrite having an irregular substitution amount is generated. The effect of lowering the coercive force, increasing the saturation magnetization value and improving the temperature coefficient of the coercive force is that the particle size and the distribution of the coercive force are very uneven.

또한 상기 공지기술 중 Co-Sn, Zn-Sn, Co-W혹은 Co-Mo의 치환계를 사용하는 방법과 같은 것은 우선 치환이온이 육방정계 페라이트 구조내부로 균일하게 치환 된다고 하는 가정하에 균일한 물성에 대한 평가로 이루어져야 한다. 따라서 Sn은 Ti에 비해 치환능력이 떨어지며, 또한 Co는 Zn에 비해 보자력 분포를 불균일하게 만드는 치환이온이다. 또한 치환이온들의 균일한 치환을 돕는 Ti, Nb에 Sn의 사용은 보자력 온도계수의 향상을 도모할 수는 있지만 포화자화값의 감소를 가져오게 된다.In addition, among the known techniques such as a method using a substitution system of Co-Sn, Zn-Sn, Co-W or Co-Mo, uniform physical properties are first assumed that substitution ions are uniformly substituted into a hexagonal ferrite structure. Should be assessed. Therefore, Sn has a lower substitution capacity than Ti, and Co is a substitution ion which makes the coercive force distribution uneven compared to Zn. In addition, the use of Sn in Ti and Nb, which helps uniform substitution of substituted ions, can improve the coercive force coefficient coefficient, but leads to a decrease in saturation magnetization value.

W이나 Mo의 경우는 원자반경이 Fe에 비해 상대적으로 작은 것으로 치환이 용이하지 못한 이온들로 불균일한 자성상이 혼재된 상태이고 입자크기 또한 매우 불균일 하게 되기 쉽다.In the case of W or Mo, the atomic radius is relatively smaller than that of Fe, and ions which are not easily substituted are mixed with non-uniform magnetic phases, and particle sizes tend to be very nonuniform.

또한 상기 공지기술 중 육방정계 페라이트의 표면에 스피넬 페라이트를 피복하는 방법은 가장 이상적인 방법이지만 0.05㎛ 정도의 초미립 입자개개에 균일하게 피복시키는 것은 매우 어렵다.In addition, the method of coating the spinel ferrite on the surface of the hexagonal ferrite in the known technique is the most ideal method, but it is very difficult to uniformly coat the individual ultrafine particles of about 0.05㎛.

이에 본 발명은 상기한 고지기술의 문제점들을 두 치환이온의 복합적인 작용을 이용하여 개선한 것으로서 본 발명의 제1목적은 기존의 육방정계 페라이트에 비해 포화자화값의 감소없이 보자력의 온도계수가 제로인 육방정계 페라이트 자성분말 제조방법을 제공하는 것이다.Accordingly, the present invention improves the problems of the above-described high technology by using a complex action of two substituted ions, and the first object of the present invention is hexagonal having a coercivity of zero thermal coefficient without decreasing saturation magnetization value compared to conventional hexagonal ferrites. It is to provide a method for producing a magnetic ferrite powder.

본 발명의 제2목적은 비표면적이 0.05㎛이하이고 보자력 분포도가 50m2/g 이상인 우수한 육방정계 페라이트 자성분말을 제조하는 방법을 제공하는 것이다.A second object of the present invention is to provide a method for producing an excellent hexagonal ferrite powder having a specific surface area of 0.05 µm or less and a coercive force distribution of 50 m 2 / g or more.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

육방정계 페라이트를 형성하는 AO와 Fe₂O₃와, 물성을 제어하기 위한 치환성분을 혼합하여 800∼1300℃로 열처리한 후 분쇄하여 과잉의 AO가 함유된 전구체를 제조한 후, 이에 유리질 성분인 Na₂CO₃및 B₂O₃를 균일하게 혼합한다. 그렇게 한 다음 상기의 혼합물들을 백금도가니에 투입한 후 1100∼1350℃로 용융시켜서 용융물을 수중으로 투입하여 급냉시키므로써 비정질체를 얻는다.AO and Fe₂O₃, which form hexagonal ferrite, and substituted components for controlling physical properties were mixed, heat treated at 800 to 1300 ° C, and then ground to prepare a precursor containing excess AO. Thus, Na₂CO₃ and B₂O₃, which are glass components, were prepared. Mix uniformly. Thereafter, the mixtures were put in a platinum crucible and then melted at 1100-1350 ° C. to melt the molten material in water and quenched to obtain an amorphous body.

이렇게 하여 얻어진 비정질체를 전기로 중에서 640∼760℃로 열처리한 후 분쇄하여 산용액으로 유리질 성분 및 잉여원소를 녹이고 물로 수세, 건조하여 다음의 일 반식으로 표시되는 조성을 갖는 육방정계 페라이트 미분말을 제조하는 것이다.The amorphous body thus obtained is heat-treated at 640-760 ° C. in an electric furnace, and then pulverized to dissolve the glass component and the surplus element in an acid solution, washed with water and dried to prepare a hexagonal ferrite fine powder having the composition shown in the following general formula. will be.

A1-WKWF e12-(x+y+z)Mix {Mj}yS nZO 219 A 1 - W K W F e 12- (x + y + z) M i x {M j } y S n Z O 2 19

여기서here

0.04 ≤w ≤ 0.15, 0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.6, 0.25 ≤ z ≤ 0.7 이고, A는 Ba, Sr, Pb, Ca 중 선택된 어느 하나이상의 원소이고, Mi는 Co, Ni, Zn 중 선택된 어느 하나이상의 원소이고, Mj는 Ti, Nb, Ta, Si 중 선택된 어느 하나이상의 원소이다.0.04 ≤ w ≤ 0.15, 0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.6, 0.25 ≤ z ≤ 0.7, A is at least one element selected from Ba, Sr, Pb, Ca, and M i is Co, Ni, Zn At least one element selected from among, M j is at least one element selected from among Ti, Nb, Ta, Si.

본 발명에 따르면 과인의 AO가 함유된 전구체를 제조하는 것은 개개의 원료를 혼합하여 용융 및 급냉으로 비정질체를 얻는 것보다 저구체를 제조한 후 유리질 성분과 혼합하여 용융 및 급냉시켜 얻어진 비정질체는 이온간의 거리가 짧아 결정화 반응성이 커지므로 육방정계 페라이트의 결정내부에 치환이온들의 균일한 치환이 용이하며, 또한 얻어진 분말의 입자분포 및 보자력 분포가 우수하게 되기 때문이다.According to the present invention, the preparation of the precursor containing the AO of the superphosphate is that the amorphous body obtained by melting and quenching by mixing with the glassy component after preparing the precursor rather than mixing the respective raw materials to obtain an amorphous body by melting and quenching This is because the distance between the ions is short and the crystallization reactivity is increased, so that the uniform substitution of the substituted ions within the crystal of the hexagonal ferrite is easy, and the particle distribution and the coercive force distribution of the powder obtained are excellent.

또한 치환이온들 중 K와 Sn은 개개의 성분으로서의 영향보다는 두치환이온을 동시에 사용할 때 이하 설명하는 바와 같이 매우 독특한 현상을 일으키게 된다. 바륨 페라이트가 높은 보자력을 갖는 것은 결정구조적으로 큰 이온반경을 가진 Ba이 온이 포함된 면내의 5배위 자리가 찌그러져 결정비대칭성을 나타내 큰 결정자기이방성값을 나타내기 때문이다. K는 원자반경이 Ba과 거의 유사하지만 K만을 치환시에는 구조내로의 치환이 용이하지 못하여 보자력의 분포가 매우 불균일한 값을 나타내게 된다. Sn은 Ti에 비해 치환능력이 떨어지지만 K와 Sn을 동시에 사용할 시에는 구조내로의 치환이 매우 용이하게 된다.In addition, K and Sn of the substituted ions cause a very unique phenomenon as described below when using two substituted ions at the same time rather than the effect as individual components. The high coercivity of barium ferrite is due to the distortion of the 5th coordination site in the plane containing Ba ions having a large ionic radius in crystal structure, resulting in crystal asymmetry and high crystal anisotropy. K has almost the same atomic radius as Ba, but when only K is substituted, it is not easy to substitute into the structure, resulting in a very nonuniform distribution of coercive force. Sn has a lower substitution capacity than Ti, but when K and Sn are used simultaneously, the substitution into the structure is very easy.

이처럼 육방정계 페라이트내의 5개의 이온자리는 치환이온들에 대한 선택성을 가지고 있기 때문에 첨가하는 모든 이온들이 구조내로 치환되는 것은 아니다.Since the five ion sites in the hexagonal ferrite have selectivity for substitution ions, not all the added ions are substituted into the structure.

K-Sn을 동시에 사용할 때는 포화자화값이 일정하면서 보자력값이 감소하고, 입자의 키기가 0.05㎛이하로 되어 비표면적이 50m2/g 이상이되고, 또한 보자력 온도계수가 거의 제로에 가깝게 되는 특성을 나타내게 된다.When using K-Sn at the same time, the coercive force value decreases while the saturation magnetization is constant, and the particle height becomes 0.05 μm or less, so that the specific surface area is 50 m 2 / g or more, and the coercive temperature coefficient is almost zero. do.

바람직하게는 K의 치환량을 0.04∼0.5로, Sn의 치환량을 0.25∼0.7로 하는 것이좋다. K의 치환량이 0.04이하일 경우 치환하여 얻어지는 효과가 불충분하며, 치환량을 0.15이상으로 할 경우에 치환하여 얻어지는 효과는 그대로이나 원료의 흡습현상으로 인해 혼합하기가 어려워지고 과잉으로 사용하여도 구조내로의 치환량은 별영향을 받지 않으며 유리질 성분과 함께 이후 공정에서 제거되기 때문이다.Preferably, the substitution amount of K is 0.04 to 0.5, and the substitution amount of Sn is 0.25 to 0.7. When the substitution amount of K is 0.04 or less, the effect obtained by substituting is insufficient. When the substitution amount is 0.15 or more, the effect obtained by substitution is as it is, but it is difficult to mix due to the hygroscopic phenomenon of the raw materials. Is unaffected and removed together with the glassy component in subsequent processes.

Sn의 경우는 치환량이 0.25이하일 경우에는 입자의 크기가 불균일해지고 보자력의 온도계수가 높은 값을 그대로 유지하게 되며, 치환량이 0.7이상으로 할 때는 포한자화값의 감소 및 보자력 온도계수가 -1 Oe/℃이하로 되어 자기적 물성의 저하를 가겨온다.In the case of Sn, when the substitution amount is 0.25 or less, the particle size becomes uneven and the coercive force temperature coefficient is maintained as it is. When the substitution amount is 0.7 or more, the decrease in pore magnetization value and the coercivity temperature coefficient are -1 Oe / ℃ or less. It leads to the fall of magnetic property.

본 발명에서 사용한 보자력 분포도의 측정방법은 자기적 물성을 측정하는 진동시료용 자력계(VSM)를 사용하여 외부자계의 변화에 따른 dM/dH 곡선의 형태와 반치폭을 측정하여 그 지표로 삼았다. dM/dH 곡선형태가 분리되지 않고 그 반치폭의 값(ΔH)이 작아질수록 보자력의 분포도는 좁아져 자성분말의 자기적 물성이 더 균일 해짐을 의미한다.In the method of measuring the coercive force distribution used in the present invention, the shape and the half width of the dM / dH curve according to the change of the external magnetic field were measured by using a magnetometer (VSM) for measuring magnetic properties. As the dM / dH curve is not separated and the half width (ΔH) decreases, the distribution of coercive force becomes narrower, which means that the magnetic properties of the magnetic powder become more uniform.

이하 본 발명을 실시예에 의거하여 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예1∼3Examples 1-3

본 실시예들은 K가 첨가된 상태에 Sn의 치환량을 변화시킨 경우로 제조방법은 다음과 같다. 육방정계 페라이트를 형성하는 BaCO₃와 Fe₂O₃와, 물성을 제어하기 위한 치환성분인 Co₃O₄, TiO₂, Nb₂O5, SnO₂, SiO₂, K₂CO₃를 표1에 따라 칭량하여 균일하게 혼합하고 1000℃에서 열처리한 후 분쇄하여 평균입경 1∼2㎛의 전구체를 만들었다.In the present embodiments, the substitution amount of Sn is changed to the state where K is added. BaCO₃ and Fe₂O₃, which form hexagonal ferrite, and Co₃O₄, TiO₂, Nb₂O 5 , SnO₂, SiO₂, and K₂CO₃, which are substituted components for controlling physical properties, were weighed according to Table 1, mixed uniformly, heat treated at 1000 ° C, and then pulverized. A precursor having an average particle diameter of 1 to 2 µm was made.

여기에 유리질 성분인 Na₂CO₃와 B₂O3 를 칭량하고 균일하게 혼합하여 백금도가니에 투입한 후 1200℃로 용융시킨 후 용융물을 수증급냉하여 얻어진 비정질체를 건조하였다.Here, Na₂CO₃ and B₂O3, which are glass components, were weighed and uniformly mixed into a platinum crucible, melted at 1200 ° C., and the amorphous material obtained by water-cooling the melt was dried.

이것을 전기로 중에서 700℃로 2시간동안 열처리하고 분쇄하여 20% 초산용액으로 유리질 성분 및 잉여원소를 녹여내었다., 이를 물로 수세하고 건조시켜서 육방정계 페라이트 미분말을 얻었다. 얻어진 자성 미분말을 특성을 다음 표 2에 나타내었다.This was heat-treated and pulverized at 700 ° C. for 2 hours in an electric furnace to dissolve the glassy component and the surplus element in 20% acetic acid solution, which was washed with water and dried to obtain a hexagonal ferrite fine powder. The magnetic fine powder thus obtained is shown in Table 2 below.

비교예1∼2Comparative Examples 1-2

비교예1은 K만 치환시킨 경우이며, 비교예2는 Sn만 치환시킨 경우를 나타낸 것이다. 제조방법은 실시에와 동일하며, 얻어진 자성 미분말의 특성을 다음 표2에 나타내었다.Comparative Example 1 is a case where only K is substituted, and Comparative Example 2 is a case where only Sn is substituted. The preparation method was the same as in Example, and the characteristics of the magnetic fine powder thus obtained are shown in Table 2 below.

[표 1]TABLE 1

[표 2]TABLE 2

* 보자력(Hc), 포화자력(σs)와 잔류자화(σr), 각형비(SR), 보자력 온도계수(ΔHc/ΔT, 20℃∼60℃)및 보자력의 분포도(dM/dH 대 H곡선의 반치폭, ΔH)는 고감도 진동시료용 자력제(VSM, TOEI사 VSM-P7)로 10KOe 자장에서 측정하였으며, 비표면적(S.S.A.)은 BET법(SORPTY 1750 series)에 의해 측정하였다. 비교예의 경우 비료예1은 K만 사용할 때로 보자력의 분포값(ΔH)이 낮을수록 균일한 자화반전의 용이성을 나타내므로 보자력의 분포값(ΔH)이 2800 Oe로 높은 것은 자성분말의 보자력이 매우 불균일함을 나타내고, 이 때의 입자크기는 0.1㎛이상으로 고밀도 자기기록용 매체로는 부적합함을 알 수 있다. 비교예2는 Sn만 사용할 때로 보자력 온도계수가 약간은 향상되었지만 포화자화값이 52.5 emu/g으로 낮아져 자기매체에서 재생출력의 저하를 가져오기 때문에 고밀도 자기기록용 매체의 원료로서의 특성이 떨어지게 된다. 상술한 바와 같이 본 발명의 육방정계 페라이트 미분말의 물성은 기존의 육방정계 페라이트에 비해 포화자화값(σs)의 감소없이 보자력의 온도계수(ΔHc/ΔT)가 제로일 뿐만 아니라 0.05㎛이하의 비표면적(S.S.A.)이 50m2/g이상이며 보자력 분포도(ΔH)가 우수하여 컴퓨터용 자기테이프, 고밀도 플로피 디스크, 오디오용 자기테이프 및 비디오용 8㎜자기테이프 등 다양한 용도의 자기기록매체용 자성분말로 적합하다.* Coercive force (Hc), saturation magnetism (σ s ) and residual magnetization (σ r ), square ratio (SR), coercive force temperature coefficient (ΔHc / ΔT, 20 ℃ -60 ℃) and distribution of coercive force (dM / dH vs. H The half width of the curve, ΔH), was measured at 10 KOe magnetic field with a highly sensitive vibration sample magnetic force (VSM, VSM-P7 from TOEI), and the specific surface area (SSA) was measured by the BET method (SORPTY 1750 series). In the case of the comparative example, fertilizer example 1 shows the ease of uniform magnetization reversal as the coercive force distribution (ΔH) is lower when using only K. Therefore, the coercive force of magnetic powder is very uneven because the coercive force distribution (ΔH) is high as 2800 Oe. In this case, it is understood that the particle size at this time is not more than 0.1 µm, which is not suitable for a high density magnetic recording medium. In Comparative Example 2, the coercive force coefficient was slightly improved when only Sn was used, but the saturation magnetization value was lowered to 52.5 emu / g, resulting in a decrease in reproduction power in the magnetic medium. As described above, the physical properties of the hexagonal ferrite fine powder of the present invention have a coercive force coefficient (ΔHc / ΔT) of zero and a ratio of 0.05 μm or less, without decreasing the saturation magnetization value (σ s ), compared to the conventional hexagonal ferrite powder. It has a surface area (SSA) of 50m 2 / g or more and excellent coercive force distribution (ΔH), which is a magnetic component for magnetic recording media for various purposes such as computer magnetic tape, high density floppy disk, audio magnetic tape and 8mm magnetic tape for video. Suitable.

Claims (3)

육방정계 페라이트를 형성하는 AO와 Fe₂O₃와, 물성을 제어하기 위한 치환원소를 혼합하고, 800∼1300℃로 열처리한 후, 분쇄하여 과잉의 AO가 함유된 전구체를 제조하고, 여기에 유리질 성분 NaCO₃및 B2O3를 균일하게 혼합한 다음 상기의 혼합물들을 백금도가니에 투입한 후 1100∼1350℃로 용융시킨 용융물을 수중으로 투입하여 급냉시켜 비정질체를 얻고, 이렇게 얻어진 비정질체를 전기로 중에서 640∼760℃로 열처리하고, 산용액으로 유리질 성분 및 잉여원소를 녹인 후 물로 수세, 건조하여 이하의 일반식으로 표시되는 조성을 갖는 분말을 제조하는 것을 특징으로 하는 육방정계 페라이트 미분말 제조방법.AO and Fe₂O₃ forming hexagonal ferrite and a substitution element for controlling physical properties are mixed, heat treated at 800 to 1300 ° C., and then ground to prepare a precursor containing excess AO, which includes glassy components NaCO₃ and After uniformly mixing B 2 O 3 , the mixtures were put in a platinum crucible, and then a melt melted at 1100 to 1350 ° C. was added to water and quenched to obtain an amorphous body. A heat treatment at 760 ° C., a glass component and a surplus element are dissolved in an acid solution, washed with water, and dried to prepare a powder having a composition represented by the following general formula. A1-WKWF e12-(x+y+z)Mix Mj yS nZO19 A 1 - W K W F e 12- (x + y + z) M i x M j y S n Z O 19 여기서here 0.04≤w≤0.15, 0≤x≤1, 0.2≤y≤0.6, 0.25≤z≤0.7이고,0.04≤w≤0.15, 0≤x≤1, 0.2≤y≤0.6, 0.25≤z≤0.7, A는 Ba, Sr, Pb, Ca 중 선택된 어느 하나 이상의 원소이고,A is at least one element selected from Ba, Sr, Pb, and Ca, Mi는 Co, Ni, Zn 중 선택된 어느 하나이상의 원소이고,M i is at least one element selected from Co, Ni, and Zn, Mj는 Ti, Nb, Ta, Si 중 선택된 어느 하나이상의 원소이다.M j is at least one element selected from Ti, Nb, Ta, and Si. 제1항에 있어서, 상기한 치환원소로서 K와 Sn을 함께 사용하는 것을 특징으로 하는 육방정계 페라이트 미분말 제조방법.The method for preparing hexagonal ferrite fine powder according to claim 1, wherein K and Sn are used together as the substitution element. 제1항 또는 제2항에 있어서, 상기한 K의 치환량이 0.04∼0.15이고 Sn의 치환량이 0.25∼0.7인 것을 특징으로 하는 육방정계 페라이트 미분말 제조방법The method for producing a hexagonal ferrite fine powder according to claim 1 or 2, wherein the substitution amount of K is 0.04 to 0.15 and the substitution amount of Sn is 0.25 to 0.7.
KR1019950015039A 1995-06-08 1995-06-08 Method of preparing cubic ferrite powder for magnetic tape KR0139130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950015039A KR0139130B1 (en) 1995-06-08 1995-06-08 Method of preparing cubic ferrite powder for magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950015039A KR0139130B1 (en) 1995-06-08 1995-06-08 Method of preparing cubic ferrite powder for magnetic tape

Publications (2)

Publication Number Publication Date
KR970001271A KR970001271A (en) 1997-01-24
KR0139130B1 true KR0139130B1 (en) 1998-04-27

Family

ID=19416656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950015039A KR0139130B1 (en) 1995-06-08 1995-06-08 Method of preparing cubic ferrite powder for magnetic tape

Country Status (1)

Country Link
KR (1) KR0139130B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006545A (en) * 2003-07-09 2005-01-17 강규채 Manufacturing method of the Sr-ferrite magnet for double-layered pressing magnet

Also Published As

Publication number Publication date
KR970001271A (en) 1997-01-24

Similar Documents

Publication Publication Date Title
EP0183988B1 (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
US4341648A (en) Method for manufacturing magnetic powder for high density magnetic recording
US4569775A (en) Method for manufacturing a magnetic powder for high density magnetic recording
EP2003094B1 (en) Magnetic material
Hibst Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials
US4543198A (en) Ferrite magnetic material for magnetic recording and process for the preparation thereof
US4401643A (en) Preparation of finely divided barium ferrite of high coercivity
US4582623A (en) Barium ferrite magnetic powder and recording medium employing the same
JPH0986906A (en) Production of functional oxide powder for functional thin film
KR0139130B1 (en) Method of preparing cubic ferrite powder for magnetic tape
JP2005340690A (en) Hexagonal ferrite magnetic powder and its manufacturing method
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPS61136923A (en) Hexagonal ferrite magnetic body for magnetic recording and its manufacture
JPH0359007B2 (en)
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JPS6324935B2 (en)
JPS5841728A (en) Manufacture of fine ferrite powder
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JPS6355122A (en) Magnetic powder
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS62291905A (en) Manufacture of hexagonal ferrite particle power
JPS6353134B2 (en)
KR0139118B1 (en) Method of preparing cubic ferrite powder for magnetic tape

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100209

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee