KR0138044B1 - Method for manufacturing al deposited stainless steel sheet - Google Patents

Method for manufacturing al deposited stainless steel sheet

Info

Publication number
KR0138044B1
KR0138044B1 KR1019940029279A KR19940029279A KR0138044B1 KR 0138044 B1 KR0138044 B1 KR 0138044B1 KR 1019940029279 A KR1019940029279 A KR 1019940029279A KR 19940029279 A KR19940029279 A KR 19940029279A KR 0138044 B1 KR0138044 B1 KR 0138044B1
Authority
KR
South Korea
Prior art keywords
aluminum
stainless steel
steel sheet
deposited
temperature
Prior art date
Application number
KR1019940029279A
Other languages
Korean (ko)
Other versions
KR960017909A (en
Inventor
최기덕
전재호
박치록
신정철
Original Assignee
신창식
한국신철강기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신창식, 한국신철강기술연구조합 filed Critical 신창식
Priority to KR1019940029279A priority Critical patent/KR0138044B1/en
Publication of KR960017909A publication Critical patent/KR960017909A/en
Application granted granted Critical
Publication of KR0138044B1 publication Critical patent/KR0138044B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 알루미늄 증착 스테인레스 강판을 제조하는 방법에 있어서, 스테인레스 강판 소지기판의 온도를 200∼500℃ 범위로 하여 알루미늄 증착층의 두께를 5∼20㎛ 범위로 증착시키는 알루미늄 증착 스테인레스 강판의 제조방법에 관한 것이다.The present invention provides a method for manufacturing an aluminum-deposited stainless steel sheet, the method for producing an aluminum-deposited stainless steel sheet to deposit the thickness of the aluminum deposition layer in the range of 5 to 20㎛ with the temperature of the stainless steel plate substrate 200 to 500 ℃. It is about.

이때 스테인레스 강판의 온도를 200∼500℃ 범위로 유지하는데 특징이 있으며 그 이유는 이 온도범위에서 알루미늄 증착층과 스테인레스 강판과의 양호한 밀착성을 얻을 수 있기 때문에 또한 표면에 증착되는 알루미늄의 두께는 5㎛ 이상 증착시켜야 한다. 그 이유는 이 이하의 두께에서는 고온에서 충분한 내산화성을 보여주지 못하기 때문이다.In this case, the temperature of the stainless steel sheet is maintained in the range of 200 to 500 ° C. The reason is that in this temperature range, good adhesion between the aluminum deposition layer and the stainless steel sheet is obtained, and the thickness of aluminum deposited on the surface is 5 μm. Should be deposited over. The reason is that the thickness below this does not show sufficient oxidation resistance at high temperature.

본 발명의 방법으로 제조된 알루미늄 증착 스테인레스 강판은 고온 내산화성이 매우 우수하다.The aluminum-deposited stainless steel sheet produced by the method of the present invention is very excellent in high temperature oxidation resistance.

Description

알루미늄 증착 내열 스테인레스 강판의 제조방법Manufacturing Method of Aluminum Deposition Heat Resistant Stainless Steel Sheet

본 발명은 진공증착방식을 이용하여 스테인레스 강판의 고온, 내산화성을 향상시킨 알루미늄 증착 내열 스테인레스 강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an aluminum vapor-deposited heat-resistant stainless steel sheet which improves the high temperature and oxidation resistance of a stainless steel sheet using a vacuum deposition method.

고온에서 사용되는 강판은 내산화성 및 고온에서의 강도 등의 특성이 요구되는데, 이러한 내열특성을 향상시키기 위해 내열 도금 물질계의 개발등 내열강판의 개발이 활발히 이루어지고 있다.Steel sheets used at high temperatures require properties such as oxidation resistance and strength at high temperatures. In order to improve such heat resistance characteristics, development of heat resistant steel sheets such as development of heat resistant plating materials has been actively performed.

도금물질계의 내열강판으로서 강판에 실리콘함량 6∼10중량%의 알루미늄을 용융도금하여 알루미늄에 첨가된 실리콘이 알루미늄 모재에 확산되어 알루미늄-철 합금층 형성을 막아주도록 용융 알루미늄 도금강판이 있다. 이때 실리콘은 알루미늄-철-실리콘의 합금형태로 존재한다. 또한 진공증착방식으로 알루미늄과 소지강판 사이에 티타늄을 도금하여 티타늄이 알루미늄과 소지강판 사이로 산소가 침입하는 것을 막아 소지강판의 산화를 방지하도록 한 티타늄/알루미늄 이층도금강판 등 도금물질의 다층화를 통하여 강판의 내열성 향상을 도모하는 방법도 있다.As a heat-resistant steel sheet of a plating material system, there is a molten aluminum plated steel sheet to melt-plated aluminum with a silicon content of 6 to 10% by weight on a steel sheet to diffuse silicon added to aluminum to prevent the formation of an aluminum-iron alloy layer. At this time, the silicon is present in the form of an alloy of aluminum-iron-silicon. In addition, by vacuum evaporation, titanium is plated between aluminum and the steel plate to prevent oxygen from infiltrating the aluminum and the steel plate to prevent oxidation of the steel plate to prevent oxidation of the steel plate. There is also a method for improving the heat resistance.

내열강판의 소재에 있어서 일반강에 알루미늄을 도금한 용융 알루미늄 도금강판의 경우에는 사용온도가 600℃ 이상이 되면 산화속도가 급격히 상승하므로 550℃ 이하의 용도에서만 사용되고 있다.In the material of heat-resistant steel sheet, the molten aluminum plated steel sheet in which aluminum is plated on general steel is used only for applications below 550 ° C because the oxidation rate rapidly increases when the use temperature is 600 ° C or higher.

용융 알루미늄 도금강판의 소재로 저탄소 티타늄 첨가강이 있는데 이는 강중의 탄소가 소지강판과 도금층과의 상호확산을 막아주어 소지강판의 탄소를 감소시키고, 첨가된 티타늄이 도금층 중의 알루미늄이 고온에서 소지강판에 확산침투 되도록하여 소지강판의 산화를 억제하도록 한 것이다. 이 저탄소 티타늄 첨가강을 소재로한 알루미늄 도금강판의 고온에서의 내열성은 알루미늄-철 상호확산에 의한 알루미늄-철 합금층이 열적으로 안정하므로 양호한 내산화성을 가지는 것이다.The material of the hot-dip galvanized steel sheet is low carbon titanium-added steel, which prevents the carbon in the steel from inter-diffusion between the base steel plate and the plated layer to reduce the carbon of the base steel plate, and the added titanium is added to the base steel plate at high temperature. It is to be diffusion permeation to inhibit the oxidation of the steel sheet. The heat resistance at high temperature of the aluminum-plated steel sheet made of the low carbon titanium-added steel is that the aluminum-iron alloy layer due to aluminum-iron interdiffusion is thermally stable, and thus has good oxidation resistance.

자동차의 배가스 부품에는 내고온산화성 뿐 아니라 실온 및 고온에서 외력 및 진동에 견딜 만한 강도가 요구된다. 티타늄 첨가 극저탄소강은 고온에서 강도가 문제되므로 망간, 실리콘, 인, 비스므스(Mn, Si, P, Bi) 등을 첨가하여 내열성을 해치지 않고 고온강도를 확보하도록한 극저탄소 티타늄-실리콘-망간 첨가강이 개발되기도 하였다.Exhaust gas components of automobiles require not only high temperature oxidation resistance but also strength to withstand external forces and vibrations at room temperature and high temperature. Titanium-added ultra-low carbon steels have high strength at high temperatures, so ultra-low carbon titanium-silicon-manganese is added to manganese, silicon, phosphorus, bismuth (Mn, Si, P, Bi) to secure high-temperature strength without compromising heat resistance. Additional steels have also been developed.

스테인레스 강판은 강판 절단면의 내식성과 고온에서의 강도가 기존 사용되고 있던 용융도금강판에 비해 우수하여 자동차용 배기계 등 그 사용 용도가 확대되고 있다.The stainless steel sheet has excellent corrosion resistance and high strength at high temperatures compared to the hot-dip galvanized steel sheet that has been used in the past.

고온 내열성을 가지는 스테인레스 강판의 대표적인 예로는 STS 304와 STS 409L이 있다. STS 304 스테인레스 강판은 870℃, STS 409L 스테인레스 강판은 850℃에서 안정한 내열 특성을 갖는다. 이러한 스테인레스 강판에 알루미늄을 도금하여 내열특성을 향상시키고, 강판의 내식성도 확보하려는 개발이 시도되고 있다. 그러나 스테인레스 강판에 알루미늄을 용융도금할 때에는 스테인레스의 부동태 피막으로 인하여 양호한 밀착성을 확보하는 데 제조상 어려움을 안고 있다. 이를 해결하기 위한 시도로 소둔 분위기에서 부동태피막을 화원제거한 후 알루미늄을 도금하는 방법, 스테인레스강에 니켈, 구리, 철-보론(B) 등을 먼저 하층에 도금한 후 알루미늄을 도금하기도 하나 그 제조 공정이 매우 까다롭다.Representative examples of the stainless steel sheet having high temperature heat resistance are STS 304 and STS 409L. STS 304 stainless steel sheet has stable heat resistance at 870 ℃ and STS 409L stainless steel sheet at 850 ℃. The development of attempting to improve the heat resistance and to secure the corrosion resistance of the steel sheet by plating aluminum on such a stainless steel sheet. However, when aluminum is hot-plated on a stainless steel sheet, there is a manufacturing problem in securing good adhesion due to the passivation film of stainless steel. In an attempt to solve this problem, a method of plating an aluminum after removing a passivation film in an annealing atmosphere, and plating nickel, copper, and iron-boron (B) on a lower layer first, followed by plating aluminum This is very tricky.

본 발명은 스테인레스 강판의 고온내산화성을 증가시킴에 있어 기존의 기술보다 제조공정이 간단한 진공증착방식을 이용한 알루미늄 증착 내열 스테인레스 강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an aluminum-deposited heat-resistant stainless steel sheet using a vacuum deposition method in which the manufacturing process is simpler than the existing technology in increasing the high temperature oxidation resistance of the stainless steel sheet.

본 발명의 제조공정을 상세히 설명하면 다음과 같다.Hereinafter, the manufacturing process of the present invention will be described in detail.

먼저 소지기판인 스테인레스 강판에 묻어있는 오일을 제거하고 아세톤 및 알콜 용액에서 초음파 세척한 후, 진공 챔버내에 장입시킨다. 알루미늄 금속 낱알(grain)을 수냉식 구리 도가니에 채운 후 진공배기 시키고 전자빔을 이용하여 전자빔 가열 방식으로 알루미늄을 진공증착시킨다. 이때 스테인레스 강판의 기판 온도를 200-500℃가 되도록 한다. 기판온도의 설정 기준은 표면에 증착된 알루미늄과 소지와의 밀착성이다. 즉, 이 온도 범위에서 알루미늄을 스테인레스 위에 증착을 하면 양호한 밀착성을 얻을 수 있기 때문에 기판온도의 범위는 200-500℃가 되도록 하여야 한다. 한편 표면에 증착되는 알루미늄의 두께는 5∼20㎛ 범위로 증착시키는 것이 좋다. 왜냐하면 이 이하의 두께에서는 고온에서 충분한 내산화성을 보여주지 못하고 그 이상의 두께에서는 알루미늄의 산화중량이 커지고 도금층의 박리가 일어날 가능성 때문이다.First, the oil deposited on the stainless steel plate, which is a substrate, is removed, ultrasonically cleaned in acetone and alcohol solution, and then charged into a vacuum chamber. The aluminum metal grains are filled in a water-cooled copper crucible, followed by vacuum evacuation, and vacuum deposition of aluminum by electron beam heating using an electron beam. At this time, the substrate temperature of the stainless steel sheet is to be 200-500 ℃. The criteria for setting the substrate temperature is the adhesion between the aluminum and the substrate deposited on the surface. In other words, when the aluminum is deposited on the stainless steel in this temperature range, good adhesion can be obtained, so the substrate temperature should be in the range of 200-500 ° C. On the other hand, the thickness of the aluminum deposited on the surface is preferably deposited in the range of 5 ~ 20㎛. This is because the thickness below this does not show sufficient oxidation resistance at high temperatures, and at higher thicknesses, the oxidation weight of aluminum increases and the possibility of peeling of the plating layer occurs.

본 발명의 구체적인 실시예를 설명하면 다음과 같다.Hereinafter, specific embodiments of the present invention will be described.

[실시예 1-3]Example 1-3

STS 304 스테인레스 강판에 묻어있는 오일을 제거하고, 아세톤 및 알콜용액에서 초음파 세척한 후, 진공 챔버내에 장입시킨다. 알루미늄 금속 낱알(grain)을 수냉식 구리 도가니에 채운 후 진공배기시키고 전자빔을 이용하여 알루미늄을 5㎛ 진공증착시켰다. 이때 스테인레스 강판의 기판온도는 200℃, 300℃, 500℃에서 각각 실시하였다. 밀착성 및 내열성 평가 결과는 표 1에 나타내었다.The oil on the STS 304 stainless steel sheet is removed, sonicated in acetone and alcohol solution, and then charged into a vacuum chamber. An aluminum metal grain was filled in a water-cooled copper crucible, followed by vacuum evacuation, and aluminum was vacuum deposited by 5 탆 using an electron beam. At this time, the substrate temperature of the stainless steel sheet was carried out at 200 ℃, 300 ℃, 500 ℃. Adhesion and heat resistance evaluation results are shown in Table 1.

[실시예 3-6]Example 3-6

실시예 1에서 처럼 STS 304 스테인레스 강판위에 알루미늄을 전자빔을 가지고 진공증착시켰다. 그리고 이때 알루미늄 증착층의 두께는 10㎛이었고, 기판온도는 200℃, 300℃, 500℃에서 실시하였다.Aluminum was vacuum-deposited on the STS 304 stainless steel sheet with an electron beam as in Example 1. At this time, the thickness of the aluminum deposition layer was 10㎛, the substrate temperature was carried out at 200 ℃, 300 ℃, 500 ℃.

[실시예 7-9]Example 7-9

실시예 1에서 처럼 STS 304 스테인레스 강판위에 알루미늄을 전자빔을 가지고 진공증착시켰다. 그리고 이때 알루미늄 증착층의 두께는 20㎛이었고, 기판온도는 200℃, 300℃, 500℃에서 실시하였다.Aluminum was vacuum-deposited on the STS 304 stainless steel sheet with an electron beam as in Example 1. At this time, the thickness of the aluminum deposition layer was 20㎛, the substrate temperature was carried out at 200 ℃, 300 ℃, 500 ℃.

[실시예 10-12]Example 10-12

STS 409L 스테인레스 강판에 묻어있는 오일을 제거하고, 아세톤 및 알콜용액에서 초음파 세척한 후, 진공 챔버내에 장입시킨다. 알루미늄 금속 낱알(grain)을 수냉식 구리 도가니에 채운 후 진공배기시키고 전자빔을 이용하여 알루미늄을 5㎛ 진공증착시켰다. 이때 스테인레스 강판의 기판온도는 200℃, 300℃, 500℃에서 실시하였다.Remove the oil from the STS 409L stainless steel plate, ultrasonically clean it with acetone and alcohol solution, and load into a vacuum chamber. An aluminum metal grain was filled in a water-cooled copper crucible, followed by vacuum evacuation, and aluminum was vacuum deposited by 5 탆 using an electron beam. At this time, the substrate temperature of the stainless steel sheet was carried out at 200 ℃, 300 ℃, 500 ℃.

[실시예 13-15]Example 13-15

실시예 10에서 처럼 STS 409L 스테인레스 강판위에 알루미늄을 전자빔을 가지고 진공증착시켰다. 그리고 이때 알루미늄 증착층의 두께는 10㎛이었고, 기판온도는 200℃, 300℃, 500℃에서 실시하였다.Aluminum was vacuum deposited on the STS 409L stainless steel sheet with an electron beam as in Example 10. At this time, the thickness of the aluminum deposition layer was 10㎛, the substrate temperature was carried out at 200 ℃, 300 ℃, 500 ℃.

[실시예 16-18]Example 16-18

실시예 10에서 처럼 STS 409L 스테인레스 강판위에 알루미늄을 전자빔을 가지고 진공증착시켰다. 그리고 이때 알루미늄 증착층의 두께는 20㎛이었고, 기판온도는 200℃, 300℃, 500℃에서 실시하였다.Aluminum was vacuum deposited on the STS 409L stainless steel sheet with an electron beam as in Example 10. At this time, the thickness of the aluminum deposition layer was 20㎛, the substrate temperature was carried out at 200 ℃, 300 ℃, 500 ℃.

[비교예 1-3]Comparative Example 1-3

본 비교예는 실시예 13에서 처럼 STS 409L 스테인레스 강판위에 알루미늄 증착층의 두께가 10㎛가 되도록 증착시켰다. 그리고 이때의 기판온도는 각각 상온, 100℃ 및 600℃에서 실시하였다.This comparative example was deposited on the STS 409L stainless steel sheet as in Example 13 so that the thickness of the aluminum deposition layer is 10㎛. In addition, the substrate temperature at this time was performed at normal temperature, 100 degreeC, and 600 degreeC, respectively.

[비교예 4-5]Comparative Example 4-5

본 비교예는 실시예 10에서 처럼 STS 409L 스테인레스 강판위에 알루미늄을 전자빔을 가지고 증착을 시켰다. 증착된 알루미늄의 두께는 각각 1㎛ 및 3㎛가 되도록 하였고 기판온도는 300℃에서 고정하였다.In this comparative example, aluminum was deposited on the STS 409L stainless steel sheet with an electron beam as in Example 10. The thickness of the deposited aluminum was 1 μm and 3 μm, respectively, and the substrate temperature was fixed at 300 ° C.

[비교예 6-7]Comparative Example 6-7

본 비교예는 알루미늄이 증착되지 않은 STS 304 및 409L 스테인레스 강판을 사용하였다.This comparative example used STS 304 and 409L stainless steel sheets on which aluminum was not deposited.

[비교예 8]Comparative Example 8

본 비교예는 일반냉연강판위에 용융도금법으로 알루미늄을 도금시킨 기존의 상품화된 제품을 이용하였다.This comparative example uses an existing commercialized product in which aluminum is plated on a general cold rolled steel sheet by a hot dip plating method.

상기와 같이 제조된 시편을 다음과 같은 방법으로 그 특성평가를 실시하여 표 1에 나타내었다. 이때 제품의 품질특성평가는 다음과 같이하여 비교하였다.The specimen prepared as described above was subjected to its characteristic evaluation in the following manner and shown in Table 1. The quality characteristics of the products were compared as follows.

(1) 밀착성 시험:발명제품과 비교제품의 밀착성을 비교 평가하기 위해 180도 Ot 굴곡후 접착테이프를 이용하여 도금층의 박리정도를 다음과 같이 비교평가하였다.(1) Adhesion test: In order to compare and evaluate the adhesion between the invention and the comparative product, the degree of peeling of the plating layer was evaluated using the adhesive tape after 180 degree Ot bending as follows.

(2) 내열성 평가(2) heat resistance evaluation

열이력은 1회부터 45회까지는 815℃에서 22.5시간 가열하고 공기중에서 냉각하는 것을 1주기로하다가 45회로부터 50회까지는 900℃에서 22.5시간 가열한 후 공기중에서 냉각을 하는 것을 1주기로하여 반복 가열하였다. 이때 가열은 대기 분위기의 로에서 행하여졌다. 그리고 본 발명의 시편 및 비교재의 산화중량을 측정하여 다음과 같이 평가하였다.The heat history was repeated once with 45 cycles of 22.5 hours at 815 ℃ and cooling in air for 1 cycle, then 45 cycles to 50 cycles with 22.5 hours of heating at 900 ℃ for 1 cycle. . At this time, heating was performed in the furnace of air | atmosphere atmosphere. And the oxidation weight of the specimen and the comparative material of the present invention was measured and evaluated as follows.

표 1의 실시예에서 보여주듯이 스테인레스 강판의 예열온도 200-500℃ 범위에서 양호한 밀착성을 나타내었고, 비교예 1-3의 경우처럼 이 온도범위를 벗어나면 밀착성이 나쁘게 나타났다. 이는 일반강판위에 알루미늄을 진공증착할 때의 온도범위인 250-350℃보다 그 온도범위가 넓은 것이다. 일반 강의 경우 350℃ 이상에서는 기판과 도금층간에 Fe-Al 합금층이 형성되어 도금층 박리가 발생하고, 250℃ 이하에서는 도금층과 기판과의 부착력이 약하여 도금층의 밀착성이 좋지 않았으나, 스테인레스 강판의 경우 넓은 기판온도 범위에서 우수한 도금 밀착성을 확보할 수 있었다. 용융도금방식으로 알루미늄을 스테인레스에 도금할때는 용탕의 온도가 680℃ 정도의 고온이고, 스테인레스강의 산화층을 환원소둔하면서 강중의 크롬이나 실리콘이 표면에 석출되어 용융 알루미늄의 젖음성이 저하된다고 보고되고 있으나, 진공증착방식을 이용한 알루미늄의 도금에 있어서는 스테인레스 강판의 예열 온도가 상대적으로 낮을 뿐 아니라, 산화층을 제거 또는 커버하려는 다른 시도가 필요치 않으며 도금방법이 매우 단순한 잇점이 있다.As shown in the examples of Table 1, the good adhesion was shown in the preheating temperature range of 200-500 ° C. of the stainless steel sheet, and the adhesion was poor when the temperature was out of this range as in Comparative Example 1-3. This temperature range is wider than that of 250-350 ° C., which is the temperature range when vacuum is deposited on aluminum. In the case of general steel, the Fe-Al alloy layer is formed between the substrate and the plating layer at 350 ° C. or higher, and plating layer peeling occurs. At 250 ° C. or lower, adhesion between the plating layer and the substrate is weak and adhesion of the plating layer is not good. Excellent plating adhesion was ensured over the temperature range. It is reported that when the aluminum is plated on the stainless steel by the hot dip plating method, the molten metal has a high temperature of about 680 ° C, and chromium or silicon in the steel precipitates on the surface while reducing and annealing the oxide layer of the stainless steel. In the plating of aluminum using the deposition method, the preheating temperature of the stainless steel sheet is relatively low, and other attempts to remove or cover the oxide layer are not required, and the plating method is very simple.

한편 표 1의 실시예 4∼9의 내열성평가 결과를 보면, STS 409L의 경우는 알루미늄의 도금두께를 10㎛ 이상 증착시키면 산화중량의 증가가 비교재에 비해 매우 적었다. 이 경우 알루미늄이 전혀 증착되지 않은 비교예 6의 STS 409L 스테인레스의 경우는 분위기 온도 900℃에서 산화중량이 급격히 증가하여 파괴하기 시작하였다. 한편 STS 304의 경우에서는 알루미늄의 두께가 20㎛ 이상이 되는 실시예 16∼18에서 매우 우수한 내산화성을 보여주었다. 이 경우 알루미늄이 전혀 증착되지 않은 비교예 7인 STS 304 스테인레스의 경우는 900℃에서 무게가 반대로 감소하는 현상을 보이면서 파괴하기 시작하였다. 그리고 비교예 4, 5의 알루미늄의 두께가 1㎛ 및 3㎛의 경우에서는 표면에 증착된 알루미늄의 양이 충분하지 못하기 때문에 고온에서 장시간 동안 소지 기판을 보호해주지 못하고 비교적 큰 무게증가를 보였다.On the other hand, in the heat resistance evaluation results of Examples 4 to 9 of Table 1, in the case of STS 409L, when the plating thickness of aluminum was deposited to 10 µm or more, the increase in oxidation weight was very small compared to the comparative material. In this case, in the case of STS 409L stainless steel of Comparative Example 6 in which aluminum was not deposited at all, the oxidation weight rapidly increased at an ambient temperature of 900 ° C. and started to be destroyed. On the other hand, in the case of STS 304 showed excellent oxidation resistance in Examples 16 to 18 in which the thickness of aluminum is 20㎛ or more. In this case, STS 304 stainless, which is Comparative Example 7, in which aluminum was not deposited at all, started to be destroyed while showing a weight decrease in reverse at 900 ° C. In addition, when the thicknesses of aluminum of Comparative Examples 4 and 5 were 1 μm and 3 μm, since the amount of aluminum deposited on the surface was not sufficient, the substrates could not be protected at a high temperature for a long time and showed a relatively large weight increase.

상술한 바와 같이 본 발명은 알루미늄을 스테인레스 강판에 도금하는 방식에 있어 진공증착방식을 이용하여 예열온도 200-500℃ 범위에서 우수한 밀착성을 얻을 수 있어 도금 공정의 단순화를 꾀할 수 있고, 스테인레스 강판의 내열온도 범위를 900℃ 이상으로 까지 확대시킬 수 있어 고온의 산화성 분위계에서의 적용이 가능함을 보여준다.As described above, the present invention can obtain excellent adhesion in the preheating temperature range of 200-500 ° C. by using a vacuum deposition method in the method of plating aluminum on a stainless steel sheet, thereby simplifying the plating process, and the heat resistance of the stainless steel sheet. The temperature range can be extended to over 900 ° C, demonstrating its application in high temperature oxidative atmospheres.

Claims (1)

알루미늄 증착 스테인레스 강판을 제조하는 방법에 있어서, 진공조내에서 스테인레스 강판 소지기판의 온도를 200∼500℃ 범위로 하고 전자빔 가열방법으로 알루미늄 증착층의 두께를 5∼20㎛ 범위로 증착시키는 알루미늄 증착 내열 스테인레스 강판의 제조방법.In the method of manufacturing an aluminum-deposited stainless steel sheet, the aluminum-deposited heat-resistant stainless steel which deposits the thickness of the aluminum-deposited layer in the range of 5-20 micrometers by the electron beam heating method, and the temperature of the stainless steel plate base plate in a vacuum chamber in the range of 200-500 degreeC. Method of manufacturing steel sheet.
KR1019940029279A 1994-11-09 1994-11-09 Method for manufacturing al deposited stainless steel sheet KR0138044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940029279A KR0138044B1 (en) 1994-11-09 1994-11-09 Method for manufacturing al deposited stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940029279A KR0138044B1 (en) 1994-11-09 1994-11-09 Method for manufacturing al deposited stainless steel sheet

Publications (2)

Publication Number Publication Date
KR960017909A KR960017909A (en) 1996-06-17
KR0138044B1 true KR0138044B1 (en) 1998-07-15

Family

ID=19397433

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940029279A KR0138044B1 (en) 1994-11-09 1994-11-09 Method for manufacturing al deposited stainless steel sheet

Country Status (1)

Country Link
KR (1) KR0138044B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245324B1 (en) * 2011-03-31 2013-03-19 재단법인 포항산업과학연구원 Aluminum coated steel sheet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245324B1 (en) * 2011-03-31 2013-03-19 재단법인 포항산업과학연구원 Aluminum coated steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
KR960017909A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
JP6346972B6 (en) Zn-Mg alloy plated steel sheet and method for producing the same
CN1118019A (en) Aluminized steel alloys containing chromium and method for producing same
EP2659019B1 (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
CN87103764A (en) Hot dip aluminum plating chromium alloyed steel
JPS61147865A (en) Aluminum hot dipped steel sheet and its production
JP2004083988A (en) HEAT RESISTANT HOT DIP Al BASED PLATED STEEL SHEET WORKED MATERIAL EXCELLENT IN OXIDATION RESISTANCE OF WORKED PART AND HIGH TEMPERATURE OXIDATION RESISTANT COATING STRUCTURE
KR0138044B1 (en) Method for manufacturing al deposited stainless steel sheet
KR101898729B1 (en) Zinc coated steel sheet and a manufacturing method thereof
JPH0288754A (en) Hot-dip aluminized steel sheet excellent in corrosion resistance
CA1156523A (en) Reduction of loss of zinc by vaporization when heating zinc-aluminum coatings on ferrous metal base
JPH0621348B2 (en) Alloyed zinc plated steel sheet and its manufacturing method
KR950000309B1 (en) Aluminum vacuum deposite steel sheets with an excellent adhesion and heat resistance and method of producing the same
JPH07233451A (en) Al plated stainless steel sheet excellent in high temperature oxidation resistance
JPS6354064B2 (en)
JPS62161944A (en) Aluminized steel sheet
JP3126508B2 (en) Method for producing hot-dip aluminized chromium-containing steel sheet with excellent workability
JPS61147866A (en) Aluminum hot dipped steel sheet and its production
JPH01159384A (en) Fe-cr-al alloy foil
JP2900638B2 (en) Zn-Ti alloy deposited metal material with excellent corrosion resistance
JPH04293759A (en) Hot dip aluminized steel sheet having superior corrosion resistance
JP2747730B2 (en) Manufacturing method of hot-dip aluminized chromium-containing steel sheet
JPS61166956A (en) Manufacture of fin material for radiator
JP4453853B2 (en) Manufacturing method of hot-dip aluminized steel sheet with excellent workability, heat resistance and oxidation resistance
JPH04386A (en) Production of vapor deposition plated steel sheet excellent in adhesive property
JPH04274890A (en) Manufacture of zinc-aluminium two layer surface treated steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee